• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/isdn/hardware/mISDN/
1/*
2 *
3 * hfcpci.c     low level driver for CCD's hfc-pci based cards
4 *
5 * Author     Werner Cornelius (werner@isdn4linux.de)
6 *            based on existing driver for CCD hfc ISA cards
7 *            type approval valid for HFC-S PCI A based card
8 *
9 * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 * Module options:
27 *
28 * debug:
29 *	NOTE: only one poll value must be given for all cards
30 *	See hfc_pci.h for debug flags.
31 *
32 * poll:
33 *	NOTE: only one poll value must be given for all cards
34 *	Give the number of samples for each fifo process.
35 *	By default 128 is used. Decrease to reduce delay, increase to
36 *	reduce cpu load. If unsure, don't mess with it!
37 *	A value of 128 will use controller's interrupt. Other values will
38 *	use kernel timer, because the controller will not allow lower values
39 *	than 128.
40 *	Also note that the value depends on the kernel timer frequency.
41 *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42 *	If the kernel uses 100 Hz, steps of 80 samples are possible.
43 *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
44 *
45 */
46
47#include <linux/module.h>
48#include <linux/pci.h>
49#include <linux/delay.h>
50#include <linux/mISDNhw.h>
51#include <linux/slab.h>
52
53#include "hfc_pci.h"
54
55static const char *hfcpci_revision = "2.0";
56
57static int HFC_cnt;
58static uint debug;
59static uint poll, tics;
60static struct timer_list hfc_tl;
61static unsigned long hfc_jiffies;
62
63MODULE_AUTHOR("Karsten Keil");
64MODULE_LICENSE("GPL");
65module_param(debug, uint, S_IRUGO | S_IWUSR);
66module_param(poll, uint, S_IRUGO | S_IWUSR);
67
68enum {
69	HFC_CCD_2BD0,
70	HFC_CCD_B000,
71	HFC_CCD_B006,
72	HFC_CCD_B007,
73	HFC_CCD_B008,
74	HFC_CCD_B009,
75	HFC_CCD_B00A,
76	HFC_CCD_B00B,
77	HFC_CCD_B00C,
78	HFC_CCD_B100,
79	HFC_CCD_B700,
80	HFC_CCD_B701,
81	HFC_ASUS_0675,
82	HFC_BERKOM_A1T,
83	HFC_BERKOM_TCONCEPT,
84	HFC_ANIGMA_MC145575,
85	HFC_ZOLTRIX_2BD0,
86	HFC_DIGI_DF_M_IOM2_E,
87	HFC_DIGI_DF_M_E,
88	HFC_DIGI_DF_M_IOM2_A,
89	HFC_DIGI_DF_M_A,
90	HFC_ABOCOM_2BD1,
91	HFC_SITECOM_DC105V2,
92};
93
94struct hfcPCI_hw {
95	unsigned char		cirm;
96	unsigned char		ctmt;
97	unsigned char		clkdel;
98	unsigned char		states;
99	unsigned char		conn;
100	unsigned char		mst_m;
101	unsigned char		int_m1;
102	unsigned char		int_m2;
103	unsigned char		sctrl;
104	unsigned char		sctrl_r;
105	unsigned char		sctrl_e;
106	unsigned char		trm;
107	unsigned char		fifo_en;
108	unsigned char		bswapped;
109	unsigned char		protocol;
110	int			nt_timer;
111	unsigned char __iomem 	*pci_io; /* start of PCI IO memory */
112	dma_addr_t		dmahandle;
113	void			*fifos; /* FIFO memory */
114	int			last_bfifo_cnt[2];
115	    /* marker saving last b-fifo frame count */
116	struct timer_list	timer;
117};
118
119#define	HFC_CFG_MASTER		1
120#define HFC_CFG_SLAVE		2
121#define	HFC_CFG_PCM		3
122#define HFC_CFG_2HFC		4
123#define HFC_CFG_SLAVEHFC	5
124#define HFC_CFG_NEG_F0		6
125#define HFC_CFG_SW_DD_DU	7
126
127#define FLG_HFC_TIMER_T1	16
128#define FLG_HFC_TIMER_T3	17
129
130#define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
131#define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
132#define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
133#define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
134
135
136struct hfc_pci {
137	u_char			subtype;
138	u_char			chanlimit;
139	u_char			initdone;
140	u_long			cfg;
141	u_int			irq;
142	u_int			irqcnt;
143	struct pci_dev		*pdev;
144	struct hfcPCI_hw	hw;
145	spinlock_t		lock;	/* card lock */
146	struct dchannel		dch;
147	struct bchannel		bch[2];
148};
149
150/* Interface functions */
151static void
152enable_hwirq(struct hfc_pci *hc)
153{
154	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
155	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
156}
157
158static void
159disable_hwirq(struct hfc_pci *hc)
160{
161	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
162	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
163}
164
165/*
166 * free hardware resources used by driver
167 */
168static void
169release_io_hfcpci(struct hfc_pci *hc)
170{
171	/* disable memory mapped ports + busmaster */
172	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
173	del_timer(&hc->hw.timer);
174	pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
175	iounmap(hc->hw.pci_io);
176}
177
178/*
179 * set mode (NT or TE)
180 */
181static void
182hfcpci_setmode(struct hfc_pci *hc)
183{
184	if (hc->hw.protocol == ISDN_P_NT_S0) {
185		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
186		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
187		hc->hw.states = 1;		/* G1 */
188	} else {
189		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
190		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
191		hc->hw.states = 2;		/* F2 */
192	}
193	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
194	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
195	udelay(10);
196	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
197	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
198}
199
200/*
201 * function called to reset the HFC PCI chip. A complete software reset of chip
202 * and fifos is done.
203 */
204static void
205reset_hfcpci(struct hfc_pci *hc)
206{
207	u_char	val;
208	int	cnt = 0;
209
210	printk(KERN_DEBUG "reset_hfcpci: entered\n");
211	val = Read_hfc(hc, HFCPCI_CHIP_ID);
212	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
213	/* enable memory mapped ports, disable busmaster */
214	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
215	disable_hwirq(hc);
216	/* enable memory ports + busmaster */
217	pci_write_config_word(hc->pdev, PCI_COMMAND,
218	    PCI_ENA_MEMIO + PCI_ENA_MASTER);
219	val = Read_hfc(hc, HFCPCI_STATUS);
220	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
221	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
222	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
223	set_current_state(TASK_UNINTERRUPTIBLE);
224	mdelay(10);			/* Timeout 10ms */
225	hc->hw.cirm = 0;		/* Reset Off */
226	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
227	val = Read_hfc(hc, HFCPCI_STATUS);
228	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
229	while (cnt < 50000) { /* max 50000 us */
230		udelay(5);
231		cnt += 5;
232		val = Read_hfc(hc, HFCPCI_STATUS);
233		if (!(val & 2))
234			break;
235	}
236	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
237
238	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
239
240	hc->hw.bswapped = 0;	/* no exchange */
241	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
242	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
243	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
244	hc->hw.sctrl_r = 0;
245	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
246	hc->hw.mst_m = 0;
247	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
248		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
249	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
250		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
251	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
252	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
253	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
254	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
255
256	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
257	    HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
258	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
259
260	/* Clear already pending ints */
261	val = Read_hfc(hc, HFCPCI_INT_S1);
262
263	/* set NT/TE mode */
264	hfcpci_setmode(hc);
265
266	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
267	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
268
269	/*
270	 * Init GCI/IOM2 in master mode
271	 * Slots 0 and 1 are set for B-chan 1 and 2
272	 * D- and monitor/CI channel are not enabled
273	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
274	 * STIO2 is used as data input, B1+B2 from IOM->ST
275	 * ST B-channel send disabled -> continous 1s
276	 * The IOM slots are always enabled
277	 */
278	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
279		/* set data flow directions: connect B1,B2: HFC to/from PCM */
280		hc->hw.conn = 0x09;
281	} else {
282		hc->hw.conn = 0x36;	/* set data flow directions */
283		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
284			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
285			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
286			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
287			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
288		} else {
289			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
290			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
291			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
292			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
293		}
294	}
295	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
296	val = Read_hfc(hc, HFCPCI_INT_S2);
297}
298
299/*
300 * Timer function called when kernel timer expires
301 */
302static void
303hfcpci_Timer(struct hfc_pci *hc)
304{
305	hc->hw.timer.expires = jiffies + 75;
306	/* WD RESET */
307/*
308 *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
309 *	add_timer(&hc->hw.timer);
310 */
311}
312
313
314/*
315 * select a b-channel entry matching and active
