• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/edac/
1/*
2 * Intel 5000(P/V/X) class Memory Controllers kernel module
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8 *	norsk5@xmission.com
9 *
10 * This module is based on the following document:
11 *
12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
14 *
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/pci_ids.h>
21#include <linux/slab.h>
22#include <linux/edac.h>
23#include <asm/mmzone.h>
24
25#include "edac_core.h"
26
27/*
28 * Alter this version for the I5000 module when modifications are made
29 */
30#define I5000_REVISION    " Ver: 2.0.12 " __DATE__
31#define EDAC_MOD_STR      "i5000_edac"
32
33#define i5000_printk(level, fmt, arg...) \
34        edac_printk(level, "i5000", fmt, ##arg)
35
36#define i5000_mc_printk(mci, level, fmt, arg...) \
37        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38
39#ifndef PCI_DEVICE_ID_INTEL_FBD_0
40#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
41#endif
42#ifndef PCI_DEVICE_ID_INTEL_FBD_1
43#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
44#endif
45
46/* Device 16,
47 * Function 0: System Address
48 * Function 1: Memory Branch Map, Control, Errors Register
49 * Function 2: FSB Error Registers
50 *
51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
52 */
53#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
54
55/* OFFSETS for Function 0 */
56
57/* OFFSETS for Function 1 */
58#define		AMBASE			0x48
59#define		MAXCH			0x56
60#define		MAXDIMMPERCH		0x57
61#define		TOLM			0x6C
62#define		REDMEMB			0x7C
63#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
64#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
65#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
66#define		MIR0			0x80
67#define		MIR1			0x84
68#define		MIR2			0x88
69#define		AMIR0			0x8C
70#define		AMIR1			0x90
71#define		AMIR2			0x94
72
73#define		FERR_FAT_FBD		0x98
74#define		NERR_FAT_FBD		0x9C
75#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
76#define			FERR_FAT_FBDCHAN 0x30000000
77#define			FERR_FAT_M3ERR	0x00000004
78#define			FERR_FAT_M2ERR	0x00000002
79#define			FERR_FAT_M1ERR	0x00000001
80#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81						FERR_FAT_M2ERR | \
82						FERR_FAT_M3ERR)
83
84#define		FERR_NF_FBD		0xA0
85
86/* Thermal and SPD or BFD errors */
87#define			FERR_NF_M28ERR	0x01000000
88#define			FERR_NF_M27ERR	0x00800000
89#define			FERR_NF_M26ERR	0x00400000
90#define			FERR_NF_M25ERR	0x00200000
91#define			FERR_NF_M24ERR	0x00100000
92#define			FERR_NF_M23ERR	0x00080000
93#define			FERR_NF_M22ERR	0x00040000
94#define			FERR_NF_M21ERR	0x00020000
95
96/* Correctable errors */
97#define			FERR_NF_M20ERR	0x00010000
98#define			FERR_NF_M19ERR	0x00008000
99#define			FERR_NF_M18ERR	0x00004000
100#define			FERR_NF_M17ERR	0x00002000
101
102/* Non-Retry or redundant Retry errors */
103#define			FERR_NF_M16ERR	0x00001000
104#define			FERR_NF_M15ERR	0x00000800
105#define			FERR_NF_M14ERR	0x00000400
106#define			FERR_NF_M13ERR	0x00000200
107
108/* Uncorrectable errors */
109#define			FERR_NF_M12ERR	0x00000100
110#define			FERR_NF_M11ERR	0x00000080
111#define			FERR_NF_M10ERR	0x00000040
112#define			FERR_NF_M9ERR	0x00000020
113#define			FERR_NF_M8ERR	0x00000010
114#define			FERR_NF_M7ERR	0x00000008
115#define			FERR_NF_M6ERR	0x00000004
116#define			FERR_NF_M5ERR	0x00000002
117#define			FERR_NF_M4ERR	0x00000001
118
119#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
120							FERR_NF_M11ERR | \
121							FERR_NF_M10ERR | \
122							FERR_NF_M9ERR | \
123							FERR_NF_M8ERR | \
124							FERR_NF_M7ERR | \
125							FERR_NF_M6ERR | \
126							FERR_NF_M5ERR | \
127							FERR_NF_M4ERR)
128#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
129							FERR_NF_M19ERR | \
130							FERR_NF_M18ERR | \
131							FERR_NF_M17ERR)
132#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
133							FERR_NF_M28ERR)
134#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135							FERR_NF_M25ERR | \
136							FERR_NF_M24ERR | \
137							FERR_NF_M23ERR)
138#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
139#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
140#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
141							FERR_NF_M14ERR | \
142							FERR_NF_M15ERR)
143
144#define		NERR_NF_FBD		0xA4
145#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
146							FERR_NF_CORRECTABLE | \
147							FERR_NF_DIMM_SPARE | \
148							FERR_NF_THERMAL | \
149							FERR_NF_SPD_PROTOCOL | \
150							FERR_NF_NORTH_CRC | \
151							FERR_NF_NON_RETRY)
152
153#define		EMASK_FBD		0xA8
154#define			EMASK_FBD_M28ERR	0x08000000
155#define			EMASK_FBD_M27ERR	0x04000000
156#define			EMASK_FBD_M26ERR	0x02000000
157#define			EMASK_FBD_M25ERR	0x01000000
158#define			EMASK_FBD_M24ERR	0x00800000
159#define			EMASK_FBD_M23ERR	0x00400000
160#define			EMASK_FBD_M22ERR	0x00200000
161#define			EMASK_FBD_M21ERR	0x00100000
162#define			EMASK_FBD_M20ERR	0x00080000
163#define			EMASK_FBD_M19ERR	0x00040000
164#define			EMASK_FBD_M18ERR	0x00020000
165#define			EMASK_FBD_M17ERR	0x00010000
166
167#define			EMASK_FBD_M15ERR	0x00004000
168#define			EMASK_FBD_M14ERR	0x00002000
169#define			EMASK_FBD_M13ERR	0x00001000
170#define			EMASK_FBD_M12ERR	0x00000800
171#define			EMASK_FBD_M11ERR	0x00000400
172#define			EMASK_FBD_M10ERR	0x00000200
173#define			EMASK_FBD_M9ERR		0x00000100
