• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/gpu/drm/nouveau/
1/*
2 * Copyright 1993-2003 NVIDIA, Corporation
3 * Copyright 2007-2009 Stuart Bennett
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
19 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
20 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24#include "drmP.h"
25#include "nouveau_drv.h"
26#include "nouveau_hw.h"
27
28/****************************************************************************\
29*                                                                            *
30* The video arbitration routines calculate some "magic" numbers.  Fixes      *
31* the snow seen when accessing the framebuffer without it.                   *
32* It just works (I hope).                                                    *
33*                                                                            *
34\****************************************************************************/
35
36struct nv_fifo_info {
37	int lwm;
38	int burst;
39};
40
41struct nv_sim_state {
42	int pclk_khz;
43	int mclk_khz;
44	int nvclk_khz;
45	int bpp;
46	int mem_page_miss;
47	int mem_latency;
48	int memory_type;
49	int memory_width;
50	int two_heads;
51};
52
53static void
54nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
55{
56	int pagemiss, cas, width, bpp;
57	int nvclks, mclks, pclks, crtpagemiss;
58	int found, mclk_extra, mclk_loop, cbs, m1, p1;
59	int mclk_freq, pclk_freq, nvclk_freq;
60	int us_m, us_n, us_p, crtc_drain_rate;
61	int cpm_us, us_crt, clwm;
62
63	pclk_freq = arb->pclk_khz;
64	mclk_freq = arb->mclk_khz;
65	nvclk_freq = arb->nvclk_khz;
66	pagemiss = arb->mem_page_miss;
67	cas = arb->mem_latency;
68	width = arb->memory_width >> 6;
69	bpp = arb->bpp;
70	cbs = 128;
71
72	pclks = 2;
73	nvclks = 10;
74	mclks = 13 + cas;
75	mclk_extra = 3;
76	found = 0;
77
78	while (!found) {
79		found = 1;
80
81		mclk_loop = mclks + mclk_extra;
82		us_m = mclk_loop * 1000 * 1000 / mclk_freq;
83		us_n = nvclks * 1000 * 1000 / nvclk_freq;
84		us_p = nvclks * 1000 * 1000 / pclk_freq;
85
86		crtc_drain_rate = pclk_freq * bpp / 8;
87		crtpagemiss = 2;
88		crtpagemiss += 1;
89		cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
90		us_crt = cpm_us + us_m + us_n + us_p;
91		clwm = us_crt * crtc_drain_rate / (1000 * 1000);
92		clwm++;
93
94		m1 = clwm + cbs - 512;
95		p1 = m1 * pclk_freq / mclk_freq;
96		p1 = p1 * bpp / 8;
97		if ((p1 < m1 && m1 > 0) || clwm > 519) {
98			found = !mclk_extra;
99			mclk_extra--;
100		}
101		if (clwm < 384)
102			clwm = 384;
103
104		fifo->lwm = clwm;
105		fifo->burst = cbs;
106	}
107}
108
109static void
110nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
111{
112	int fill_rate, drain_rate;
113	int pclks, nvclks, mclks, xclks;
114	int pclk_freq, nvclk_freq, mclk_freq;
115	int fill_lat, extra_lat;
116	int max_burst_o, max_burst_l;
117	int fifo_len, min_lwm, max_lwm;
118	const int burst_lat = 80; /* Maximum allowable latency due
119				   * to the CRTC FIFO burst. (ns) */
120
121	pclk_freq = arb->pclk_khz;
122	nvclk_freq = arb->nvclk_khz;
123	mclk_freq = arb->mclk_khz;
124
125	fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
126	drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
127
128	fifo_len = arb->two_heads ? 1536 : 1024; /* B */
129
130	/* Fixed FIFO refill latency. */
131
132	pclks = 4;	/* lwm detect. */
133
134	nvclks = 3	/* lwm -> sync. */
135		+ 2	/* fbi bus cycles (1 req + 1 busy) */
136		+ 1	/* 2 edge sync.  may be very close to edge so
137			 * just put one. */
138		+ 1	/* fbi_d_rdv_n */
139		+ 1	/* Fbi_d_rdata */
140		+ 1;	/* crtfifo load */
141
142	mclks = 1	/* 2 edge sync.  may be very close to edge so
143			 * just put one. */
144		+ 1	/* arb_hp_req */
145		+ 5	/* tiling pipeline */
146		+ 2	/* latency fifo */
147		+ 2	/* memory request to fbio block */
148		+ 7;	/* data returned from fbio block */
149
150	/* Need to accumulate 256 bits for read */
151	mclks += (arb->memory_type == 0 ? 2 : 1)
152		* arb->memory_width / 32;
153
154	fill_lat = mclks * 1000 * 1000 / mclk_freq   /* minimum mclk latency */
155		+ nvclks * 1000 * 1000 / nvclk_freq  /* nvclk latency */
156		+ pclks * 1000 * 1000 / pclk_freq;   /* pclk latency */
157
158	/* Conditional FIFO refill latency. */
159
160	xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
161						* the overlay. */
162		+ 2 * arb->mem_page_miss       /* Extra pagemiss latency. */
163		+ (arb->bpp == 32 ? 8 : 4);    /* Margin of error. */
164
165	extra_lat = xclks * 1000 * 1000 / mclk_freq;
166
167	if (arb->two_heads)
168		/* Account for another CRTC. */
169		extra_lat += fill_lat + extra_lat + burst_lat;
170
171	/* FIFO burst */
172
173	/* Max burst not leading to overflows. */
174	max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
175		* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
176	fifo->burst = min(max_burst_o, 1024);
177
178	/* Max burst value with an acceptable latency. */
179	max_burst_l = burst_lat * fill_rate / (1000 * 1000);