316 */
317static struct bchannel *
318Sel_BCS(struct hfc_pci *hc, int channel)
319{
320	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
321		(hc->bch[0].nr & channel))
322		return &hc->bch[0];
323	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
324		(hc->bch[1].nr & channel))
325		return &hc->bch[1];
326	else
327		return NULL;
328}
329
330/*
331 * clear the desired B-channel rx fifo
332 */
333static void
334hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
335{
336	u_char		fifo_state;
337	struct bzfifo	*bzr;
338
339	if (fifo) {
340		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
341		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
342	} else {
343		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
344		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
345	}
346	if (fifo_state)
347		hc->hw.fifo_en ^= fifo_state;
348	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
349	hc->hw.last_bfifo_cnt[fifo] = 0;
350	bzr->f1 = MAX_B_FRAMES;
351	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
352	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
353	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
354	    le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
355	if (fifo_state)
356		hc->hw.fifo_en |= fifo_state;
357	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
358}
359
360/*
361 * clear the desired B-channel tx fifo
362 */
363static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
364{
365	u_char		fifo_state;
366	struct bzfifo	*bzt;
367
368	if (fifo) {
369		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
370		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
371	} else {
372		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
373		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
374	}
375	if (fifo_state)
376		hc->hw.fifo_en ^= fifo_state;
377	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
378	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
379		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
380		    "z1(%x) z2(%x) state(%x)\n",
381		    fifo, bzt->f1, bzt->f2,
382		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
383		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
384		    fifo_state);
385	bzt->f2 = MAX_B_FRAMES;
386	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
387	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
388	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
389	if (fifo_state)
390		hc->hw.fifo_en |= fifo_state;
391	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
392	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
393		printk(KERN_DEBUG
394		    "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
395		    fifo, bzt->f1, bzt->f2,
396		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
397		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
398}
399
400/*
401 * read a complete B-frame out of the buffer
402 */
403static void
404hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
405    u_char *bdata, int count)
406{
407	u_char		*ptr, *ptr1, new_f2;
408	int		total, maxlen, new_z2;
409	struct zt	*zp;
410
411	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
412		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
413	zp = &bz->za[bz->f2];	/* point to Z-Regs */
414	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
415	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
416		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
417	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
418	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
419	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
420		if (bch->debug & DEBUG_HW)
421			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
422			    "invalid length %d or crc\n", count);
423#ifdef ERROR_STATISTIC
424		bch->err_inv++;
425#endif
426		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
427		bz->f2 = new_f2;	/* next buffer */
428	} else {
429		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
430		if (!bch->rx_skb) {
431			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
432			return;
433		}
434		total = count;
435		count -= 3;
436		ptr = skb_put(bch->rx_skb, count);
437
438		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439			maxlen = count;		/* complete transfer */
440		else
441			maxlen = B_FIFO_SIZE + B_SUB_VAL -
442			    le16_to_cpu(zp->z2);	/* maximum */
443
444		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445		    /* start of data */
446		memcpy(ptr, ptr1, maxlen);	/* copy data */
447		count -= maxlen;
448
449		if (count) {	/* rest remaining */
450			ptr += maxlen;
451			ptr1 = bdata;	/* start of buffer */
452			memcpy(ptr, ptr1, count);	/* rest */
453		}
454		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455		bz->f2 = new_f2;	/* next buffer */
456		recv_Bchannel(bch, MISDN_ID_ANY);
457	}
458}
459
460/*
461 * D-channel receive procedure
462 */
463static int
464receive_dmsg(struct hfc_pci *hc)
465{
466	struct dchannel	*dch = &hc->dch;
467	int		maxlen;
468	int		rcnt, total;
469	int		count = 5;
470	u_char		*ptr, *ptr1;
471	struct dfifo	*df;
472	struct zt	*zp;
473
474	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476		zp = &df->za[df->f2 & D_FREG_MASK];
477		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478		if (rcnt < 0)
479			rcnt += D_FIFO_SIZE;
480		rcnt++;
481		if (dch->debug & DEBUG_HW_DCHANNEL)
482			printk(KERN_DEBUG
483			    "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484				df->f1, df->f2,
485				le16_to_cpu(zp->z1),
486				le16_to_cpu(zp->z2),
487				rcnt);
488
489		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490		    (df->data[le16_to_cpu(zp->z1)])) {
491			if (dch->debug & DEBUG_HW)
492				printk(KERN_DEBUG
493				    "empty_fifo hfcpci paket inv. len "
494				    "%d or crc %d\n",
495				    rcnt,
496				    df->data[le16_to_cpu(zp->z1)]);
497#ifdef ERROR_STATISTIC
498			cs->err_rx++;
499#endif
500			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501			    (MAX_D_FRAMES + 1);	/* next buffer */
502			df->za[df->f2 & D_FREG_MASK].z2 =
503			    cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504			    (D_FIFO_SIZE - 1));
505		} else {
506			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507			if (!dch->rx_skb) {
508				printk(KERN_WARNING
509				    "HFC-PCI: D receive out of memory\n");
510				break;
511			}
512			total = rcnt;
513			rcnt -= 3;
514			ptr = skb_put(dch->rx_skb, rcnt);
515
516			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517				maxlen = rcnt;	/* complete transfer */
518			else
519				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520				    /* maximum */
521
522			ptr1 = df->data + le16_to_cpu(zp->z2);
523			    /* start of data */
524			memcpy(ptr, ptr1, maxlen);	/* copy data */
525			rcnt -= maxlen;
526
527			if (rcnt) {	/* rest remaining */
528				ptr += maxlen;
529				ptr1 = df->data;	/* start of buffer */
530				memcpy(ptr, ptr1, rcnt);	/* rest */
531			}
532			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533			    (MAX_D_FRAMES + 1);	/* next buffer */
534			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535			    le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536			recv_Dchannel(dch);
537		}
538	}
539	return 1;
540}
541
542/*
543 * check for transparent receive data and read max one 'poll' size if avail
544 */
545static void
546hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547	struct bzfifo *txbz, u_char *bdata)
548{
549	 __le16	*z1r, *z2r, *z1t, *z2t;
550	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
551	u_char	*ptr, *ptr1;
552
553	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
554	z2r = z1r + 1;
555	z1t = &txbz->za[MAX_B_FRAMES].z1;
556	z2t = z1t + 1;
557
558	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559	if (!fcnt_rx)
560		return;	/* no data avail */
561
562	if (fcnt_rx <= 0)
563		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
564	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
565	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
567
568	if (fcnt_rx > MAX_DATA_SIZE) {	/* flush, if oversized */
569		*z2r = cpu_to_le16(new_z2);		/* new position */
570		return;
571	}
572
573	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
574	if (fcnt_tx <= 0)
575		fcnt_tx += B_FIFO_SIZE;
576		    /* fcnt_tx contains available bytes in tx-fifo */
577	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
578		    /* remaining bytes to send (bytes in tx-fifo) */
579
580	bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC);
581	if (bch->rx_skb) {
582		ptr = skb_put(bch->rx_skb, fcnt_rx);
583		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
584			maxlen = fcnt_rx;	/* complete transfer */
585		else
586			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
587			    /* maximum */
588
589		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
590		    /* start of data */
591		memcpy(ptr, ptr1, maxlen);	/* copy data */
592		fcnt_rx -= maxlen;
593
594		if (fcnt_rx) {	/* rest remaining */
595			ptr += maxlen;
596			ptr1 = bdata;	/* start of buffer */
597			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
598		}
599		recv_Bchannel(bch, fcnt_tx); /* bch, id */
600	} else
601		printk(KERN_WARNING "HFCPCI: receive out of memory\n");
602
603	*z2r = cpu_to_le16(new_z2);		/* new position */
604}
605
606/*
607 * B-channel main receive routine
608 */
609static void