174#define			EMASK_FBD_M8ERR		0x00000080
175#define			EMASK_FBD_M7ERR		0x00000040
176#define			EMASK_FBD_M6ERR		0x00000020
177#define			EMASK_FBD_M5ERR		0x00000010
178#define			EMASK_FBD_M4ERR		0x00000008
179#define			EMASK_FBD_M3ERR		0x00000004
180#define			EMASK_FBD_M2ERR		0x00000002
181#define			EMASK_FBD_M1ERR		0x00000001
182
183#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
184							EMASK_FBD_M2ERR | \
185							EMASK_FBD_M3ERR)
186
187#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
188							EMASK_FBD_M5ERR | \
189							EMASK_FBD_M6ERR | \
190							EMASK_FBD_M7ERR | \
191							EMASK_FBD_M8ERR | \
192							EMASK_FBD_M9ERR | \
193							EMASK_FBD_M10ERR | \
194							EMASK_FBD_M11ERR | \
195							EMASK_FBD_M12ERR)
196#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
197							EMASK_FBD_M18ERR | \
198							EMASK_FBD_M19ERR | \
199							EMASK_FBD_M20ERR)
200#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
201							EMASK_FBD_M28ERR)
202#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
203							EMASK_FBD_M25ERR | \
204							EMASK_FBD_M24ERR | \
205							EMASK_FBD_M23ERR)
206#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
207#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
208#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
209							EMASK_FBD_M14ERR | \
210							EMASK_FBD_M13ERR)
211
212#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
213					ENABLE_EMASK_FBD_NORTH_CRC | \
214					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215					ENABLE_EMASK_FBD_THERMALS | \
216					ENABLE_EMASK_FBD_DIMM_SPARE | \
217					ENABLE_EMASK_FBD_FATAL_ERRORS | \
218					ENABLE_EMASK_FBD_CORRECTABLE | \
219					ENABLE_EMASK_FBD_UNCORRECTABLE)
220
221#define		ERR0_FBD		0xAC
222#define		ERR1_FBD		0xB0
223#define		ERR2_FBD		0xB4
224#define		MCERR_FBD		0xB8
225#define		NRECMEMA		0xBE
226#define			NREC_BANK(x)		(((x)>>12) & 0x7)
227#define			NREC_RDWR(x)		(((x)>>11) & 1)
228#define			NREC_RANK(x)		(((x)>>8) & 0x7)
229#define		NRECMEMB		0xC0
230#define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
231#define			NREC_RAS(x)		((x) & 0x7FFF)
232#define		NRECFGLOG		0xC4
233#define		NREEECFBDA		0xC8
234#define		NREEECFBDB		0xCC
235#define		NREEECFBDC		0xD0
236#define		NREEECFBDD		0xD4
237#define		NREEECFBDE		0xD8
238#define		REDMEMA			0xDC
239#define		RECMEMA			0xE2
240#define			REC_BANK(x)		(((x)>>12) & 0x7)
241#define			REC_RDWR(x)		(((x)>>11) & 1)
242#define			REC_RANK(x)		(((x)>>8) & 0x7)
243#define		RECMEMB			0xE4
244#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
245#define			REC_RAS(x)		((x) & 0x7FFF)
246#define		RECFGLOG		0xE8
247#define		RECFBDA			0xEC
248#define		RECFBDB			0xF0
249#define		RECFBDC			0xF4
250#define		RECFBDD			0xF8
251#define		RECFBDE			0xFC
252
253/* OFFSETS for Function 2 */
254
255/*
256 * Device 21,
257 * Function 0: Memory Map Branch 0
258 *
259 * Device 22,
260 * Function 0: Memory Map Branch 1
261 */
262#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
263#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
264
265#define AMB_PRESENT_0	0x64
266#define AMB_PRESENT_1	0x66
267#define MTR0		0x80
268#define MTR1		0x84
269#define MTR2		0x88
270#define MTR3		0x8C
271
272#define NUM_MTRS		4
273#define CHANNELS_PER_BRANCH	(2)
274
275/* Defines to extract the vaious fields from the
276 *	MTRx - Memory Technology Registers
277 */
278#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
279#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
280#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
281#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
282#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
283#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
284#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
285#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
286#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
287#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
288
289#ifdef CONFIG_EDAC_DEBUG
290static char *numrow_toString[] = {
291	"8,192 - 13 rows",
292	"16,384 - 14 rows",
293	"32,768 - 15 rows",
294	"reserved"
295};
296
297static char *numcol_toString[] = {
298	"1,024 - 10 columns",
299	"2,048 - 11 columns",
300	"4,096 - 12 columns",
301	"reserved"
302};
303#endif
304
305/* enables the report of miscellaneous messages as CE errors - default off */
306static int misc_messages;
307
308/* Enumeration of supported devices */
309enum i5000_chips {
310	I5000P = 0,
311	I5000V = 1,		/* future */
312	I5000X = 2		/* future */
313};
314
315/* Device name and register DID (Device ID) */
316struct i5000_dev_info {
317	const char *ctl_name;	/* name for this device */
318	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
319};
320
321/* Table of devices attributes supported by this driver */
322static const struct i5000_dev_info i5000_devs[] = {
323	[I5000P] = {
324		.ctl_name = "I5000",
325		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
326	},
327};
328
329struct i5000_dimm_info {
330	int megabytes;		/* size, 0 means not present  */
331	int dual_rank;
332};
333
334#define	MAX_CHANNELS	6	/* max possible channels */
335#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
336
337/* driver private data structure */
338struct i5000_pvt {
339	struct pci_dev *system_address;	/* 16.0 */
340	struct pci_dev *branchmap_werrors;	/* 16.1 */
341	struct pci_dev *fsb_error_regs;	/* 16.2 */