180	fifo->burst = min(max_burst_l, fifo->burst);
181
182	fifo->burst = rounddown_pow_of_two(fifo->burst);
183
184	/* FIFO low watermark */
185
186	min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
187	max_lwm = fifo_len - fifo->burst
188		+ fill_lat * drain_rate / (1000 * 1000)
189		+ fifo->burst * drain_rate / fill_rate;
190
191	fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
192}
193
194static void
195nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
196		int *burst, int *lwm)
197{
198	struct drm_nouveau_private *dev_priv = dev->dev_private;
199	struct nv_fifo_info fifo_data;
200	struct nv_sim_state sim_data;
201	int MClk = nouveau_hw_get_clock(dev, MPLL);
202	int NVClk = nouveau_hw_get_clock(dev, NVPLL);
203	uint32_t cfg1 = nvReadFB(dev, NV04_PFB_CFG1);
204
205	sim_data.pclk_khz = VClk;
206	sim_data.mclk_khz = MClk;
207	sim_data.nvclk_khz = NVClk;
208	sim_data.bpp = bpp;
209	sim_data.two_heads = nv_two_heads(dev);
210	if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
211	    (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
212		uint32_t type;
213
214		pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);
215
216		sim_data.memory_type = (type >> 12) & 1;
217		sim_data.memory_width = 64;
218		sim_data.mem_latency = 3;
219		sim_data.mem_page_miss = 10;
220	} else {
221		sim_data.memory_type = nvReadFB(dev, NV04_PFB_CFG0) & 0x1;
222		sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
223		sim_data.mem_latency = cfg1 & 0xf;
224		sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
225	}
226
227	if (dev_priv->card_type == NV_04)
228		nv04_calc_arb(&fifo_data, &sim_data);
229	else
230		nv10_calc_arb(&fifo_data, &sim_data);
231
232	*burst = ilog2(fifo_data.burst >> 4);
233	*lwm = fifo_data.lwm >> 3;
234}
235
236static void
237nv30_update_arb(int *burst, int *lwm)
238{
239	unsigned int fifo_size, burst_size, graphics_lwm;
240
241	fifo_size = 2048;
242	burst_size = 512;
243	graphics_lwm = fifo_size - burst_size;
244
245	*burst = ilog2(burst_size >> 5);
246	*lwm = graphics_lwm >> 3;
247}
248
249void
250nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
251{
252	struct drm_nouveau_private *dev_priv = dev->dev_private;
253
254	if (dev_priv->card_type < NV_30)
255		nv04_update_arb(dev, vclk, bpp, burst, lwm);
256	else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
257		 (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
258		*burst = 128;
259		*lwm = 0x0480;
260	} else
261		nv30_update_arb(burst, lwm);
262}
263
264static int
265getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
266	      struct nouveau_pll_vals *bestpv)
267{
268	/* Find M, N and P for a single stage PLL
269	 *
270	 * Note that some bioses (NV3x) have lookup tables of precomputed MNP
271	 * values, but we're too lazy to use those atm
272	 *
273	 * "clk" parameter in kHz
274	 * returns calculated clock
275	 */
276	struct drm_nouveau_private *dev_priv = dev->dev_private;
277	int cv = dev_priv->vbios.chip_version;
278	int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
279	int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
280	int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
281	int minU = pll_lim->vco1.min_inputfreq;
282	int maxU = pll_lim->vco1.max_inputfreq;
283	int minP = pll_lim->max_p ? pll_lim->min_p : 0;
284	int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
285	int crystal = pll_lim->refclk;
286	int M, N, thisP, P;
287	int clkP, calcclk;
288	int delta, bestdelta = INT_MAX;
289	int bestclk = 0;
290
291	/* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
292	/* possibly correlated with introduction of 27MHz crystal */
293	if (dev_priv->card_type < NV_50) {
294		if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
295			if (clk > 250000)
296				maxM = 6;
297			if (clk > 340000)
298				maxM = 2;
299		} else if (cv < 0x40) {
300			if (clk > 150000)
301				maxM = 6;
302			if (clk > 200000)
303				maxM = 4;
304			if (clk > 340000)
305				maxM = 2;
306		}
307	}
308
309	P = pll_lim->max_p ? maxP : (1 << maxP);
310	if ((clk * P) < minvco) {
311		minvco = clk * maxP;
312		maxvco = minvco * 2;
313	}
314
315	if (clk + clk/200 > maxvco)	/* +0.5% */
316		maxvco = clk + clk/200;
317
318	/* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
319	for (thisP = minP; thisP <= maxP; thisP++) {
320		P = pll_lim->max_p ? thisP : (1 << thisP);
321		clkP = clk * P;
322
323		if (clkP < minvco)
324			continue;
325		if (clkP > maxvco)
326			return bestclk;
327
328		for (M = minM; M <= maxM; M++) {
329			if (crystal/M < minU)
330				return bestclk;
331			if (crystal/M > maxU)
332				continue;
333
334			/* add crystal/2 to round better */
335			N = (clkP * M + crystal/2) / crystal;
336
337			if (N < minN)
338				continue;
339			if (N > maxN)
340				break;
341
342			/* more rounding additions */
343			calcclk = ((N * crystal + P/2) / P + M/2) / M;
344			delta = abs(calcclk - clk);
345			/* we do an exhaustive search rather than terminating
346			 * on an optimality condition...
