• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/firewire/
1/*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/ctype.h>
23#include <linux/delay.h>
24#include <linux/device.h>
25#include <linux/errno.h>
26#include <linux/firewire.h>
27#include <linux/firewire-constants.h>
28#include <linux/idr.h>
29#include <linux/jiffies.h>
30#include <linux/kobject.h>
31#include <linux/list.h>
32#include <linux/mod_devicetable.h>
33#include <linux/module.h>
34#include <linux/mutex.h>
35#include <linux/rwsem.h>
36#include <linux/slab.h>
37#include <linux/spinlock.h>
38#include <linux/string.h>
39#include <linux/workqueue.h>
40
41#include <asm/atomic.h>
42#include <asm/byteorder.h>
43#include <asm/system.h>
44
45#include "core.h"
46
47void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48{
49	ci->p = p + 1;
50	ci->end = ci->p + (p[0] >> 16);
51}
52EXPORT_SYMBOL(fw_csr_iterator_init);
53
54int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55{
56	*key = *ci->p >> 24;
57	*value = *ci->p & 0xffffff;
58
59	return ci->p++ < ci->end;
60}
61EXPORT_SYMBOL(fw_csr_iterator_next);
62
63static const u32 *search_leaf(const u32 *directory, int search_key)
64{
65	struct fw_csr_iterator ci;
66	int last_key = 0, key, value;
67
68	fw_csr_iterator_init(&ci, directory);
69	while (fw_csr_iterator_next(&ci, &key, &value)) {
70		if (last_key == search_key &&
71		    key == (CSR_DESCRIPTOR | CSR_LEAF))
72			return ci.p - 1 + value;
73
74		last_key = key;
75	}
76
77	return NULL;
78}
79
80static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81{
82	unsigned int quadlets, i;
83	char c;
84
85	if (!size || !buf)
86		return -EINVAL;
87
88	quadlets = min(block[0] >> 16, 256U);
89	if (quadlets < 2)
90		return -ENODATA;
91
92	if (block[1] != 0 || block[2] != 0)
93		/* unknown language/character set */
94		return -ENODATA;
95
96	block += 3;
97	quadlets -= 2;
98	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99		c = block[i / 4] >> (24 - 8 * (i % 4));
100		if (c == '\0')
101			break;
102		buf[i] = c;
103	}
104	buf[i] = '\0';
105
106	return i;
107}
108
109/**
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory:	e.g. root directory or unit directory
112 * @key:	the key of the preceding directory entry
113 * @buf:	where to put the string
114 * @size:	size of @buf, in bytes
115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key.  The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
119 */
120int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121{
122	const u32 *leaf = search_leaf(directory, key);
123	if (!leaf)
124		return -ENOENT;
125
126	return textual_leaf_to_string(leaf, buf, size);
127}
128EXPORT_SYMBOL(fw_csr_string);
129
130static void get_ids(const u32 *directory, int *id)
131{
132	struct fw_csr_iterator ci;
133	int key, value;
134
135	fw_csr_iterator_init(&ci, directory);
136	while (fw_csr_iterator_next(&ci, &key, &value)) {
137		switch (key) {
138		case CSR_VENDOR:	id[0] = value; break;
139		case CSR_MODEL:		id[1] = value; break;
140		case CSR_SPECIFIER_ID:	id[2] = value; break;
141		case CSR_VERSION:	id[3] = value; break;
142		}
143	}
144}
145
146static void get_modalias_ids(struct fw_unit *unit, int *id)
147{
148	get_ids(&fw_parent_device(unit)->config_rom[5], id);
149	get_ids(unit->directory, id);
150}
151
152static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153{
154	int match = 0;
155
156	if (id[0] == id_table->vendor_id)
157		match |= IEEE1394_MATCH_VENDOR_ID;
158	if (id[1] == id_table->model_id)
159		match |= IEEE1394_MATCH_MODEL_ID;
160	if (id[2] == id_table->specifier_id)
161		match |= IEEE1394_MATCH_SPECIFIER_ID;
162	if (id[3] == id_table->version)
163		match |= IEEE1394_MATCH_VERSION;
164
165	return (match & id_table->match_flags) == id_table->match_flags;
166}
167
168static bool is_fw_unit(struct device *dev);
169
170static int fw_unit_match(struct device *dev, struct device_driver *drv)
171{
172	const struct ieee1394_device_id *id_table =
173			container_of(drv, struct fw_driver, driver)->id_table;
174	int id[] = {0, 0, 0, 0};
175
176	/* We only allow binding to fw_units. */
177	if (!is_fw_unit(dev))
178		return 0;
179
180	get_modalias_ids(fw_unit(dev), id);
181
182	for (; id_table->match_flags != 0; id_table++)
183		if (match_ids(id_table, id))
184			return 1;
185
186	return 0;
187}
188