342	struct pci_dev *branch_0;	/* 21.0 */
343	struct pci_dev *branch_1;	/* 22.0 */
344
345	u16 tolm;		/* top of low memory */
346	u64 ambase;		/* AMB BAR */
347
348	u16 mir0, mir1, mir2;
349
350	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
351	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
352	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
353
354	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
355	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
356	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
357
358	/* DIMM information matrix, allocating architecture maximums */
359	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360
361	/* Actual values for this controller */
362	int maxch;		/* Max channels */
363	int maxdimmperch;	/* Max DIMMs per channel */
364};
365
366/* I5000 MCH error information retrieved from Hardware */
367struct i5000_error_info {
368
369	/* These registers are always read from the MC */
370	u32 ferr_fat_fbd;	/* First Errors Fatal */
371	u32 nerr_fat_fbd;	/* Next Errors Fatal */
372	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
373	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
374
375	/* These registers are input ONLY if there was a Recoverable  Error */
376	u32 redmemb;		/* Recoverable Mem Data Error log B */
377	u16 recmema;		/* Recoverable Mem Error log A */
378	u32 recmemb;		/* Recoverable Mem Error log B */
379
380	/* These registers are input ONLY if there was a
381	 * Non-Recoverable Error */
382	u16 nrecmema;		/* Non-Recoverable Mem log A */
383	u16 nrecmemb;		/* Non-Recoverable Mem log B */
384
385};
386
387static struct edac_pci_ctl_info *i5000_pci;
388
389/*
390 *	i5000_get_error_info	Retrieve the hardware error information from
391 *				the hardware and cache it in the 'info'
392 *				structure
393 */
394static void i5000_get_error_info(struct mem_ctl_info *mci,
395				 struct i5000_error_info *info)
396{
397	struct i5000_pvt *pvt;
398	u32 value;
399
400	pvt = mci->pvt_info;
401
402	/* read in the 1st FATAL error register */
403	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
404
405	/* Mask only the bits that the doc says are valid
406	 */
407	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
408
409	/* If there is an error, then read in the */
410	/* NEXT FATAL error register and the Memory Error Log Register A */
411	if (value & FERR_FAT_MASK) {
412		info->ferr_fat_fbd = value;
413
414		/* harvest the various error data we need */
415		pci_read_config_dword(pvt->branchmap_werrors,
416				NERR_FAT_FBD, &info->nerr_fat_fbd);
417		pci_read_config_word(pvt->branchmap_werrors,
418				NRECMEMA, &info->nrecmema);
419		pci_read_config_word(pvt->branchmap_werrors,
420				NRECMEMB, &info->nrecmemb);
421
422		/* Clear the error bits, by writing them back */
423		pci_write_config_dword(pvt->branchmap_werrors,
424				FERR_FAT_FBD, value);
425	} else {
426		info->ferr_fat_fbd = 0;
427		info->nerr_fat_fbd = 0;
428		info->nrecmema = 0;
429		info->nrecmemb = 0;
430	}
431
432	/* read in the 1st NON-FATAL error register */
433	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
434
435	/* If there is an error, then read in the 1st NON-FATAL error
436	 * register as well */
437	if (value & FERR_NF_MASK) {
438		info->ferr_nf_fbd = value;
439
440		/* harvest the various error data we need */
441		pci_read_config_dword(pvt->branchmap_werrors,
442				NERR_NF_FBD, &info->nerr_nf_fbd);
443		pci_read_config_word(pvt->branchmap_werrors,
444				RECMEMA, &info->recmema);
445		pci_read_config_dword(pvt->branchmap_werrors,
446				RECMEMB, &info->recmemb);
447		pci_read_config_dword(pvt->branchmap_werrors,
448				REDMEMB, &info->redmemb);
449
450		/* Clear the error bits, by writing them back */
451		pci_write_config_dword(pvt->branchmap_werrors,
452				FERR_NF_FBD, value);
453	} else {
454		info->ferr_nf_fbd = 0;
455		info->nerr_nf_fbd = 0;
456		info->recmema = 0;
457		info->recmemb = 0;
458		info->redmemb = 0;
459	}
460}
461
462/*
463 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464 * 					struct i5000_error_info *info,
465 * 					int handle_errors);
466 *
467 *	handle the Intel FATAL errors, if any
468 */
469static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
470					struct i5000_error_info *info,
471					int handle_errors)
472{
473	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
474	char *specific = NULL;
475	u32 allErrors;
476	int branch;
477	int channel;
478	int bank;
479	int rank;
480	int rdwr;
481	int ras, cas;
482
483	/* mask off the Error bits that are possible */
484	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
485	if (!allErrors)
486		return;		/* if no error, return now */
487
488	branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489	channel = branch;
490
491	/* Use the NON-Recoverable macros to extract data */
492	bank = NREC_BANK(info->nrecmema);
493	rank = NREC_RANK(info->nrecmema);
494	rdwr = NREC_RDWR(info->nrecmema);
495	ras = NREC_RAS(info->nrecmemb);
496	cas = NREC_CAS(info->nrecmemb);
497
498	debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
499		"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500		rank, channel, channel + 1, branch >> 1, bank,
501		rdwr ? "Write" : "Read", ras, cas);
502
503	/* Only 1 bit will be on */
504	switch (allErrors) {
505	case FERR_FAT_M1ERR:
506		specific = "Alert on non-redundant retry or fast "
507				"reset timeout";
508		break;