610main_rec_hfcpci(struct bchannel *bch)
611{
612	struct hfc_pci	*hc = bch->hw;
613	int		rcnt, real_fifo;
614	int		receive = 0, count = 5;
615	struct bzfifo	*txbz, *rxbz;
616	u_char		*bdata;
617	struct zt	*zp;
618
619	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
620		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
621		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
622		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
623		real_fifo = 1;
624	} else {
625		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
626		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
627		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
628		real_fifo = 0;
629	}
630Begin:
631	count--;
632	if (rxbz->f1 != rxbz->f2) {
633		if (bch->debug & DEBUG_HW_BCHANNEL)
634			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
635			    bch->nr, rxbz->f1, rxbz->f2);
636		zp = &rxbz->za[rxbz->f2];
637
638		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
639		if (rcnt < 0)
640			rcnt += B_FIFO_SIZE;
641		rcnt++;
642		if (bch->debug & DEBUG_HW_BCHANNEL)
643			printk(KERN_DEBUG
644			    "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
645			    bch->nr, le16_to_cpu(zp->z1),
646			    le16_to_cpu(zp->z2), rcnt);
647		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
648		rcnt = rxbz->f1 - rxbz->f2;
649		if (rcnt < 0)
650			rcnt += MAX_B_FRAMES + 1;
651		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
652			rcnt = 0;
653			hfcpci_clear_fifo_rx(hc, real_fifo);
654		}
655		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
656		if (rcnt > 1)
657			receive = 1;
658		else
659			receive = 0;
660	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
661		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
662		return;
663	} else
664		receive = 0;
665	if (count && receive)
666		goto Begin;
667
668}
669
670/*
671 * D-channel send routine
672 */
673static void
674hfcpci_fill_dfifo(struct hfc_pci *hc)
675{
676	struct dchannel	*dch = &hc->dch;
677	int		fcnt;
678	int		count, new_z1, maxlen;
679	struct dfifo	*df;
680	u_char		*src, *dst, new_f1;
681
682	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
683		printk(KERN_DEBUG "%s\n", __func__);
684
685	if (!dch->tx_skb)
686		return;
687	count = dch->tx_skb->len - dch->tx_idx;
688	if (count <= 0)
689		return;
690	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
691
692	if (dch->debug & DEBUG_HW_DFIFO)
693		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
694		    df->f1, df->f2,
695		    le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
696	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
697	if (fcnt < 0)
698		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
699	if (fcnt > (MAX_D_FRAMES - 1)) {
700		if (dch->debug & DEBUG_HW_DCHANNEL)
701			printk(KERN_DEBUG
702			    "hfcpci_fill_Dfifo more as 14 frames\n");
703#ifdef ERROR_STATISTIC
704		cs->err_tx++;
705#endif
706		return;
707	}
708	/* now determine free bytes in FIFO buffer */
709	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
710	    le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
711	if (maxlen <= 0)
712		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
713
714	if (dch->debug & DEBUG_HW_DCHANNEL)
715		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
716			count, maxlen);
717	if (count > maxlen) {
718		if (dch->debug & DEBUG_HW_DCHANNEL)
719			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
720		return;
721	}
722	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
723	    (D_FIFO_SIZE - 1);
724	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
725	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
726	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
727	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728	    /* end fifo */
729	if (maxlen > count)
730		maxlen = count;	/* limit size */
731	memcpy(dst, src, maxlen);	/* first copy */
732
733	count -= maxlen;	/* remaining bytes */
734	if (count) {
735		dst = df->data;	/* start of buffer */
736		src += maxlen;	/* new position */
737		memcpy(dst, src, count);
738	}
739	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
740	    /* for next buffer */
741	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
742	    /* new pos actual buffer */
743	df->f1 = new_f1;	/* next frame */
744	dch->tx_idx = dch->tx_skb->len;
745}
746
747/*
748 * B-channel send routine
749 */
750static void
751hfcpci_fill_fifo(struct bchannel *bch)
752{
753	struct hfc_pci 	*hc = bch->hw;
754	int		maxlen, fcnt;
755	int		count, new_z1;
756	struct bzfifo	*bz;
757	u_char		*bdata;
758	u_char		new_f1, *src, *dst;
759	__le16 *z1t, *z2t;
760
761	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
762		printk(KERN_DEBUG "%s\n", __func__);
763	if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
764		return;
765	count = bch->tx_skb->len - bch->tx_idx;
766	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
767		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
768		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
769	} else {
770		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
771		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
772	}
773
774	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
775		z1t = &bz->za[MAX_B_FRAMES].z1;
776		z2t = z1t + 1;
777		if (bch->debug & DEBUG_HW_BCHANNEL)
778			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
779			    "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
780			    le16_to_cpu(*z1t), le16_to_cpu(*z2t));
781		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
782		if (fcnt <= 0)
783			fcnt += B_FIFO_SIZE;
784			    /* fcnt contains available bytes in fifo */
785		fcnt = B_FIFO_SIZE - fcnt;
786		    /* remaining bytes to send (bytes in fifo) */
787
788		/* "fill fifo if empty" feature */
789		if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
790			/* printk(KERN_DEBUG "%s: buffer empty, so we have "
791				"underrun\n", __func__); */
792			/* fill buffer, to prevent future underrun */
793			count = HFCPCI_FILLEMPTY;
794			new_z1 = le16_to_cpu(*z1t) + count;
795			   /* new buffer Position */
796			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
798			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800			    /* end of fifo */
801			if (bch->debug & DEBUG_HW_BFIFO)
802				printk(KERN_DEBUG "hfcpci_FFt fillempty "
803				    "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804				    fcnt, maxlen, new_z1, dst);
805			fcnt += count;
806			if (maxlen > count)
807				maxlen = count; 	/* limit size */
808			memset(dst, 0x2a, maxlen);	/* first copy */
809			count -= maxlen;		/* remaining bytes */
810			if (count) {
811				dst = bdata;		/* start of buffer */
812				memset(dst, 0x2a, count);
813			}
814			*z1t = cpu_to_le16(new_z1);	/* now send data */
815		}
816
817next_t_frame:
818		count = bch->tx_skb->len - bch->tx_idx;
819		/* maximum fill shall be poll*2 */
820		if (count > (poll << 1) - fcnt)
821			count = (poll << 1) - fcnt;
822		if (count <= 0)
823			return;
824		/* data is suitable for fifo */
825		new_z1 = le16_to_cpu(*z1t) + count;
826		    /* new buffer Position */
827		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
828			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
829		src = bch->tx_skb->data + bch->tx_idx;
830		    /* source pointer */
831		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
832		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
833		    /* end of fifo */
834		if (bch->debug & DEBUG_HW_BFIFO)
835			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
836			    "maxl(%d) nz1(%x) dst(%p)\n",
837			    fcnt, maxlen, new_z1, dst);
838		fcnt += count;
839		bch->tx_idx += count;
840		if (maxlen > count)
841			maxlen = count;		/* limit size */
842		memcpy(dst, src, maxlen);	/* first copy */
843		count -= maxlen;	/* remaining bytes */
844		if (count) {
845			dst = bdata;	/* start of buffer */
846			src += maxlen;	/* new position */
847			memcpy(dst, src, count);
848		}
849		*z1t = cpu_to_le16(new_z1);	/* now send data */
850		if (bch->tx_idx < bch->tx_skb->len)
851			return;
852		/* send confirm, on trans, free on hdlc. */
853		if (test_bit(FLG_TRANSPARENT, &bch->Flags))
854			confirm_Bsend(bch);
855		dev_kfree_skb(bch->tx_skb);
856		if (get_next_bframe(bch))
857			goto next_t_frame;
858		return;
859	}
860	if (bch->debug & DEBUG_HW_BCHANNEL)
861		printk(KERN_DEBUG
862		    "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863		    __func__, bch->nr, bz->f1, bz->f2,
864		    bz->za[bz->f1].z1);
865	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
866	if (fcnt < 0)
867		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
868	if (fcnt > (MAX_B_FRAMES - 1)) {
869		if (bch->debug & DEBUG_HW_BCHANNEL)
870			printk(KERN_DEBUG
871			    "hfcpci_fill_Bfifo more as 14 frames\n");
872		return;
873	}
874	/* now determine free bytes in FIFO buffer */
875	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876	    le16_to_cpu(bz->za[bz->f1].z1) - 1;
877	if (maxlen <= 0)
878		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
879
880	if (bch->debug & DEBUG_HW_BCHANNEL)
881		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882			bch->nr, count, maxlen);
883
884	if (maxlen < count) {
885		if (bch->debug & DEBUG_HW_BCHANNEL)
886			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887		return;
888	}
889	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890	    /* new buffer Position */