189static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190{
191	int id[] = {0, 0, 0, 0};
192
193	get_modalias_ids(unit, id);
194
195	return snprintf(buffer, buffer_size,
196			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197			id[0], id[1], id[2], id[3]);
198}
199
200static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201{
202	struct fw_unit *unit = fw_unit(dev);
203	char modalias[64];
204
205	get_modalias(unit, modalias, sizeof(modalias));
206
207	if (add_uevent_var(env, "MODALIAS=%s", modalias))
208		return -ENOMEM;
209
210	return 0;
211}
212
213struct bus_type fw_bus_type = {
214	.name = "firewire",
215	.match = fw_unit_match,
216};
217EXPORT_SYMBOL(fw_bus_type);
218
219int fw_device_enable_phys_dma(struct fw_device *device)
220{
221	int generation = device->generation;
222
223	/* device->node_id, accessed below, must not be older than generation */
224	smp_rmb();
225
226	return device->card->driver->enable_phys_dma(device->card,
227						     device->node_id,
228						     generation);
229}
230EXPORT_SYMBOL(fw_device_enable_phys_dma);
231
232struct config_rom_attribute {
233	struct device_attribute attr;
234	u32 key;
235};
236
237static ssize_t show_immediate(struct device *dev,
238			      struct device_attribute *dattr, char *buf)
239{
240	struct config_rom_attribute *attr =
241		container_of(dattr, struct config_rom_attribute, attr);
242	struct fw_csr_iterator ci;
243	const u32 *dir;
244	int key, value, ret = -ENOENT;
245
246	down_read(&fw_device_rwsem);
247
248	if (is_fw_unit(dev))
249		dir = fw_unit(dev)->directory;
250	else
251		dir = fw_device(dev)->config_rom + 5;
252
253	fw_csr_iterator_init(&ci, dir);
254	while (fw_csr_iterator_next(&ci, &key, &value))
255		if (attr->key == key) {
256			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257				       "0x%06x\n", value);
258			break;
259		}
260
261	up_read(&fw_device_rwsem);
262
263	return ret;
264}
265
266#define IMMEDIATE_ATTR(name, key)				\
267	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268
269static ssize_t show_text_leaf(struct device *dev,
270			      struct device_attribute *dattr, char *buf)
271{
272	struct config_rom_attribute *attr =
273		container_of(dattr, struct config_rom_attribute, attr);
274	const u32 *dir;
275	size_t bufsize;
276	char dummy_buf[2];
277	int ret;
278
279	down_read(&fw_device_rwsem);
280
281	if (is_fw_unit(dev))
282		dir = fw_unit(dev)->directory;
283	else
284		dir = fw_device(dev)->config_rom + 5;
285
286	if (buf) {
287		bufsize = PAGE_SIZE - 1;
288	} else {
289		buf = dummy_buf;
290		bufsize = 1;
291	}
292
293	ret = fw_csr_string(dir, attr->key, buf, bufsize);
294
295	if (ret >= 0) {
296		/* Strip trailing whitespace and add newline. */
297		while (ret > 0 && isspace(buf[ret - 1]))
298			ret--;
299		strcpy(buf + ret, "\n");
300		ret++;
301	}
302
303	up_read(&fw_device_rwsem);
304
305	return ret;
306}
307
308#define TEXT_LEAF_ATTR(name, key)				\
309	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310
311static struct config_rom_attribute config_rom_attributes[] = {
312	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315	IMMEDIATE_ATTR(version, CSR_VERSION),
316	IMMEDIATE_ATTR(model, CSR_MODEL),
317	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320};
321
322static void init_fw_attribute_group(struct device *dev,
323				    struct device_attribute *attrs,
324				    struct fw_attribute_group *group)
325{
326	struct device_attribute *attr;
327	int i, j;
328
329	for (j = 0; attrs[j].attr.name != NULL; j++)
330		group->attrs[j] = &attrs[j].attr;
331
332	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333		attr = &config_rom_attributes[i].attr;
334		if (attr->show(dev, attr, NULL) < 0)
335			continue;
336		group->attrs[j++] = &attr->attr;
337	}
338
339	group->attrs[j] = NULL;
340	group->groups[0] = &group->group;
341	group->groups[1] = NULL;
342	group->group.attrs = group->attrs;
343	dev->groups = (const struct attribute_group **) group->groups;
344}
345
346static ssize_t modalias_show(struct device *dev,
347			     struct device_attribute *attr, char *buf)
348{
349	struct fw_unit *unit = fw_unit(dev);
350	int length;
351
352	length = get_modalias(unit, buf, PAGE_SIZE);
353	strcpy(buf + length, "\n");
354
355	return length + 1;
356}
357
358static ssize_t rom_index_show(struct device *dev,