509	case FERR_FAT_M2ERR:
510		specific = "Northbound CRC error on non-redundant "
511				"retry";
512		break;
513	case FERR_FAT_M3ERR:
514		{
515		static int done;
516
517		/*
518		 * This error is generated to inform that the intelligent
519		 * throttling is disabled and the temperature passed the
520		 * specified middle point. Since this is something the BIOS
521		 * should take care of, we'll warn only once to avoid
522		 * worthlessly flooding the log.
523		 */
524		if (done)
525			return;
526		done++;
527
528		specific = ">Tmid Thermal event with intelligent "
529			   "throttling disabled";
530		}
531		break;
532	}
533
534	/* Form out message */
535	snprintf(msg, sizeof(msg),
536		 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
537		 "FATAL Err=0x%x (%s))",
538		 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
539		 allErrors, specific);
540
541	/* Call the helper to output message */
542	edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
543}
544
545/*
546 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547 * 				struct i5000_error_info *info,
548 * 				int handle_errors);
549 *
550 *	handle the Intel NON-FATAL errors, if any
551 */
552static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
553					struct i5000_error_info *info,
554					int handle_errors)
555{
556	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
557	char *specific = NULL;
558	u32 allErrors;
559	u32 ue_errors;
560	u32 ce_errors;
561	u32 misc_errors;
562	int branch;
563	int channel;
564	int bank;
565	int rank;
566	int rdwr;
567	int ras, cas;
568
569	/* mask off the Error bits that are possible */
570	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
571	if (!allErrors)
572		return;		/* if no error, return now */
573
574	/* ONLY ONE of the possible error bits will be set, as per the docs */
575	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
576	if (ue_errors) {
577		debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
578
579		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
580
581		/*
582		 * According with i5000 datasheet, bit 28 has no significance
583		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
584		 */
585		channel = branch & 2;
586
587		bank = NREC_BANK(info->nrecmema);
588		rank = NREC_RANK(info->nrecmema);
589		rdwr = NREC_RDWR(info->nrecmema);
590		ras = NREC_RAS(info->nrecmemb);
591		cas = NREC_CAS(info->nrecmemb);
592
593		debugf0
594			("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
595			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
596			rank, channel, channel + 1, branch >> 1, bank,
597			rdwr ? "Write" : "Read", ras, cas);
598
599		switch (ue_errors) {
600		case FERR_NF_M12ERR:
601			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
602			break;
603		case FERR_NF_M11ERR:
604			specific = "Non-Aliased Uncorrectable Spare-Copy "
605					"Data ECC";
606			break;
607		case FERR_NF_M10ERR:
608			specific = "Non-Aliased Uncorrectable Mirrored Demand "
609					"Data ECC";
610			break;
611		case FERR_NF_M9ERR:
612			specific = "Non-Aliased Uncorrectable Non-Mirrored "
613					"Demand Data ECC";
614			break;
615		case FERR_NF_M8ERR:
616			specific = "Aliased Uncorrectable Patrol Data ECC";
617			break;
618		case FERR_NF_M7ERR:
619			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
620			break;
621		case FERR_NF_M6ERR:
622			specific = "Aliased Uncorrectable Mirrored Demand "
623					"Data ECC";
624			break;
625		case FERR_NF_M5ERR:
626			specific = "Aliased Uncorrectable Non-Mirrored Demand "
627					"Data ECC";
628			break;
629		case FERR_NF_M4ERR:
630			specific = "Uncorrectable Data ECC on Replay";
631			break;
632		}
633
634		/* Form out message */
635		snprintf(msg, sizeof(msg),
636			 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
637			 "CAS=%d, UE Err=0x%x (%s))",
638			 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
639			 ue_errors, specific);
640
641		/* Call the helper to output message */
642		edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
643	}
644
645	/* Check correctable errors */
646	ce_errors = allErrors & FERR_NF_CORRECTABLE;
647	if (ce_errors) {
648		debugf0("\tCorrected bits= 0x%x\n", ce_errors);
649
650		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
651
652		channel = 0;
653		if (REC_ECC_LOCATOR_ODD(info->redmemb))
654			channel = 1;
655
656		/* Convert channel to be based from zero, instead of
657		 * from branch base of 0 */
658		channel += branch;
659
660		bank = REC_BANK(info->recmema);
661		rank = REC_RANK(info->recmema);
662		rdwr = REC_RDWR(info->recmema);
663		ras = REC_RAS(info->recmemb);
664		cas = REC_CAS(info->recmemb);
665
666		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
667			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
668			rank, channel, branch >> 1, bank,
669			rdwr ? "Write" : "Read", ras, cas);
670
671		switch (ce_errors) {
672		case FERR_NF_M17ERR:
673			specific = "Correctable Non-Mirrored Demand Data ECC";
674			break;
675		case FERR_NF_M18ERR:
676			specific = "Correctable Mirrored Demand Data ECC";
677			break;
678		case FERR_NF_M19ERR:
679			specific = "Correctable Spare-Copy Data ECC";
680			break;
681		case FERR_NF_M20ERR:
682			specific = "Correctable Patrol Data ECC";
683			break;
684		}
685
686		/* Form out message */
687		snprintf(msg, sizeof(msg),
688			 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