891	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
893
894	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
896	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898	    /* end fifo */
899	if (maxlen > count)
900		maxlen = count;	/* limit size */
901	memcpy(dst, src, maxlen);	/* first copy */
902
903	count -= maxlen;	/* remaining bytes */
904	if (count) {
905		dst = bdata;	/* start of buffer */
906		src += maxlen;	/* new position */
907		memcpy(dst, src, count);
908	}
909	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
910	bz->f1 = new_f1;	/* next frame */
911	dev_kfree_skb(bch->tx_skb);
912	get_next_bframe(bch);
913}
914
915
916
917/*
918 * handle L1 state changes TE
919 */
920
921static void
922ph_state_te(struct dchannel *dch)
923{
924	if (dch->debug)
925		printk(KERN_DEBUG "%s: TE newstate %x\n",
926			__func__, dch->state);
927	switch (dch->state) {
928	case 0:
929		l1_event(dch->l1, HW_RESET_IND);
930		break;
931	case 3:
932		l1_event(dch->l1, HW_DEACT_IND);
933		break;
934	case 5:
935	case 8:
936		l1_event(dch->l1, ANYSIGNAL);
937		break;
938	case 6:
939		l1_event(dch->l1, INFO2);
940		break;
941	case 7:
942		l1_event(dch->l1, INFO4_P8);
943		break;
944	}
945}
946
947/*
948 * handle L1 state changes NT
949 */
950
951static void
952handle_nt_timer3(struct dchannel *dch) {
953	struct hfc_pci	*hc = dch->hw;
954
955	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
956	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958	hc->hw.nt_timer = 0;
959	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
960	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961		hc->hw.mst_m |= HFCPCI_MASTER;
962	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
964	    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
965}
966
967static void
968ph_state_nt(struct dchannel *dch)
969{
970	struct hfc_pci	*hc = dch->hw;
971	u_char	val;
972
973	if (dch->debug)
974		printk(KERN_DEBUG "%s: NT newstate %x\n",
975			__func__, dch->state);
976	switch (dch->state) {
977	case 2:
978		if (hc->hw.nt_timer < 0) {
979			hc->hw.nt_timer = 0;
980			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
981			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
982			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
983			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
984			/* Clear already pending ints */
985			val = Read_hfc(hc, HFCPCI_INT_S1);
986			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
987			udelay(10);
988			Write_hfc(hc, HFCPCI_STATES, 4);
989			dch->state = 4;
990		} else if (hc->hw.nt_timer == 0) {
991			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
992			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
993			hc->hw.nt_timer = NT_T1_COUNT;
994			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
995			hc->hw.ctmt |= HFCPCI_TIM3_125;
996			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
997				HFCPCI_CLTIMER);
998			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
999			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1000			/* allow G2 -> G3 transition */
1001			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1002		} else {
1003			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1004		}
1005		break;
1006	case 1:
1007		hc->hw.nt_timer = 0;
1008		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1009		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1010		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1011		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1012		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1013		hc->hw.mst_m &= ~HFCPCI_MASTER;
1014		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1015		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1016		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1017		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1018		break;
1019	case 4:
1020		hc->hw.nt_timer = 0;
1021		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1022		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1023		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1024		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1025		break;
1026	case 3:
1027		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1028			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1029			    &dch->Flags)) {
1030				handle_nt_timer3(dch);
1031				break;
1032			}
1033			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1034			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1035			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1036			hc->hw.nt_timer = NT_T3_COUNT;
1037			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1038			hc->hw.ctmt |= HFCPCI_TIM3_125;
1039			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1040				HFCPCI_CLTIMER);
1041		}
1042		break;
1043	}
1044}
1045
1046static void
1047ph_state(struct dchannel *dch)
1048{
1049	struct hfc_pci	*hc = dch->hw;
1050
1051	if (hc->hw.protocol == ISDN_P_NT_S0) {
1052		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1053		    hc->hw.nt_timer < 0)
1054			handle_nt_timer3(dch);
1055		else
1056			ph_state_nt(dch);
1057	} else
1058		ph_state_te(dch);
1059}
1060
1061/*
1062 * Layer 1 callback function
1063 */
1064static int
1065hfc_l1callback(struct dchannel *dch, u_int cmd)
1066{
1067	struct hfc_pci		*hc = dch->hw;
1068
1069	switch (cmd) {
1070	case INFO3_P8:
1071	case INFO3_P10:
1072		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1073			hc->hw.mst_m |= HFCPCI_MASTER;
1074		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1075		break;
1076	case HW_RESET_REQ:
1077		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1078		/* HFC ST 3 */
1079		udelay(6);
1080		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1081		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1082			hc->hw.mst_m |= HFCPCI_MASTER;
1083		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1084		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1085		   HFCPCI_DO_ACTION);
1086		l1_event(dch->l1, HW_POWERUP_IND);
1087		break;
1088	case HW_DEACT_REQ:
1089		hc->hw.mst_m &= ~HFCPCI_MASTER;
1090		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1091		skb_queue_purge(&dch->squeue);
1092		if (dch->tx_skb) {
1093			dev_kfree_skb(dch->tx_skb);
1094			dch->tx_skb = NULL;
1095		}
1096		dch->tx_idx = 0;
1097		if (dch->rx_skb) {
1098			dev_kfree_skb(dch->rx_skb);
1099			dch->rx_skb = NULL;
1100		}
1101		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1102		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1103			del_timer(&dch->timer);
1104		break;
1105	case HW_POWERUP_REQ:
1106		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1107		break;
1108	case PH_ACTIVATE_IND:
1109		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1110		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1111			GFP_ATOMIC);
1112		break;
1113	case PH_DEACTIVATE_IND:
1114		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1115		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1116			GFP_ATOMIC);
1117		break;
1118	default:
1119		if (dch->debug & DEBUG_HW)
1120			printk(KERN_DEBUG "%s: unknown command %x\n",
1121			    __func__, cmd);
1122		return -1;
1123	}
1124	return 0;
1125}
1126
1127/*
1128 * Interrupt handler
1129 */
1130static inline void
1131tx_birq(struct bchannel *bch)
1132{
1133	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1134		hfcpci_fill_fifo(bch);
1135	else {
1136		if (bch->tx_skb)
1137			dev_kfree_skb(bch->tx_skb);
1138		if (get_next_bframe(bch))
1139			hfcpci_fill_fifo(bch);
1140	}
1141}
1142
1143static inline void
1144tx_dirq(struct dchannel *dch)
1145{
1146	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1147		hfcpci_fill_dfifo(dch->hw);
1148	else {
1149		if (dch->tx_skb)
1150			dev_kfree_skb(dch->tx_skb);
1151		if (get_next_dframe(dch))
1152			hfcpci_fill_dfifo(dch->hw);
1153	}
1154}
1155
1156static irqreturn_t
1157hfcpci_int(int intno, void *dev_id)
1158{
1159	struct hfc_pci	*hc = dev_id;
1160	u_char		exval;
1161	struct bchannel	*bch;
1162	u_char		val, stat;
1163
1164	spin_lock(&hc->lock);
1165	if (!(hc->hw.int_m2 & 0x08)) {
1166		spin_unlock(&hc->lock);
1167		return IRQ_NONE; /* not initialised */
1168	}
1169	stat = Read_hfc(hc, HFCPCI_STATUS);
1170	if (HFCPCI_ANYINT & stat) {
1171		val = Read_hfc(hc, HFCPCI_INT_S1);
1172		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1173			printk(KERN_DEBUG
1174			    "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1175	} else {
1176		/* shared */
1177		spin_unlock(&hc->lock);
1178		return IRQ_NONE;
1179	}
1180	hc->irqcnt++;
1181
1182	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1183		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1184	val &= hc->hw.int_m1;
1185	if (val & 0x40) {	/* state machine irq */
1186		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1187		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1188			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1189				hc->dch.state, exval);
1190		hc->dch.state = exval;
1191		schedule_event(&hc->dch, FLG_PHCHANGE);
1192		val &= ~0x40;
1193	}
1194	if (val & 0x80) {	/* timer irq */
1195		if (hc->hw.protocol == ISDN_P_NT_S0) {
1196			if ((--hc->hw.nt_timer) < 0)
1197				schedule_event(&hc->dch, FLG_PHCHANGE);
1198		}
1199		val &= ~0x80;
1200		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1201	}
1202	if (val & 0x08) { 	/* B1 rx */