359			      struct device_attribute *attr, char *buf)
360{
361	struct fw_device *device = fw_device(dev->parent);
362	struct fw_unit *unit = fw_unit(dev);
363
364	return snprintf(buf, PAGE_SIZE, "%d\n",
365			(int)(unit->directory - device->config_rom));
366}
367
368static struct device_attribute fw_unit_attributes[] = {
369	__ATTR_RO(modalias),
370	__ATTR_RO(rom_index),
371	__ATTR_NULL,
372};
373
374static ssize_t config_rom_show(struct device *dev,
375			       struct device_attribute *attr, char *buf)
376{
377	struct fw_device *device = fw_device(dev);
378	size_t length;
379
380	down_read(&fw_device_rwsem);
381	length = device->config_rom_length * 4;
382	memcpy(buf, device->config_rom, length);
383	up_read(&fw_device_rwsem);
384
385	return length;
386}
387
388static ssize_t guid_show(struct device *dev,
389			 struct device_attribute *attr, char *buf)
390{
391	struct fw_device *device = fw_device(dev);
392	int ret;
393
394	down_read(&fw_device_rwsem);
395	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396		       device->config_rom[3], device->config_rom[4]);
397	up_read(&fw_device_rwsem);
398
399	return ret;
400}
401
402static int units_sprintf(char *buf, const u32 *directory)
403{
404	struct fw_csr_iterator ci;
405	int key, value;
406	int specifier_id = 0;
407	int version = 0;
408
409	fw_csr_iterator_init(&ci, directory);
410	while (fw_csr_iterator_next(&ci, &key, &value)) {
411		switch (key) {
412		case CSR_SPECIFIER_ID:
413			specifier_id = value;
414			break;
415		case CSR_VERSION:
416			version = value;
417			break;
418		}
419	}
420
421	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
422}
423
424static ssize_t units_show(struct device *dev,
425			  struct device_attribute *attr, char *buf)
426{
427	struct fw_device *device = fw_device(dev);
428	struct fw_csr_iterator ci;
429	int key, value, i = 0;
430
431	down_read(&fw_device_rwsem);
432	fw_csr_iterator_init(&ci, &device->config_rom[5]);
433	while (fw_csr_iterator_next(&ci, &key, &value)) {
434		if (key != (CSR_UNIT | CSR_DIRECTORY))
435			continue;
436		i += units_sprintf(&buf[i], ci.p + value - 1);
437		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438			break;
439	}
440	up_read(&fw_device_rwsem);
441
442	if (i)
443		buf[i - 1] = '\n';
444
445	return i;
446}
447
448static struct device_attribute fw_device_attributes[] = {
449	__ATTR_RO(config_rom),
450	__ATTR_RO(guid),
451	__ATTR_RO(units),
452	__ATTR_NULL,
453};
454
455static int read_rom(struct fw_device *device,
456		    int generation, int index, u32 *data)
457{
458	int rcode;
459
460	/* device->node_id, accessed below, must not be older than generation */
461	smp_rmb();
462
463	rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
464			device->node_id, generation, device->max_speed,
465			(CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
466			data, 4);
467	be32_to_cpus(data);
468
469	return rcode;
470}
471
472#define MAX_CONFIG_ROM_SIZE 256
473
474/*
475 * Read the bus info block, perform a speed probe, and read all of the rest of
476 * the config ROM.  We do all this with a cached bus generation.  If the bus
477 * generation changes under us, read_config_rom will fail and get retried.
478 * It's better to start all over in this case because the node from which we
479 * are reading the ROM may have changed the ROM during the reset.
480 */
481static int read_config_rom(struct fw_device *device, int generation)
482{
483	const u32 *old_rom, *new_rom;
484	u32 *rom, *stack;
485	u32 sp, key;
486	int i, end, length, ret = -1;
487
488	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
489		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
490	if (rom == NULL)
491		return -ENOMEM;
492
493	stack = &rom[MAX_CONFIG_ROM_SIZE];
494	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
495
496	device->max_speed = SCODE_100;
497
498	/* First read the bus info block. */
499	for (i = 0; i < 5; i++) {
500		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
501			goto out;
502		/*
503		 * As per IEEE1212 7.2, during power-up, devices can
504		 * reply with a 0 for the first quadlet of the config
505		 * rom to indicate that they are booting (for example,
506		 * if the firmware is on the disk of a external
507		 * harddisk).  In that case we just fail, and the
508		 * retry mechanism will try again later.