689			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
690			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
691			 specific);
692
693		/* Call the helper to output message */
694		edac_mc_handle_fbd_ce(mci, rank, channel, msg);
695	}
696
697	if (!misc_messages)
698		return;
699
700	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
701				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
702	if (misc_errors) {
703		switch (misc_errors) {
704		case FERR_NF_M13ERR:
705			specific = "Non-Retry or Redundant Retry FBD Memory "
706					"Alert or Redundant Fast Reset Timeout";
707			break;
708		case FERR_NF_M14ERR:
709			specific = "Non-Retry or Redundant Retry FBD "
710					"Configuration Alert";
711			break;
712		case FERR_NF_M15ERR:
713			specific = "Non-Retry or Redundant Retry FBD "
714					"Northbound CRC error on read data";
715			break;
716		case FERR_NF_M21ERR:
717			specific = "FBD Northbound CRC error on "
718					"FBD Sync Status";
719			break;
720		case FERR_NF_M22ERR:
721			specific = "SPD protocol error";
722			break;
723		case FERR_NF_M27ERR:
724			specific = "DIMM-spare copy started";
725			break;
726		case FERR_NF_M28ERR:
727			specific = "DIMM-spare copy completed";
728			break;
729		}
730		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
731
732		/* Form out message */
733		snprintf(msg, sizeof(msg),
734			 "(Branch=%d Err=%#x (%s))", branch >> 1,
735			 misc_errors, specific);
736
737		/* Call the helper to output message */
738		edac_mc_handle_fbd_ce(mci, 0, 0, msg);
739	}
740}
741
742/*
743 *	i5000_process_error_info	Process the error info that is
744 *	in the 'info' structure, previously retrieved from hardware
745 */
746static void i5000_process_error_info(struct mem_ctl_info *mci,
747				struct i5000_error_info *info,
748				int handle_errors)
749{
750	/* First handle any fatal errors that occurred */
751	i5000_process_fatal_error_info(mci, info, handle_errors);
752
753	/* now handle any non-fatal errors that occurred */
754	i5000_process_nonfatal_error_info(mci, info, handle_errors);
755}
756
757/*
758 *	i5000_clear_error	Retrieve any error from the hardware
759 *				but do NOT process that error.
760 *				Used for 'clearing' out of previous errors
761 *				Called by the Core module.
762 */
763static void i5000_clear_error(struct mem_ctl_info *mci)
764{
765	struct i5000_error_info info;
766
767	i5000_get_error_info(mci, &info);
768}
769
770/*
771 *	i5000_check_error	Retrieve and process errors reported by the
772 *				hardware. Called by the Core module.
773 */
774static void i5000_check_error(struct mem_ctl_info *mci)
775{
776	struct i5000_error_info info;
777	debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
778	i5000_get_error_info(mci, &info);
779	i5000_process_error_info(mci, &info, 1);
780}
781
782/*
783 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
784 *			device/functions we want to reference for this driver
785 *
786 *			Need to 'get' device 16 func 1 and func 2
787 */
788static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
789{
790	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
791	struct i5000_pvt *pvt;
792	struct pci_dev *pdev;
793
794	pvt = mci->pvt_info;
795
796	/* Attempt to 'get' the MCH register we want */
797	pdev = NULL;
798	while (1) {
799		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
800				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
801
802		/* End of list, leave */
803		if (pdev == NULL) {
804			i5000_printk(KERN_ERR,
805				"'system address,Process Bus' "
806				"device not found:"
807				"vendor 0x%x device 0x%x FUNC 1 "
808				"(broken BIOS?)\n",
809				PCI_VENDOR_ID_INTEL,
810				PCI_DEVICE_ID_INTEL_I5000_DEV16);
811
812			return 1;
813		}
814
815		/* Scan for device 16 func 1 */
816		if (PCI_FUNC(pdev->devfn) == 1)
817			break;
818	}
819
820	pvt->branchmap_werrors = pdev;
821
822	/* Attempt to 'get' the MCH register we want */
823	pdev = NULL;
824	while (1) {
825		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
826				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
827
828		if (pdev == NULL) {
829			i5000_printk(KERN_ERR,
830				"MC: 'branchmap,control,errors' "
831				"device not found:"
832				"vendor 0x%x device 0x%x Func 2 "
833				"(broken BIOS?)\n",
834				PCI_VENDOR_ID_INTEL,
835				PCI_DEVICE_ID_INTEL_I5000_DEV16);
836
837			pci_dev_put(pvt->branchmap_werrors);
838			return 1;
839		}
840
841		/* Scan for device 16 func 1 */
842		if (PCI_FUNC(pdev->devfn) == 2)
843			break;
844	}
845
846	pvt->fsb_error_regs = pdev;
847
848	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
849		pci_name(pvt->system_address),
850		pvt->system_address->vendor, pvt->system_address->device);
851	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
852		pci_name(pvt->branchmap_werrors),
853		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
854	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
855		pci_name(pvt->fsb_error_regs),
856		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
857
858	pdev = NULL;
859	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
860			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
861
862	if (pdev == NULL) {
863		i5000_printk(KERN_ERR,
864			"MC: 'BRANCH 0' device not found:"
865			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
866			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
867
868		pci_dev_put(pvt->branchmap_werrors);