347			 */
348			if (delta < bestdelta) {
349				bestdelta = delta;
350				bestclk = calcclk;
351				bestpv->N1 = N;
352				bestpv->M1 = M;
353				bestpv->log2P = thisP;
354				if (delta == 0)	/* except this one */
355					return bestclk;
356			}
357		}
358	}
359
360	return bestclk;
361}
362
363static int
364getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
365	      struct nouveau_pll_vals *bestpv)
366{
367	/* Find M, N and P for a two stage PLL
368	 *
369	 * Note that some bioses (NV30+) have lookup tables of precomputed MNP
370	 * values, but we're too lazy to use those atm
371	 *
372	 * "clk" parameter in kHz
373	 * returns calculated clock
374	 */
375	struct drm_nouveau_private *dev_priv = dev->dev_private;
376	int chip_version = dev_priv->vbios.chip_version;
377	int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
378	int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
379	int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
380	int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
381	int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
382	int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
383	int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
384	int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
385	int maxlog2P = pll_lim->max_usable_log2p;
386	int crystal = pll_lim->refclk;
387	bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
388	int M1, N1, M2, N2, log2P;
389	int clkP, calcclk1, calcclk2, calcclkout;
390	int delta, bestdelta = INT_MAX;
391	int bestclk = 0;
392
393	int vco2 = (maxvco2 - maxvco2/200) / 2;
394	for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
395		;
396	clkP = clk << log2P;
397
398	if (maxvco2 < clk + clk/200)	/* +0.5% */
399		maxvco2 = clk + clk/200;
400
401	for (M1 = minM1; M1 <= maxM1; M1++) {
402		if (crystal/M1 < minU1)
403			return bestclk;
404		if (crystal/M1 > maxU1)
405			continue;
406
407		for (N1 = minN1; N1 <= maxN1; N1++) {
408			calcclk1 = crystal * N1 / M1;
409			if (calcclk1 < minvco1)
410				continue;
411			if (calcclk1 > maxvco1)
412				break;
413
414			for (M2 = minM2; M2 <= maxM2; M2++) {
415				if (calcclk1/M2 < minU2)
416					break;
417				if (calcclk1/M2 > maxU2)
418					continue;
419
420				/* add calcclk1/2 to round better */
421				N2 = (clkP * M2 + calcclk1/2) / calcclk1;
422				if (N2 < minN2)
423					continue;
424				if (N2 > maxN2)
425					break;
426
427				if (!fixedgain2) {
428					if (chip_version < 0x60)
429						if (N2/M2 < 4 || N2/M2 > 10)
430							continue;
431
432					calcclk2 = calcclk1 * N2 / M2;
433					if (calcclk2 < minvco2)
434						break;
435					if (calcclk2 > maxvco2)
436						continue;
437				} else
438					calcclk2 = calcclk1;
439
440				calcclkout = calcclk2 >> log2P;
441				delta = abs(calcclkout - clk);
442				/* we do an exhaustive search rather than terminating
443				 * on an optimality condition...
444				 */
445				if (delta < bestdelta) {
446					bestdelta = delta;
447					bestclk = calcclkout;
448					bestpv->N1 = N1;
449					bestpv->M1 = M1;
450					bestpv->N2 = N2;
451					bestpv->M2 = M2;
452					bestpv->log2P = log2P;
453					if (delta == 0)	/* except this one */
454						return bestclk;
455				}
456			}
457		}
458	}
459
460	return bestclk;
461}
462
463int
464nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
465		     struct nouveau_pll_vals *pv)
466{
467	int outclk;
468
469	if (!pll_lim->vco2.maxfreq)
470		outclk = getMNP_single(dev, pll_lim, clk, pv);
471	else
472		outclk = getMNP_double(dev, pll_lim, clk, pv);
473
474	if (!outclk)
475		NV_ERROR(dev, "Could not find a compatible set of PLL values\n");
476
477	return outclk;
478}
479