1203		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1204		if (bch)
1205			main_rec_hfcpci(bch);
1206		else if (hc->dch.debug)
1207			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1208	}
1209	if (val & 0x10) {	/* B2 rx */
1210		bch = Sel_BCS(hc, 2);
1211		if (bch)
1212			main_rec_hfcpci(bch);
1213		else if (hc->dch.debug)
1214			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1215	}
1216	if (val & 0x01) {	/* B1 tx */
1217		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1218		if (bch)
1219			tx_birq(bch);
1220		else if (hc->dch.debug)
1221			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1222	}
1223	if (val & 0x02) {	/* B2 tx */
1224		bch = Sel_BCS(hc, 2);
1225		if (bch)
1226			tx_birq(bch);
1227		else if (hc->dch.debug)
1228			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1229	}
1230	if (val & 0x20)		/* D rx */
1231		receive_dmsg(hc);
1232	if (val & 0x04) {	/* D tx */
1233		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1234			del_timer(&hc->dch.timer);
1235		tx_dirq(&hc->dch);
1236	}
1237	spin_unlock(&hc->lock);
1238	return IRQ_HANDLED;
1239}
1240
1241/*
1242 * timer callback for D-chan busy resolution. Currently no function
1243 */
1244static void
1245hfcpci_dbusy_timer(struct hfc_pci *hc)
1246{
1247}
1248
1249/*
1250 * activate/deactivate hardware for selected channels and mode
1251 */
1252static int
1253mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1254{
1255	struct hfc_pci	*hc = bch->hw;
1256	int		fifo2;
1257	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1258
1259	if (bch->debug & DEBUG_HW_BCHANNEL)
1260		printk(KERN_DEBUG
1261		    "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1262		    bch->state, protocol, bch->nr, bc);
1263
1264	fifo2 = bc;
1265	pcm_mode = (bc>>24) & 0xff;
1266	if (pcm_mode) { /* PCM SLOT USE */
1267		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1268			printk(KERN_WARNING
1269			    "%s: pcm channel id without HFC_CFG_PCM\n",
1270			    __func__);
1271		rx_slot = (bc>>8) & 0xff;
1272		tx_slot = (bc>>16) & 0xff;
1273		bc = bc & 0xff;
1274	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1275		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1276		    __func__);
1277	if (hc->chanlimit > 1) {
1278		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1279		hc->hw.sctrl_e &= ~0x80;
1280	} else {
1281		if (bc & 2) {
1282			if (protocol != ISDN_P_NONE) {
1283				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1284				hc->hw.sctrl_e |= 0x80;
1285			} else {
1286				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1287				hc->hw.sctrl_e &= ~0x80;
1288			}
1289			fifo2 = 1;
1290		} else {
1291			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1292			hc->hw.sctrl_e &= ~0x80;
1293		}
1294	}
1295	switch (protocol) {
1296	case (-1): /* used for init */
1297		bch->state = -1;
1298		bch->nr = bc;
1299	case (ISDN_P_NONE):
1300		if (bch->state == ISDN_P_NONE)
1301			return 0;
1302		if (bc & 2) {
1303			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1304			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1305		} else {
1306			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1307			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1308		}
1309		if (fifo2 & 2) {
1310			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1311			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1312				HFCPCI_INTS_B2REC);
1313		} else {
1314			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1315			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1316				HFCPCI_INTS_B1REC);
1317		}
1318#ifdef REVERSE_BITORDER
1319		if (bch->nr & 2)
1320			hc->hw.cirm &= 0x7f;
1321		else
1322			hc->hw.cirm &= 0xbf;
1323#endif
1324		bch->state = ISDN_P_NONE;
1325		bch->nr = bc;
1326		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1327		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1328		break;
1329	case (ISDN_P_B_RAW):
1330		bch->state = protocol;
1331		bch->nr = bc;
1332		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1333		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1334		if (bc & 2) {
1335			hc->hw.sctrl |= SCTRL_B2_ENA;
1336			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1337#ifdef REVERSE_BITORDER
1338			hc->hw.cirm |= 0x80;
1339#endif
1340		} else {
1341			hc->hw.sctrl |= SCTRL_B1_ENA;
1342			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1343#ifdef REVERSE_BITORDER
1344			hc->hw.cirm |= 0x40;
1345#endif
1346		}
1347		if (fifo2 & 2) {
1348			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1349			if (!tics)
1350				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1351				    HFCPCI_INTS_B2REC);
1352			hc->hw.ctmt |= 2;
1353			hc->hw.conn &= ~0x18;
1354		} else {
1355			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1356			if (!tics)
1357				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1358				    HFCPCI_INTS_B1REC);
1359			hc->hw.ctmt |= 1;
1360			hc->hw.conn &= ~0x03;
1361		}
1362		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1363		break;
1364	case (ISDN_P_B_HDLC):
1365		bch->state = protocol;
1366		bch->nr = bc;
1367		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1368		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1369		if (bc & 2) {
1370			hc->hw.sctrl |= SCTRL_B2_ENA;
1371			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1372		} else {
1373			hc->hw.sctrl |= SCTRL_B1_ENA;
1374			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1375		}
1376		if (fifo2 & 2) {
1377			hc->hw.last_bfifo_cnt[1] = 0;
1378			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1379			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1380			    HFCPCI_INTS_B2REC);
1381			hc->hw.ctmt &= ~2;
1382			hc->hw.conn &= ~0x18;
1383		} else {
1384			hc->hw.last_bfifo_cnt[0] = 0;
1385			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1386			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1387			    HFCPCI_INTS_B1REC);
1388			hc->hw.ctmt &= ~1;
1389			hc->hw.conn &= ~0x03;
1390		}
1391		test_and_set_bit(FLG_HDLC, &bch->Flags);
1392		break;
1393	default:
1394		printk(KERN_DEBUG "prot not known %x\n", protocol);
1395		return -ENOPROTOOPT;
1396	}
1397	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1398		if ((protocol == ISDN_P_NONE) ||
1399			(protocol == -1)) {	/* init case */
1400			rx_slot = 0;
1401			tx_slot = 0;
1402		} else {
1403			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1404				rx_slot |= 0xC0;
1405				tx_slot |= 0xC0;
1406			} else {
1407				rx_slot |= 0x80;
1408				tx_slot |= 0x80;
1409			}
1410		}
1411		if (bc & 2) {
1412			hc->hw.conn &= 0xc7;
1413			hc->hw.conn |= 0x08;
1414			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1415				__func__, tx_slot);
1416			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1417				__func__, rx_slot);
1418			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1419			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1420		} else {
1421			hc->hw.conn &= 0xf8;
1422			hc->hw.conn |= 0x01;
1423			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1424				__func__, tx_slot);
1425			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1426				__func__, rx_slot);
1427			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1428			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1429		}
1430	}
1431	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1432	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1433	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1434	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1435	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1436	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1437	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1438#ifdef REVERSE_BITORDER
1439	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1440#endif
1441	return 0;
1442}
1443
1444static int
1445set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1446{
1447	struct hfc_pci	*hc = bch->hw;
1448
1449	if (bch->debug & DEBUG_HW_BCHANNEL)
1450		printk(KERN_DEBUG
1451		    "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1452		    bch->state, protocol, bch->nr, chan);
1453	if (bch->nr != chan) {
1454		printk(KERN_DEBUG
1455		    "HFCPCI rxtest wrong channel parameter %x/%x\n",
1456		    bch->nr, chan);
1457		return -EINVAL;
1458	}
1459	switch (protocol) {
1460	case (ISDN_P_B_RAW):
1461		bch->state = protocol;
1462		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1463		if (chan & 2) {
1464			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1465			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1466			if (!tics)
1467				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1468			hc->hw.ctmt |= 2;
1469			hc->hw.conn &= ~0x18;
1470#ifdef REVERSE_BITORDER
1471			hc->hw.cirm |= 0x80;
1472#endif
1473		} else {
1474			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1475			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1476			if (!tics)
1477				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1478			hc->hw.ctmt |= 1;
1479			hc->hw.conn &= ~0x03;
1480#ifdef REVERSE_BITORDER
1481			hc->hw.cirm |= 0x40;
1482#endif
1483		}
1484		break;
1485	case (ISDN_P_B_HDLC):
1486		bch->state = protocol;
1487		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1488		if (chan & 2) {
1489			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1490			hc->hw.last_bfifo_cnt[1] = 0;