509		 */
510		if (i == 0 && rom[i] == 0)
511			goto out;
512	}
513
514	device->max_speed = device->node->max_speed;
515
516	/*
517	 * Determine the speed of
518	 *   - devices with link speed less than PHY speed,
519	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
520	 *   - all devices if there are 1394b repeaters.
521	 * Note, we cannot use the bus info block's link_spd as starting point
522	 * because some buggy firmwares set it lower than necessary and because
523	 * 1394-1995 nodes do not have the field.
524	 */
525	if ((rom[2] & 0x7) < device->max_speed ||
526	    device->max_speed == SCODE_BETA ||
527	    device->card->beta_repeaters_present) {
528		u32 dummy;
529
530		/* for S1600 and S3200 */
531		if (device->max_speed == SCODE_BETA)
532			device->max_speed = device->card->link_speed;
533
534		while (device->max_speed > SCODE_100) {
535			if (read_rom(device, generation, 0, &dummy) ==
536			    RCODE_COMPLETE)
537				break;
538			device->max_speed--;
539		}
540	}
541
542	/*
543	 * Now parse the config rom.  The config rom is a recursive
544	 * directory structure so we parse it using a stack of
545	 * references to the blocks that make up the structure.  We
546	 * push a reference to the root directory on the stack to
547	 * start things off.
548	 */
549	length = i;
550	sp = 0;
551	stack[sp++] = 0xc0000005;
552	while (sp > 0) {
553		/*
554		 * Pop the next block reference of the stack.  The
555		 * lower 24 bits is the offset into the config rom,
556		 * the upper 8 bits are the type of the reference the
557		 * block.
558		 */
559		key = stack[--sp];
560		i = key & 0xffffff;
561		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
562			goto out;
563
564		/* Read header quadlet for the block to get the length. */
565		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
566			goto out;
567		end = i + (rom[i] >> 16) + 1;
568		if (end > MAX_CONFIG_ROM_SIZE) {
569			/*
570			 * This block extends outside the config ROM which is
571			 * a firmware bug.  Ignore this whole block, i.e.
572			 * simply set a fake block length of 0.
573			 */
574			fw_error("skipped invalid ROM block %x at %llx\n",
575				 rom[i],
576				 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
577			rom[i] = 0;
578			end = i;
579		}
580		i++;
581
582		/*
583		 * Now read in the block.  If this is a directory
584		 * block, check the entries as we read them to see if
585		 * it references another block, and push it in that case.
586		 */
587		for (; i < end; i++) {
588			if (read_rom(device, generation, i, &rom[i]) !=
589			    RCODE_COMPLETE)
590				goto out;
591
592			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
593				continue;
594			/*
595			 * Offset points outside the ROM.  May be a firmware
596			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
597			 * 7.7.18).  Simply overwrite this pointer here by a
598			 * fake immediate entry so that later iterators over
599			 * the ROM don't have to check offsets all the time.
600			 */
601			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
602				fw_error("skipped unsupported ROM entry %x at %llx\n",
603					 rom[i],
604					 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
605				rom[i] = 0;
606				continue;
607			}
608			stack[sp++] = i + rom[i];
609		}
610		if (length < i)
611			length = i;
612	}
613
614	old_rom = device->config_rom;
615	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
616	if (new_rom == NULL)
617		goto out;
618
619	down_write(&fw_device_rwsem);
620	device->config_rom = new_rom;
621	device->config_rom_length = length;
622	up_write(&fw_device_rwsem);
623
624	kfree(old_rom);
625	ret = 0;
626	device->max_rec	= rom[2] >> 12 & 0xf;
627	device->cmc	= rom[2] >> 30 & 1;
628	device->irmc	= rom[2] >> 31 & 1;
629 out:
630	kfree(rom);
631
632	return ret;
633}
634
635static void fw_unit_release(struct device *dev)
636{
637	struct fw_unit *unit = fw_unit(dev);
638
639	kfree(unit);
640}
641
642static struct device_type fw_unit_type = {
643	.uevent		= fw_unit_uevent,
644	.release	= fw_unit_release,
645};
646
647static bool is_fw_unit(struct device *dev)
648{
649	return dev->type == &fw_unit_type;
650}
651
652static void create_units(struct fw_device *device)
653{
654	struct fw_csr_iterator ci;
655	struct fw_unit *unit;
656	int key, value, i;
657
658	i = 0;
659	fw_csr_iterator_init(&ci, &device->config_rom[5]);
660	while (fw_csr_iterator_next(&ci, &key, &value)) {
661		if (key != (CSR_UNIT | CSR_DIRECTORY))
662			continue;
663
664		/*
665		 * Get the address of the unit directory and try to
666		 * match the drivers id_tables against it.