869		pci_dev_put(pvt->fsb_error_regs);
870		return 1;
871	}
872
873	pvt->branch_0 = pdev;
874
875	/* If this device claims to have more than 2 channels then
876	 * fetch Branch 1's information
877	 */
878	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
879		pdev = NULL;
880		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
881				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
882
883		if (pdev == NULL) {
884			i5000_printk(KERN_ERR,
885				"MC: 'BRANCH 1' device not found:"
886				"vendor 0x%x device 0x%x Func 0 "
887				"(broken BIOS?)\n",
888				PCI_VENDOR_ID_INTEL,
889				PCI_DEVICE_ID_I5000_BRANCH_1);
890
891			pci_dev_put(pvt->branchmap_werrors);
892			pci_dev_put(pvt->fsb_error_regs);
893			pci_dev_put(pvt->branch_0);
894			return 1;
895		}
896
897		pvt->branch_1 = pdev;
898	}
899
900	return 0;
901}
902
903/*
904 *	i5000_put_devices	'put' all the devices that we have
905 *				reserved via 'get'
906 */
907static void i5000_put_devices(struct mem_ctl_info *mci)
908{
909	struct i5000_pvt *pvt;
910
911	pvt = mci->pvt_info;
912
913	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
914	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
915	pci_dev_put(pvt->branch_0);	/* DEV 21 */
916
917	/* Only if more than 2 channels do we release the second branch */
918	if (pvt->maxch >= CHANNELS_PER_BRANCH)
919		pci_dev_put(pvt->branch_1);	/* DEV 22 */
920}
921
922/*
923 *	determine_amb_resent
924 *
925 *		the information is contained in NUM_MTRS different registers
926 *		determineing which of the NUM_MTRS requires knowing
927 *		which channel is in question
928 *
929 *	2 branches, each with 2 channels
930 *		b0_ambpresent0 for channel '0'
931 *		b0_ambpresent1 for channel '1'
932 *		b1_ambpresent0 for channel '2'
933 *		b1_ambpresent1 for channel '3'
934 */
935static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
936{
937	int amb_present;
938
939	if (channel < CHANNELS_PER_BRANCH) {
940		if (channel & 0x1)
941			amb_present = pvt->b0_ambpresent1;
942		else
943			amb_present = pvt->b0_ambpresent0;
944	} else {
945		if (channel & 0x1)
946			amb_present = pvt->b1_ambpresent1;
947		else
948			amb_present = pvt->b1_ambpresent0;
949	}
950
951	return amb_present;
952}
953
954/*
955 * determine_mtr(pvt, csrow, channel)
956 *
957 *	return the proper MTR register as determine by the csrow and channel desired
958 */
959static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
960{
961	int mtr;
962
963	if (channel < CHANNELS_PER_BRANCH)
964		mtr = pvt->b0_mtr[csrow >> 1];
965	else
966		mtr = pvt->b1_mtr[csrow >> 1];
967
968	return mtr;
969}
970
971/*
972 */
973static void decode_mtr(int slot_row, u16 mtr)
974{
975	int ans;
976
977	ans = MTR_DIMMS_PRESENT(mtr);
978
979	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
980		ans ? "Present" : "NOT Present");
981	if (!ans)
982		return;
983
984	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
985	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
986	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
987	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
988	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
989}
990
991static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
992			struct i5000_dimm_info *dinfo)
993{
994	int mtr;
995	int amb_present_reg;
996	int addrBits;
997
998	mtr = determine_mtr(pvt, csrow, channel);
999	if (MTR_DIMMS_PRESENT(mtr)) {
1000		amb_present_reg = determine_amb_present_reg(pvt, channel);
1001
1002		/* Determine if there is  a  DIMM present in this DIMM slot */
1003		if (amb_present_reg & (1 << (csrow >> 1))) {
1004			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1005
1006			if (!((dinfo->dual_rank == 0) &&
1007				((csrow & 0x1) == 0x1))) {
1008				/* Start with the number of bits for a Bank
1009				 * on the DRAM */
1010				addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1011				/* Add thenumber of ROW bits */
1012				addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1013				/* add the number of COLUMN bits */
1014				addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1015
1016				addrBits += 6;	/* add 64 bits per DIMM */
1017				addrBits -= 20;	/* divide by 2^^20 */
1018				addrBits -= 3;	/* 8 bits per bytes */
1019
1020				dinfo->megabytes = 1 << addrBits;
1021			}
1022		}
1023	}
1024}
1025
1026/*
1027 *	calculate_dimm_size
1028 *
1029 *	also will output a DIMM matrix map, if debug is enabled, for viewing
1030 *	how the DIMMs are populated
1031 */
1032static void calculate_dimm_size(struct i5000_pvt *pvt)
1033{
1034	struct i5000_dimm_info *dinfo;
1035	int csrow, max_csrows;
1036	char *p, *mem_buffer;
1037	int space, n;
1038	int channel;
1039
1040	/* ================= Generate some debug output ================= */
1041	space = PAGE_SIZE;
1042	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1043	if (p == NULL) {
1044		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1045			__FILE__, __func__);
1046		return;
1047	}
1048
1049	n = snprintf(p, space, "\n");
1050	p += n;
1051	space -= n;
1052
1053	/* Scan all the actual CSROWS (which is # of DIMMS * 2)
1054	 * and calculate the information for each DIMM
1055	 * Start with the highest csrow first, to display it first
1056	 * and work toward the 0th csrow
1057	 */
1058	max_csrows = pvt->maxdimmperch * 2;
1059	for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
1060
1061		/* on an odd csrow, first output a 'boundary' marker,