1491			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1492			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1493			hc->hw.ctmt &= ~2;
1494			hc->hw.conn &= ~0x18;
1495		} else {
1496			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1497			hc->hw.last_bfifo_cnt[0] = 0;
1498			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1499			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1500			hc->hw.ctmt &= ~1;
1501			hc->hw.conn &= ~0x03;
1502		}
1503		break;
1504	default:
1505		printk(KERN_DEBUG "prot not known %x\n", protocol);
1506		return -ENOPROTOOPT;
1507	}
1508	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1509	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1510	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1511	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1512	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1513#ifdef REVERSE_BITORDER
1514	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1515#endif
1516	return 0;
1517}
1518
1519static void
1520deactivate_bchannel(struct bchannel *bch)
1521{
1522	struct hfc_pci	*hc = bch->hw;
1523	u_long		flags;
1524
1525	spin_lock_irqsave(&hc->lock, flags);
1526	mISDN_clear_bchannel(bch);
1527	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1528	spin_unlock_irqrestore(&hc->lock, flags);
1529}
1530
1531/*
1532 * Layer 1 B-channel hardware access
1533 */
1534static int
1535channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1536{
1537	int	ret = 0;
1538
1539	switch (cq->op) {
1540	case MISDN_CTRL_GETOP:
1541		cq->op = MISDN_CTRL_FILL_EMPTY;
1542		break;
1543	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1544		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1545		if (debug & DEBUG_HW_OPEN)
1546			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1547				"off=%d)\n", __func__, bch->nr, !!cq->p1);
1548		break;
1549	default:
1550		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1551		ret = -EINVAL;
1552		break;
1553	}
1554	return ret;
1555}
1556static int
1557hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1558{
1559	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1560	struct hfc_pci	*hc = bch->hw;
1561	int		ret = -EINVAL;
1562	u_long		flags;
1563
1564	if (bch->debug & DEBUG_HW)
1565		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1566	switch (cmd) {
1567	case HW_TESTRX_RAW:
1568		spin_lock_irqsave(&hc->lock, flags);
1569		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1570		spin_unlock_irqrestore(&hc->lock, flags);
1571		break;
1572	case HW_TESTRX_HDLC:
1573		spin_lock_irqsave(&hc->lock, flags);
1574		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1575		spin_unlock_irqrestore(&hc->lock, flags);
1576		break;
1577	case HW_TESTRX_OFF:
1578		spin_lock_irqsave(&hc->lock, flags);
1579		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1580		spin_unlock_irqrestore(&hc->lock, flags);
1581		ret = 0;
1582		break;
1583	case CLOSE_CHANNEL:
1584		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1585		if (test_bit(FLG_ACTIVE, &bch->Flags))
1586			deactivate_bchannel(bch);
1587		ch->protocol = ISDN_P_NONE;
1588		ch->peer = NULL;
1589		module_put(THIS_MODULE);
1590		ret = 0;
1591		break;
1592	case CONTROL_CHANNEL:
1593		ret = channel_bctrl(bch, arg);
1594		break;
1595	default:
1596		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1597			__func__, cmd);
1598	}
1599	return ret;
1600}
1601
1602/*
1603 * Layer2 -> Layer 1 Dchannel data
1604 */
1605static int
1606hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1607{
1608	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1609	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1610	struct hfc_pci		*hc = dch->hw;
1611	int			ret = -EINVAL;
1612	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1613	unsigned int		id;
1614	u_long			flags;
1615
1616	switch (hh->prim) {
1617	case PH_DATA_REQ:
1618		spin_lock_irqsave(&hc->lock, flags);
1619		ret = dchannel_senddata(dch, skb);
1620		if (ret > 0) { /* direct TX */
1621			id = hh->id; /* skb can be freed */
1622			hfcpci_fill_dfifo(dch->hw);
1623			ret = 0;
1624			spin_unlock_irqrestore(&hc->lock, flags);
1625			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1626		} else
1627			spin_unlock_irqrestore(&hc->lock, flags);
1628		return ret;
1629	case PH_ACTIVATE_REQ:
1630		spin_lock_irqsave(&hc->lock, flags);
1631		if (hc->hw.protocol == ISDN_P_NT_S0) {
1632			ret = 0;
1633			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1634				hc->hw.mst_m |= HFCPCI_MASTER;
1635			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1636			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1637				spin_unlock_irqrestore(&hc->lock, flags);
1638				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1639				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1640				break;
1641			}
1642			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1643			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1644			    HFCPCI_DO_ACTION | 1);
1645		} else
1646			ret = l1_event(dch->l1, hh->prim);
1647		spin_unlock_irqrestore(&hc->lock, flags);
1648		break;
1649	case PH_DEACTIVATE_REQ:
1650		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1651		spin_lock_irqsave(&hc->lock, flags);
1652		if (hc->hw.protocol == ISDN_P_NT_S0) {
1653			/* prepare deactivation */
1654			Write_hfc(hc, HFCPCI_STATES, 0x40);
1655			skb_queue_purge(&dch->squeue);
1656			if (dch->tx_skb) {
1657				dev_kfree_skb(dch->tx_skb);
1658				dch->tx_skb = NULL;
1659			}
1660			dch->tx_idx = 0;
1661			if (dch->rx_skb) {
1662				dev_kfree_skb(dch->rx_skb);
1663				dch->rx_skb = NULL;
1664			}
1665			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1666			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1667				del_timer(&dch->timer);
1668#ifdef FIXME
1669			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1670				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1671#endif
1672			hc->hw.mst_m &= ~HFCPCI_MASTER;
1673			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1674			ret = 0;
1675		} else {
1676			ret = l1_event(dch->l1, hh->prim);
1677		}
1678		spin_unlock_irqrestore(&hc->lock, flags);
1679		break;
1680	}
1681	if (!ret)
1682		dev_kfree_skb(skb);
1683	return ret;
1684}
1685
1686/*
1687 * Layer2 -> Layer 1 Bchannel data
1688 */
1689static int
1690hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1691{
1692	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1693	struct hfc_pci		*hc = bch->hw;
1694	int			ret = -EINVAL;
1695	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1696	unsigned int		id;
1697	u_long			flags;
1698
1699	switch (hh->prim) {
1700	case PH_DATA_REQ:
1701		spin_lock_irqsave(&hc->lock, flags);
1702		ret = bchannel_senddata(bch, skb);
1703		if (ret > 0) { /* direct TX */
1704			id = hh->id; /* skb can be freed */
1705			hfcpci_fill_fifo(bch);
1706			ret = 0;
1707			spin_unlock_irqrestore(&hc->lock, flags);
1708			if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1709				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1710		} else
1711			spin_unlock_irqrestore(&hc->lock, flags);
1712		return ret;
1713	case PH_ACTIVATE_REQ:
1714		spin_lock_irqsave(&hc->lock, flags);
1715		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1716			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1717		else
1718			ret = 0;
1719		spin_unlock_irqrestore(&hc->lock, flags);
1720		if (!ret)
1721			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1722				NULL, GFP_KERNEL);
1723		break;
1724	case PH_DEACTIVATE_REQ:
1725		deactivate_bchannel(bch);
1726		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1727			NULL, GFP_KERNEL);
1728		ret = 0;
1729		break;
1730	}
1731	if (!ret)
1732		dev_kfree_skb(skb);
1733	return ret;
1734}
1735
1736/*
1737 * called for card init message
1738 */
1739
1740static void
1741inithfcpci(struct hfc_pci *hc)
1742{
1743	printk(KERN_DEBUG "inithfcpci: entered\n");
1744	hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1745	hc->dch.timer.data = (long) &hc->dch;
1746	init_timer(&hc->dch.timer);
1747	hc->chanlimit = 2;
1748	mode_hfcpci(&hc->bch[0], 1, -1);
1749	mode_hfcpci(&hc->bch[1], 2, -1);
1750}
1751
1752
1753static int
1754init_card(struct hfc_pci *hc)
1755{
1756	int	cnt = 3;
1757	u_long	flags;
1758
1759	printk(KERN_DEBUG "init_card: entered\n");
1760
1761
1762	spin_lock_irqsave(&hc->lock, flags);
1763	disable_hwirq(hc);
1764	spin_unlock_irqrestore(&hc->lock, flags);
1765	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1766		printk(KERN_WARNING
1767		    "mISDN: couldn't get interrupt %d\n", hc->irq);
1768		return -EIO;
1769	}
1770	spin_lock_irqsave(&hc->lock, flags);
1771	reset_hfcpci(hc);
1772	while (cnt) {
1773		inithfcpci(hc);
1774		/*
1775		 * Finally enable IRQ output
1776		 * this is only allowed, if an IRQ routine is already
1777		 * established for this HFC, so don't do that earlier
1778		 */
1779		enable_hwirq(hc);
1780		spin_unlock_irqrestore(&hc->lock, flags);
1781		/* Timeout 80ms */
1782		current->state = TASK_UNINTERRUPTIBLE;
1783		schedule_timeout((80*HZ)/1000);
1784		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1785			hc->irq, hc->irqcnt);
1786		/* now switch timer interrupt off */
1787		spin_lock_irqsave(&hc->lock, flags);
1788		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1789		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1790		/* reinit mode reg */
1791		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1792		if (!hc->irqcnt) {