667		 */
668		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
669		if (unit == NULL) {
670			fw_error("failed to allocate memory for unit\n");
671			continue;
672		}
673
674		unit->directory = ci.p + value - 1;
675		unit->device.bus = &fw_bus_type;
676		unit->device.type = &fw_unit_type;
677		unit->device.parent = &device->device;
678		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
679
680		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
681				ARRAY_SIZE(fw_unit_attributes) +
682				ARRAY_SIZE(config_rom_attributes));
683		init_fw_attribute_group(&unit->device,
684					fw_unit_attributes,
685					&unit->attribute_group);
686
687		if (device_register(&unit->device) < 0)
688			goto skip_unit;
689
690		continue;
691
692	skip_unit:
693		kfree(unit);
694	}
695}
696
697static int shutdown_unit(struct device *device, void *data)
698{
699	device_unregister(device);
700
701	return 0;
702}
703
704/*
705 * fw_device_rwsem acts as dual purpose mutex:
706 *   - serializes accesses to fw_device_idr,
707 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
708 *     fw_unit.directory, unless those accesses happen at safe occasions
709 */
710DECLARE_RWSEM(fw_device_rwsem);
711
712DEFINE_IDR(fw_device_idr);
713int fw_cdev_major;
714
715struct fw_device *fw_device_get_by_devt(dev_t devt)
716{
717	struct fw_device *device;
718
719	down_read(&fw_device_rwsem);
720	device = idr_find(&fw_device_idr, MINOR(devt));
721	if (device)
722		fw_device_get(device);
723	up_read(&fw_device_rwsem);
724
725	return device;
726}
727
728/*
729 * These defines control the retry behavior for reading the config
730 * rom.  It shouldn't be necessary to tweak these; if the device
731 * doesn't respond to a config rom read within 10 seconds, it's not
732 * going to respond at all.  As for the initial delay, a lot of
733 * devices will be able to respond within half a second after bus
734 * reset.  On the other hand, it's not really worth being more
735 * aggressive than that, since it scales pretty well; if 10 devices
736 * are plugged in, they're all getting read within one second.
737 */
738
739#define MAX_RETRIES	10
740#define RETRY_DELAY	(3 * HZ)
741#define INITIAL_DELAY	(HZ / 2)
742#define SHUTDOWN_DELAY	(2 * HZ)
743
744static void fw_device_shutdown(struct work_struct *work)
745{
746	struct fw_device *device =
747		container_of(work, struct fw_device, work.work);
748	int minor = MINOR(device->device.devt);
749
750	if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
751	    && !list_empty(&device->card->link)) {
752		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
753		return;
754	}
755
756	if (atomic_cmpxchg(&device->state,
757			   FW_DEVICE_GONE,
758			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
759		return;
760
761	fw_device_cdev_remove(device);
762	device_for_each_child(&device->device, NULL, shutdown_unit);
763	device_unregister(&device->device);
764
765	down_write(&fw_device_rwsem);
766	idr_remove(&fw_device_idr, minor);
767	up_write(&fw_device_rwsem);
768
769	fw_device_put(device);
770}
771
772static void fw_device_release(struct device *dev)
773{
774	struct fw_device *device = fw_device(dev);
775	struct fw_card *card = device->card;
776	unsigned long flags;
777
778	/*
779	 * Take the card lock so we don't set this to NULL while a
780	 * FW_NODE_UPDATED callback is being handled or while the
781	 * bus manager work looks at this node.
782	 */
783	spin_lock_irqsave(&card->lock, flags);
784	device->node->data = NULL;
785	spin_unlock_irqrestore(&card->lock, flags);
786
787	fw_node_put(device->node);
788	kfree(device->config_rom);
789	kfree(device);
790	fw_card_put(card);
791}
792
793static struct device_type fw_device_type = {
794	.release = fw_device_release,
795};
796
797static bool is_fw_device(struct device *dev)
798{
799	return dev->type == &fw_device_type;
800}
801
802static int update_unit(struct device *dev, void *data)
803{
804	struct fw_unit *unit = fw_unit(dev);
805	struct fw_driver *driver = (struct fw_driver *)dev->driver;
806
807	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
808		device_lock(dev);
809		driver->update(unit);
810		device_unlock(dev);
811	}
812
813	return 0;
814}
815
816static void fw_device_update(struct work_struct *work)
817{
818	struct fw_device *device =
819		container_of(work, struct fw_device, work.work);
820
821	fw_device_cdev_update(device);
822	device_for_each_child(&device->device, NULL, update_unit);
823}
824
825/*
826 * If a device was pending for deletion because its node went away but its
827 * bus info block and root directory header matches that of a newly discovered
828 * device, revive the existing fw_device.