1062		 * then reset the message buffer  */
1063		if (csrow & 0x1) {
1064			n = snprintf(p, space, "---------------------------"
1065				"--------------------------------");
1066			p += n;
1067			space -= n;
1068			debugf2("%s\n", mem_buffer);
1069			p = mem_buffer;
1070			space = PAGE_SIZE;
1071		}
1072		n = snprintf(p, space, "csrow %2d    ", csrow);
1073		p += n;
1074		space -= n;
1075
1076		for (channel = 0; channel < pvt->maxch; channel++) {
1077			dinfo = &pvt->dimm_info[csrow][channel];
1078			handle_channel(pvt, csrow, channel, dinfo);
1079			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1080			p += n;
1081			space -= n;
1082		}
1083		n = snprintf(p, space, "\n");
1084		p += n;
1085		space -= n;
1086	}
1087
1088	/* Output the last bottom 'boundary' marker */
1089	n = snprintf(p, space, "---------------------------"
1090		"--------------------------------\n");
1091	p += n;
1092	space -= n;
1093
1094	/* now output the 'channel' labels */
1095	n = snprintf(p, space, "            ");
1096	p += n;
1097	space -= n;
1098	for (channel = 0; channel < pvt->maxch; channel++) {
1099		n = snprintf(p, space, "channel %d | ", channel);
1100		p += n;
1101		space -= n;
1102	}
1103	n = snprintf(p, space, "\n");
1104	p += n;
1105	space -= n;
1106
1107	/* output the last message and free buffer */
1108	debugf2("%s\n", mem_buffer);
1109	kfree(mem_buffer);
1110}
1111
1112/*
1113 *	i5000_get_mc_regs	read in the necessary registers and
1114 *				cache locally
1115 *
1116 *			Fills in the private data members
1117 */
1118static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1119{
1120	struct i5000_pvt *pvt;
1121	u32 actual_tolm;
1122	u16 limit;
1123	int slot_row;
1124	int maxch;
1125	int maxdimmperch;
1126	int way0, way1;
1127
1128	pvt = mci->pvt_info;
1129
1130	pci_read_config_dword(pvt->system_address, AMBASE,
1131			(u32 *) & pvt->ambase);
1132	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1133			((u32 *) & pvt->ambase) + sizeof(u32));
1134
1135	maxdimmperch = pvt->maxdimmperch;
1136	maxch = pvt->maxch;
1137
1138	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1139		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1140
1141	/* Get the Branch Map regs */
1142	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1143	pvt->tolm >>= 12;
1144	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1145		pvt->tolm);
1146
1147	actual_tolm = pvt->tolm << 28;
1148	debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1149
1150	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1151	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1152	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1153
1154	/* Get the MIR[0-2] regs */
1155	limit = (pvt->mir0 >> 4) & 0x0FFF;
1156	way0 = pvt->mir0 & 0x1;
1157	way1 = pvt->mir0 & 0x2;
1158	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1159	limit = (pvt->mir1 >> 4) & 0x0FFF;
1160	way0 = pvt->mir1 & 0x1;
1161	way1 = pvt->mir1 & 0x2;
1162	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1163	limit = (pvt->mir2 >> 4) & 0x0FFF;
1164	way0 = pvt->mir2 & 0x1;
1165	way1 = pvt->mir2 & 0x2;
1166	debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1167
1168	/* Get the MTR[0-3] regs */
1169	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1170		int where = MTR0 + (slot_row * sizeof(u32));
1171
1172		pci_read_config_word(pvt->branch_0, where,
1173				&pvt->b0_mtr[slot_row]);
1174
1175		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1176			pvt->b0_mtr[slot_row]);
1177
1178		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1179			pci_read_config_word(pvt->branch_1, where,
1180					&pvt->b1_mtr[slot_row]);
1181			debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1182				where, pvt->b1_mtr[slot_row]);
1183		} else {
1184			pvt->b1_mtr[slot_row] = 0;
1185		}
1186	}
1187
1188	/* Read and dump branch 0's MTRs */
1189	debugf2("\nMemory Technology Registers:\n");
1190	debugf2("   Branch 0:\n");
1191	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1192		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1193	}
1194	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1195			&pvt->b0_ambpresent0);
1196	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1197	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1198			&pvt->b0_ambpresent1);
1199	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1200
1201	/* Only if we have 2 branchs (4 channels) */
1202	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1203		pvt->b1_ambpresent0 = 0;
1204		pvt->b1_ambpresent1 = 0;
1205	} else {
1206		/* Read and dump  branch 1's MTRs */
1207		debugf2("   Branch 1:\n");
1208		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1209			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1210		}
1211		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1212				&pvt->b1_ambpresent0);
1213		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1214			pvt->b1_ambpresent0);
1215		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1216				&pvt->b1_ambpresent1);
1217		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1218			pvt->b1_ambpresent1);
1219	}
1220
1221	/* Go and determine the size of each DIMM and place in an
1222	 * orderly matrix */
1223	calculate_dimm_size(pvt);
1224}
1225
1226/*
1227 *	i5000_init_csrows	Initialize the 'csrows' table within
1228 *				the mci control	structure with the
1229 *				addressing of memory.