1793			printk(KERN_WARNING
1794			    "HFC PCI: IRQ(%d) getting no interrupts "
1795			    "during init %d\n", hc->irq, 4 - cnt);
1796			if (cnt == 1)
1797				break;
1798			else {
1799				reset_hfcpci(hc);
1800				cnt--;
1801			}
1802		} else {
1803			spin_unlock_irqrestore(&hc->lock, flags);
1804			hc->initdone = 1;
1805			return 0;
1806		}
1807	}
1808	disable_hwirq(hc);
1809	spin_unlock_irqrestore(&hc->lock, flags);
1810	free_irq(hc->irq, hc);
1811	return -EIO;
1812}
1813
1814static int
1815channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1816{
1817	int	ret = 0;
1818	u_char	slot;
1819
1820	switch (cq->op) {
1821	case MISDN_CTRL_GETOP:
1822		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1823		    MISDN_CTRL_DISCONNECT;
1824		break;
1825	case MISDN_CTRL_LOOP:
1826		/* channel 0 disabled loop */
1827		if (cq->channel < 0 || cq->channel > 2) {
1828			ret = -EINVAL;
1829			break;
1830		}
1831		if (cq->channel & 1) {
1832			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1833				slot = 0xC0;
1834			else
1835				slot = 0x80;
1836			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1837			    __func__, slot);
1838			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1839			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1840			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1841			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1842		}
1843		if (cq->channel & 2) {
1844			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1845				slot = 0xC1;
1846			else
1847				slot = 0x81;
1848			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1849			    __func__, slot);
1850			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1851			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1852			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1853			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1854		}
1855		if (cq->channel & 3)
1856			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1857		else {
1858			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1859			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1860			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1861		}
1862		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1863		break;
1864	case MISDN_CTRL_CONNECT:
1865		if (cq->channel == cq->p1) {
1866			ret = -EINVAL;
1867			break;
1868		}
1869		if (cq->channel < 1 || cq->channel > 2 ||
1870		    cq->p1 < 1 || cq->p1 > 2) {
1871			ret = -EINVAL;
1872			break;
1873		}
1874		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1875			slot = 0xC0;
1876		else
1877			slot = 0x80;
1878		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1879		    __func__, slot);
1880		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1881		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1882		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1883			slot = 0xC1;
1884		else
1885			slot = 0x81;
1886		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1887		    __func__, slot);
1888		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1889		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1890		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1891		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1892		hc->hw.trm |= 0x80;
1893		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1894		break;
1895	case MISDN_CTRL_DISCONNECT:
1896		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1897		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1898		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1899		break;
1900	default:
1901		printk(KERN_WARNING "%s: unknown Op %x\n",
1902		    __func__, cq->op);
1903		ret = -EINVAL;
1904		break;
1905	}
1906	return ret;
1907}
1908
1909static int
1910open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1911    struct channel_req *rq)
1912{
1913	int err = 0;
1914
1915	if (debug & DEBUG_HW_OPEN)
1916		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1917		    hc->dch.dev.id, __builtin_return_address(0));
1918	if (rq->protocol == ISDN_P_NONE)
1919		return -EINVAL;
1920	if (rq->adr.channel == 1) {
1921		/* TODO: E-Channel */
1922		return -EINVAL;
1923	}
1924	if (!hc->initdone) {
1925		if (rq->protocol == ISDN_P_TE_S0) {
1926			err = create_l1(&hc->dch, hfc_l1callback);
1927			if (err)
1928				return err;
1929		}
1930		hc->hw.protocol = rq->protocol;
1931		ch->protocol = rq->protocol;
1932		err = init_card(hc);
1933		if (err)
1934			return err;
1935	} else {
1936		if (rq->protocol != ch->protocol) {
1937			if (hc->hw.protocol == ISDN_P_TE_S0)
1938				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1939			if (rq->protocol == ISDN_P_TE_S0) {
1940				err = create_l1(&hc->dch, hfc_l1callback);
1941				if (err)
1942					return err;
1943			}
1944			hc->hw.protocol = rq->protocol;
1945			ch->protocol = rq->protocol;
1946			hfcpci_setmode(hc);
1947		}
1948	}
1949
1950	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1951	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1952		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1953		    0, NULL, GFP_KERNEL);
1954	}
1955	rq->ch = ch;
1956	if (!try_module_get(THIS_MODULE))
1957		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1958	return 0;
1959}
1960
1961static int
1962open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1963{
1964	struct bchannel		*bch;
1965
1966	if (rq->adr.channel > 2)
1967		return -EINVAL;
1968	if (rq->protocol == ISDN_P_NONE)
1969		return -EINVAL;
1970	bch = &hc->bch[rq->adr.channel - 1];
1971	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1972		return -EBUSY; /* b-channel can be only open once */
1973	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1974	bch->ch.protocol = rq->protocol;
1975	rq->ch = &bch->ch; /* TODO: E-channel */
1976	if (!try_module_get(THIS_MODULE))
1977		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1978	return 0;
1979}
1980
1981/*
1982 * device control function
1983 */
1984static int
1985hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1986{
1987	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1988	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1989	struct hfc_pci		*hc = dch->hw;
1990	struct channel_req	*rq;
1991	int			err = 0;
1992
1993	if (dch->debug & DEBUG_HW)
1994		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1995		    __func__, cmd, arg);
1996	switch (cmd) {
1997	case OPEN_CHANNEL:
1998		rq = arg;
1999		if ((rq->protocol == ISDN_P_TE_S0) ||
2000		    (rq->protocol == ISDN_P_NT_S0))
2001			err = open_dchannel(hc, ch, rq);
2002		else
2003			err = open_bchannel(hc, rq);
2004		break;
2005	case CLOSE_CHANNEL:
2006		if (debug & DEBUG_HW_OPEN)
2007			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2008			    __func__, hc->dch.dev.id,
2009			    __builtin_return_address(0));
2010		module_put(THIS_MODULE);
2011		break;
2012	case CONTROL_CHANNEL:
2013		err = channel_ctrl(hc, arg);
2014		break;
2015	default:
2016		if (dch->debug & DEBUG_HW)
2017			printk(KERN_DEBUG "%s: unknown command %x\n",
2018			    __func__, cmd);
2019		return -EINVAL;
2020	}
2021	return err;
2022}
2023
2024static int
2025setup_hw(struct hfc_pci *hc)
2026{
2027	void	*buffer;
2028
2029	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2030	hc->hw.cirm = 0;
2031	hc->dch.state = 0;
2032	pci_set_master(hc->pdev);
2033	if (!hc->irq) {
2034		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2035		return 1;
2036	}
2037	hc->hw.pci_io =
2038		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2039
2040	if (!hc->hw.pci_io) {
2041		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2042		return 1;
2043	}
2044	/* Allocate memory for FIFOS */
2045	/* the memory needs to be on a 32k boundary within the first 4G */
2046	pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2047	buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2048	/* We silently assume the address is okay if nonzero */
2049	if (!buffer) {
2050		printk(KERN_WARNING
2051		    "HFC-PCI: Error allocating memory for FIFO!\n");
2052		return 1;
2053	}
2054	hc->hw.fifos = buffer;
2055	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2056	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2057	printk(KERN_INFO
2058		"HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2059		(u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2060		(u_long) hc->hw.dmahandle, hc->irq, HZ);
2061	/* enable memory mapped ports, disable busmaster */
2062	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2063	hc->hw.int_m2 = 0;
2064	disable_hwirq(hc);
2065	hc->hw.int_m1 = 0;
2066	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2067	/* At this point the needed PCI config is done */
2068	/* fifos are still not enabled */
2069	hc->hw.timer.function = (void *) hfcpci_Timer;
2070	hc->hw.timer.data = (long) hc;
2071	init_timer(&hc->hw.timer);
2072	/* default PCM master */
2073	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2074	return 0;
2075}
2076
2077static void
2078release_card(struct hfc_pci *hc) {
2079	u_long	flags;
2080
2081	spin_lock_irqsave(&hc->lock, flags);
2082	hc->hw.int_m2 = 0; /* interrupt output off ! */
2083	disable_hwirq(hc);
2084	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2085	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2086	if (hc->dch.timer.function != NULL) {
2087		del_timer(&hc->dch.timer);
2088		hc->dch.timer.function = NULL;
2089	}
2090	spin_unlock_irqrestore(&hc->lock, flags);