829 * The newly allocated fw_device becomes obsolete instead.
830 */
831static int lookup_existing_device(struct device *dev, void *data)
832{
833	struct fw_device *old = fw_device(dev);
834	struct fw_device *new = data;
835	struct fw_card *card = new->card;
836	int match = 0;
837
838	if (!is_fw_device(dev))
839		return 0;
840
841	down_read(&fw_device_rwsem); /* serialize config_rom access */
842	spin_lock_irq(&card->lock);  /* serialize node access */
843
844	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
845	    atomic_cmpxchg(&old->state,
846			   FW_DEVICE_GONE,
847			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
848		struct fw_node *current_node = new->node;
849		struct fw_node *obsolete_node = old->node;
850
851		new->node = obsolete_node;
852		new->node->data = new;
853		old->node = current_node;
854		old->node->data = old;
855
856		old->max_speed = new->max_speed;
857		old->node_id = current_node->node_id;
858		smp_wmb();  /* update node_id before generation */
859		old->generation = card->generation;
860		old->config_rom_retries = 0;
861		fw_notify("rediscovered device %s\n", dev_name(dev));
862
863		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
864		schedule_delayed_work(&old->work, 0);
865
866		if (current_node == card->root_node)
867			fw_schedule_bm_work(card, 0);
868
869		match = 1;
870	}
871
872	spin_unlock_irq(&card->lock);
873	up_read(&fw_device_rwsem);
874
875	return match;
876}
877
878enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
879
880static void set_broadcast_channel(struct fw_device *device, int generation)
881{
882	struct fw_card *card = device->card;
883	__be32 data;
884	int rcode;
885
886	if (!card->broadcast_channel_allocated)
887		return;
888
889	/*
890	 * The Broadcast_Channel Valid bit is required by nodes which want to
891	 * transmit on this channel.  Such transmissions are practically
892	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
893	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
894	 * to narrow down to which nodes we send Broadcast_Channel updates.
895	 */
896	if (!device->irmc || device->max_rec < 8)
897		return;
898
899	/*
900	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
901	 * Perform a read test first.
902	 */
903	if (device->bc_implemented == BC_UNKNOWN) {
904		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
905				device->node_id, generation, device->max_speed,
906				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
907				&data, 4);
908		switch (rcode) {
909		case RCODE_COMPLETE:
910			if (data & cpu_to_be32(1 << 31)) {
911				device->bc_implemented = BC_IMPLEMENTED;
912				break;
913			}
914			/* else fall through to case address error */
915		case RCODE_ADDRESS_ERROR:
916			device->bc_implemented = BC_UNIMPLEMENTED;
917		}
918	}
919
920	if (device->bc_implemented == BC_IMPLEMENTED) {
921		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
922				   BROADCAST_CHANNEL_VALID);
923		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
924				device->node_id, generation, device->max_speed,
925				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
926				&data, 4);
927	}
928}
929
930int fw_device_set_broadcast_channel(struct device *dev, void *gen)
931{
932	if (is_fw_device(dev))
933		set_broadcast_channel(fw_device(dev), (long)gen);
934
935	return 0;
936}
937
938static void fw_device_init(struct work_struct *work)
939{
940	struct fw_device *device =
941		container_of(work, struct fw_device, work.work);
942	struct device *revived_dev;
943	int minor, ret;
944
945	/*
946	 * All failure paths here set node->data to NULL, so that we
947	 * don't try to do device_for_each_child() on a kfree()'d
948	 * device.
949	 */
950
951	if (read_config_rom(device, device->generation) < 0) {
952		if (device->config_rom_retries < MAX_RETRIES &&
953		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
954			device->config_rom_retries++;
955			schedule_delayed_work(&device->work, RETRY_DELAY);
956		} else {
957			fw_notify("giving up on config rom for node id %x\n",
958				  device->node_id);
959			if (device->node == device->card->root_node)
960				fw_schedule_bm_work(device->card, 0);
961			fw_device_release(&device->device);
962		}
963		return;
964	}
965
966	revived_dev = device_find_child(device->card->device,
967					device, lookup_existing_device);
968	if (revived_dev) {
969		put_device(revived_dev);
970		fw_device_release(&device->device);
971
972		return;
973	}
974
975	device_initialize(&device->device);
976
977	fw_device_get(device);
978	down_write(&fw_device_rwsem);
979	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
980	      idr_get_new(&fw_device_idr, device, &minor) :
981	      -ENOMEM;
982	up_write(&fw_device_rwsem);
983
984	if (ret < 0)
985		goto error;
986
987	device->device.bus = &fw_bus_type;
988	device->device.type = &fw_device_type;
989	device->device.parent = device->card->device;
990	device->device.devt = MKDEV(fw_cdev_major, minor);
991	dev_set_name(&device->device, "fw%d", minor);
992
993	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
994			ARRAY_SIZE(fw_device_attributes) +
995			ARRAY_SIZE(config_rom_attributes));
996	init_fw_attribute_group(&device->device,
997				fw_device_attributes,
998				&device->attribute_group);
999
1000	if (device_add(&device->device)) {
1001		fw_error("Failed to add device.\n");
1002		goto error_with_cdev;
1003	}
1004
1005	create_units(device);
1006
1007	/*
1008	 * Transition the device to running state.  If it got pulled
1009	 * out from under us while we did the intialization work, we
1010	 * have to shut down the device again here.  Normally, though,
1011	 * fw_node_event will be responsible for shutting it down when
1012	 * necessary.  We have to use the atomic cmpxchg here to avoid
1013	 * racing with the FW_NODE_DESTROYED case in
1014	 * fw_node_event().
1015	 */
1016	if (atomic_cmpxchg(&device->state,
1017			   FW_DEVICE_INITIALIZING,
1018			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1019		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1020		schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1021	} else {
1022		if (device->config_rom_retries)
1023			fw_notify("created device %s: GUID %08x%08x, S%d00, "
1024				  "%d config ROM retries\n",
1025				  dev_name(&device->device),
1026				  device->config_rom[3], device->config_rom[4],
1027				  1 << device->max_speed,
1028				  device->config_rom_retries);
1029		else
1030			fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1031				  dev_name(&device->device),
1032				  device->config_rom[3], device->config_rom[4],
1033				  1 << device->max_speed);
1034		device->config_rom_retries = 0;
1035
1036		set_broadcast_channel(device, device->generation);
1037	}
1038
1039	/*
1040	 * Reschedule the IRM work if we just finished reading the
1041	 * root node config rom.  If this races with a bus reset we
1042	 * just end up running the IRM work a couple of extra times -
1043	 * pretty harmless.
1044	 */
1045	if (device->node == device->card->root_node)
1046		fw_schedule_bm_work(device->card, 0);
1047
1048	return;
1049
1050 error_with_cdev:
1051	down_write(&fw_device_rwsem);
1052	idr_remove(&fw_device_idr, minor);
1053	up_write(&fw_device_rwsem);
1054 error:
1055	fw_device_put(device);		/* fw_device_idr's reference */
1056
1057	put_device(&device->device);	/* our reference */
1058}
1059
1060enum {
1061	REREAD_BIB_ERROR,
1062	REREAD_BIB_GONE,
1063	REREAD_BIB_UNCHANGED,
1064	REREAD_BIB_CHANGED,
1065};
1066
1067/* Reread and compare bus info block and header of root directory */
1068static int reread_config_rom(struct fw_device *device, int generation)
1069{
1070	u32 q;
1071	int i;
1072
1073	for (i = 0; i < 6; i++) {
1074		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1075			return REREAD_BIB_ERROR;
1076
1077		if (i == 0 && q == 0)
1078			return REREAD_BIB_GONE;
1079
1080		if (q != device->config_rom[i])
1081			return REREAD_BIB_CHANGED;
1082	}
1083
1084	return REREAD_BIB_UNCHANGED;
1085}
1086
1087static void fw_device_refresh(struct work_struct *work)
1088{
1089	struct fw_device *device =
1090		container_of(work, struct fw_device, work.work);
1091	struct fw_card *card = device->card;
1092	int node_id = device->node_id;
1093
1094	switch (reread_config_rom(device, device->generation)) {
1095	case REREAD_BIB_ERROR:
1096		if (device->config_rom_retries < MAX_RETRIES / 2 &&
1097		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1098			device->config_rom_retries++;
1099			schedule_delayed_work(&device->work, RETRY_DELAY / 2);
1100
1101			return;
1102		}
1103		goto give_up;
1104
1105	case REREAD_BIB_GONE:
1106		goto gone;
1107
1108	case REREAD_BIB_UNCHANGED:
1109		if (atomic_cmpxchg(&device->state,
1110				   FW_DEVICE_INITIALIZING,
1111				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1112			goto gone;
1113
1114		fw_device_update(work);
1115		device->config_rom_retries = 0;
1116		goto out;
1117
1118	case REREAD_BIB_CHANGED:
1119		break;
1120	}
1121
1122	/*
1123	 * Something changed.  We keep things simple and don't investigate
1124	 * further.  We just destroy all previous units and create new ones.