2091	if (hc->hw.protocol == ISDN_P_TE_S0)
2092		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2093	if (hc->initdone)
2094		free_irq(hc->irq, hc);
2095	release_io_hfcpci(hc); /* must release after free_irq! */
2096	mISDN_unregister_device(&hc->dch.dev);
2097	mISDN_freebchannel(&hc->bch[1]);
2098	mISDN_freebchannel(&hc->bch[0]);
2099	mISDN_freedchannel(&hc->dch);
2100	pci_set_drvdata(hc->pdev, NULL);
2101	kfree(hc);
2102}
2103
2104static int
2105setup_card(struct hfc_pci *card)
2106{
2107	int		err = -EINVAL;
2108	u_int		i;
2109	char		name[MISDN_MAX_IDLEN];
2110
2111	card->dch.debug = debug;
2112	spin_lock_init(&card->lock);
2113	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2114	card->dch.hw = card;
2115	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2116	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2117	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2118	card->dch.dev.D.send = hfcpci_l2l1D;
2119	card->dch.dev.D.ctrl = hfc_dctrl;
2120	card->dch.dev.nrbchan = 2;
2121	for (i = 0; i < 2; i++) {
2122		card->bch[i].nr = i + 1;
2123		set_channelmap(i + 1, card->dch.dev.channelmap);
2124		card->bch[i].debug = debug;
2125		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2126		card->bch[i].hw = card;
2127		card->bch[i].ch.send = hfcpci_l2l1B;
2128		card->bch[i].ch.ctrl = hfc_bctrl;
2129		card->bch[i].ch.nr = i + 1;
2130		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2131	}
2132	err = setup_hw(card);
2133	if (err)
2134		goto error;
2135	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2136	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2137	if (err)
2138		goto error;
2139	HFC_cnt++;
2140	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2141	return 0;
2142error:
2143	mISDN_freebchannel(&card->bch[1]);
2144	mISDN_freebchannel(&card->bch[0]);
2145	mISDN_freedchannel(&card->dch);
2146	kfree(card);
2147	return err;
2148}
2149
2150/* private data in the PCI devices list */
2151struct _hfc_map {
2152	u_int	subtype;
2153	u_int	flag;
2154	char	*name;
2155};
2156
2157static const struct _hfc_map hfc_map[] =
2158{
2159	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2160	{HFC_CCD_B000, 0, "Billion B000"},
2161	{HFC_CCD_B006, 0, "Billion B006"},
2162	{HFC_CCD_B007, 0, "Billion B007"},
2163	{HFC_CCD_B008, 0, "Billion B008"},
2164	{HFC_CCD_B009, 0, "Billion B009"},
2165	{HFC_CCD_B00A, 0, "Billion B00A"},
2166	{HFC_CCD_B00B, 0, "Billion B00B"},
2167	{HFC_CCD_B00C, 0, "Billion B00C"},
2168	{HFC_CCD_B100, 0, "Seyeon B100"},
2169	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2170	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2171	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2172	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2173	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2174	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2175	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2176	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2177	{HFC_DIGI_DF_M_IOM2_E, 0,
2178	    "Digi International DataFire Micro V IOM2 (Europe)"},
2179	{HFC_DIGI_DF_M_E, 0,
2180	    "Digi International DataFire Micro V (Europe)"},
2181	{HFC_DIGI_DF_M_IOM2_A, 0,
2182	    "Digi International DataFire Micro V IOM2 (North America)"},
2183	{HFC_DIGI_DF_M_A, 0,
2184	    "Digi International DataFire Micro V (North America)"},
2185	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2186	{},
2187};
2188
2189static struct pci_device_id hfc_ids[] =
2190{
2191	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2192		(unsigned long) &hfc_map[0] },
2193	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2194		(unsigned long) &hfc_map[1] },
2195	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2196		(unsigned long) &hfc_map[2] },
2197	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2198		(unsigned long) &hfc_map[3] },
2199	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2200		(unsigned long) &hfc_map[4] },
2201	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2202		(unsigned long) &hfc_map[5] },
2203	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2204		(unsigned long) &hfc_map[6] },
2205	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2206		(unsigned long) &hfc_map[7] },
2207	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2208		(unsigned long) &hfc_map[8] },
2209	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2210		(unsigned long) &hfc_map[9] },
2211	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2212		(unsigned long) &hfc_map[10] },
2213	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2214		(unsigned long) &hfc_map[11] },
2215	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2216		(unsigned long) &hfc_map[12] },
2217	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2218		(unsigned long) &hfc_map[13] },
2219	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2220		(unsigned long) &hfc_map[14] },
2221	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2222		(unsigned long) &hfc_map[15] },
2223	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2224		(unsigned long) &hfc_map[16] },
2225	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2226		(unsigned long) &hfc_map[17] },
2227	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2228		(unsigned long) &hfc_map[18] },
2229	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2230		(unsigned long) &hfc_map[19] },
2231	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2232		(unsigned long) &hfc_map[20] },
2233	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2234		(unsigned long) &hfc_map[21] },
2235	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2236		(unsigned long) &hfc_map[22] },
2237	{},
2238};
2239
2240static int __devinit
2241hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2242{
2243	int		err = -ENOMEM;
2244	struct hfc_pci	*card;
2245	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2246
2247	card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2248	if (!card) {
2249		printk(KERN_ERR "No kmem for HFC card\n");
2250		return err;
2251	}
2252	card->pdev = pdev;
2253	card->subtype = m->subtype;
2254	err = pci_enable_device(pdev);
2255	if (err) {
2256		kfree(card);
2257		return err;
2258	}
2259
2260	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2261	       m->name, pci_name(pdev));
2262
2263	card->irq = pdev->irq;
2264	pci_set_drvdata(pdev, card);
2265	err = setup_card(card);
2266	if (err)
2267		pci_set_drvdata(pdev, NULL);
2268	return err;
2269}
2270
2271static void __devexit
2272hfc_remove_pci(struct pci_dev *pdev)
2273{
2274	struct hfc_pci	*card = pci_get_drvdata(pdev);
2275
2276	if (card)
2277		release_card(card);
2278	else
2279		if (debug)
2280			printk(KERN_DEBUG "%s: drvdata already removed\n",
2281			    __func__);
2282}
2283
2284
2285static struct pci_driver hfc_driver = {
2286	.name = "hfcpci",
2287	.probe = hfc_probe,
2288	.remove = __devexit_p(hfc_remove_pci),
2289	.id_table = hfc_ids,
2290};
2291
2292static int
2293_hfcpci_softirq(struct device *dev, void *arg)
2294{
2295	struct hfc_pci  *hc = dev_get_drvdata(dev);
2296	struct bchannel *bch;
2297	if (hc == NULL)
2298		return 0;
2299
2300	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2301		spin_lock(&hc->lock);
2302		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2303		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2304			main_rec_hfcpci(bch);
2305			tx_birq(bch);
2306		}
2307		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2308		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2309			main_rec_hfcpci(bch);
2310			tx_birq(bch);
2311		}
2312		spin_unlock(&hc->lock);
2313	}
2314	return 0;
2315}
2316
2317static void
2318hfcpci_softirq(void *arg)
2319{
2320	(void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2321					_hfcpci_softirq);
2322
2323	/* if next event would be in the past ... */
2324	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2325		hfc_jiffies = jiffies + 1;
2326	else
2327		hfc_jiffies += tics;
2328	hfc_tl.expires = hfc_jiffies;
2329	add_timer(&hfc_tl);
2330}
2331
2332static int __init
2333HFC_init(void)
2334{
2335	int		err;
2336
2337	if (!poll)
2338		poll = HFCPCI_BTRANS_THRESHOLD;
2339
2340	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2341		tics = (poll * HZ) / 8000;
2342		if (tics < 1)
2343			tics = 1;
2344		poll = (tics * 8000) / HZ;
2345		if (poll > 256 || poll < 8) {
2346			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2347				"of 8..256.\n", __func__, poll);
2348			err = -EINVAL;
2349			return err;
2350		}
2351	}
2352	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2353		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2354			__func__, poll);
2355		hfc_tl.function = (void *)hfcpci_softirq;
2356		hfc_tl.data = 0;
2357		init_timer(&hfc_tl);
2358		hfc_tl.expires = jiffies + tics;
2359		hfc_jiffies = hfc_tl.expires;
2360		add_timer(&hfc_tl);
2361	} else
2362		tics = 0; /* indicate the use of controller's timer */
2363
2364	err = pci_register_driver(&hfc_driver);
2365	if (err) {
2366		if (timer_pending(&hfc_tl))
2367			del_timer(&hfc_tl);
2368	}
2369
2370	return err;
2371}
2372
2373static void __exit
2374HFC_cleanup(void)
2375{
2376	if (timer_pending(&hfc_tl))
2377		del_timer(&hfc_tl);
2378
2379	pci_unregister_driver(&hfc_driver);
2380}
2381
2382module_init(HFC_init);
2383module_exit(HFC_cleanup);
2384
2385MODULE_DEVICE_TABLE(pci, hfc_ids);
2386