1125	 */
1126	device_for_each_child(&device->device, NULL, shutdown_unit);
1127
1128	if (read_config_rom(device, device->generation) < 0) {
1129		if (device->config_rom_retries < MAX_RETRIES &&
1130		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1131			device->config_rom_retries++;
1132			schedule_delayed_work(&device->work, RETRY_DELAY);
1133
1134			return;
1135		}
1136		goto give_up;
1137	}
1138
1139	fw_device_cdev_update(device);
1140	create_units(device);
1141
1142	/* Userspace may want to re-read attributes. */
1143	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1144
1145	if (atomic_cmpxchg(&device->state,
1146			   FW_DEVICE_INITIALIZING,
1147			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1148		goto gone;
1149
1150	fw_notify("refreshed device %s\n", dev_name(&device->device));
1151	device->config_rom_retries = 0;
1152	goto out;
1153
1154 give_up:
1155	fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1156 gone:
1157	atomic_set(&device->state, FW_DEVICE_GONE);
1158	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1159	schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1160 out:
1161	if (node_id == card->root_node->node_id)
1162		fw_schedule_bm_work(card, 0);
1163}
1164
1165void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1166{
1167	struct fw_device *device;
1168
1169	switch (event) {
1170	case FW_NODE_CREATED:
1171	case FW_NODE_LINK_ON:
1172		if (!node->link_on)
1173			break;
1174 create:
1175		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1176		if (device == NULL)
1177			break;
1178
1179		/*
1180		 * Do minimal intialization of the device here, the
1181		 * rest will happen in fw_device_init().
1182		 *
1183		 * Attention:  A lot of things, even fw_device_get(),
1184		 * cannot be done before fw_device_init() finished!
1185		 * You can basically just check device->state and
1186		 * schedule work until then, but only while holding
1187		 * card->lock.
1188		 */
1189		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1190		device->card = fw_card_get(card);
1191		device->node = fw_node_get(node);
1192		device->node_id = node->node_id;
1193		device->generation = card->generation;
1194		device->is_local = node == card->local_node;
1195		mutex_init(&device->client_list_mutex);
1196		INIT_LIST_HEAD(&device->client_list);
1197
1198		/*
1199		 * Set the node data to point back to this device so
1200		 * FW_NODE_UPDATED callbacks can update the node_id
1201		 * and generation for the device.
1202		 */
1203		node->data = device;
1204
1205		/*
1206		 * Many devices are slow to respond after bus resets,
1207		 * especially if they are bus powered and go through
1208		 * power-up after getting plugged in.  We schedule the
1209		 * first config rom scan half a second after bus reset.
1210		 */
1211		INIT_DELAYED_WORK(&device->work, fw_device_init);
1212		schedule_delayed_work(&device->work, INITIAL_DELAY);
1213		break;
1214
1215	case FW_NODE_INITIATED_RESET:
1216		device = node->data;
1217		if (device == NULL)
1218			goto create;
1219
1220		device->node_id = node->node_id;
1221		smp_wmb();  /* update node_id before generation */
1222		device->generation = card->generation;
1223		if (atomic_cmpxchg(&device->state,
1224			    FW_DEVICE_RUNNING,
1225			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1226			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1227			schedule_delayed_work(&device->work,
1228				device->is_local ? 0 : INITIAL_DELAY);
1229		}
1230		break;
1231
1232	case FW_NODE_UPDATED:
1233		if (!node->link_on || node->data == NULL)
1234			break;
1235
1236		device = node->data;
1237		device->node_id = node->node_id;
1238		smp_wmb();  /* update node_id before generation */
1239		device->generation = card->generation;
1240		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1241			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1242			schedule_delayed_work(&device->work, 0);
1243		}
1244		break;
1245
1246	case FW_NODE_DESTROYED:
1247	case FW_NODE_LINK_OFF:
1248		if (!node->data)
1249			break;
1250
1251		/*
1252		 * Destroy the device associated with the node.  There
1253		 * are two cases here: either the device is fully
1254		 * initialized (FW_DEVICE_RUNNING) or we're in the
1255		 * process of reading its config rom
1256		 * (FW_DEVICE_INITIALIZING).  If it is fully
1257		 * initialized we can reuse device->work to schedule a
1258		 * full fw_device_shutdown().  If not, there's work
1259		 * scheduled to read it's config rom, and we just put
1260		 * the device in shutdown state to have that code fail
1261		 * to create the device.
1262		 */
1263		device = node->data;
1264		if (atomic_xchg(&device->state,
1265				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1266			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1267			schedule_delayed_work(&device->work,
1268				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1269		}
1270		break;
1271	}
1272}
1273