1230 *
1231 *	return:
1232 *		0	success
1233 *		1	no actual memory found on this MC
1234 */
1235static int i5000_init_csrows(struct mem_ctl_info *mci)
1236{
1237	struct i5000_pvt *pvt;
1238	struct csrow_info *p_csrow;
1239	int empty, channel_count;
1240	int max_csrows;
1241	int mtr, mtr1;
1242	int csrow_megs;
1243	int channel;
1244	int csrow;
1245
1246	pvt = mci->pvt_info;
1247
1248	channel_count = pvt->maxch;
1249	max_csrows = pvt->maxdimmperch * 2;
1250
1251	empty = 1;		/* Assume NO memory */
1252
1253	for (csrow = 0; csrow < max_csrows; csrow++) {
1254		p_csrow = &mci->csrows[csrow];
1255
1256		p_csrow->csrow_idx = csrow;
1257
1258		/* use branch 0 for the basis */
1259		mtr = pvt->b0_mtr[csrow >> 1];
1260		mtr1 = pvt->b1_mtr[csrow >> 1];
1261
1262		/* if no DIMMS on this row, continue */
1263		if (!MTR_DIMMS_PRESENT(mtr) && !MTR_DIMMS_PRESENT(mtr1))
1264			continue;
1265
1266		p_csrow->first_page = 0 + csrow * 20;
1267		p_csrow->last_page = 9 + csrow * 20;
1268		p_csrow->page_mask = 0xFFF;
1269
1270		p_csrow->grain = 8;
1271
1272		csrow_megs = 0;
1273		for (channel = 0; channel < pvt->maxch; channel++) {
1274			csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1275		}
1276
1277		p_csrow->nr_pages = csrow_megs << 8;
1278
1279		/* Assume DDR2 for now */
1280		p_csrow->mtype = MEM_FB_DDR2;
1281
1282		/* ask what device type on this row */
1283		if (MTR_DRAM_WIDTH(mtr))
1284			p_csrow->dtype = DEV_X8;
1285		else
1286			p_csrow->dtype = DEV_X4;
1287
1288		p_csrow->edac_mode = EDAC_S8ECD8ED;
1289
1290		empty = 0;
1291	}
1292
1293	return empty;
1294}
1295
1296/*
1297 *	i5000_enable_error_reporting
1298 *			Turn on the memory reporting features of the hardware
1299 */
1300static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1301{
1302	struct i5000_pvt *pvt;
1303	u32 fbd_error_mask;
1304
1305	pvt = mci->pvt_info;
1306
1307	/* Read the FBD Error Mask Register */
1308	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1309			&fbd_error_mask);
1310
1311	/* Enable with a '0' */
1312	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1313
1314	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1315			fbd_error_mask);
1316}
1317
1318/*
1319 * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1320 *
1321 *	ask the device how many channels are present and how many CSROWS
1322 *	 as well
1323 */
1324static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1325					int *num_dimms_per_channel,
1326					int *num_channels)
1327{
1328	u8 value;
1329
1330	/* Need to retrieve just how many channels and dimms per channel are
1331	 * supported on this memory controller
1332	 */
1333	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1334	*num_dimms_per_channel = (int)value *2;
1335
1336	pci_read_config_byte(pdev, MAXCH, &value);
1337	*num_channels = (int)value;
1338}
1339
1340/*
1341 *	i5000_probe1	Probe for ONE instance of device to see if it is
1342 *			present.
1343 *	return:
1344 *		0 for FOUND a device
1345 *		< 0 for error code
1346 */
1347static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1348{
1349	struct mem_ctl_info *mci;
1350	struct i5000_pvt *pvt;
1351	int num_channels;
1352	int num_dimms_per_channel;
1353	int num_csrows;
1354
1355	debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1356		__FILE__, __func__,
1357		pdev->bus->number,
1358		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1359
1360	/* We only are looking for func 0 of the set */
1361	if (PCI_FUNC(pdev->devfn) != 0)
1362		return -ENODEV;
1363
1364	/* Ask the devices for the number of CSROWS and CHANNELS so
1365	 * that we can calculate the memory resources, etc
1366	 *
1367	 * The Chipset will report what it can handle which will be greater
1368	 * or equal to what the motherboard manufacturer will implement.
1369	 *
1370	 * As we don't have a motherboard identification routine to determine
1371	 * actual number of slots/dimms per channel, we thus utilize the
1372	 * resource as specified by the chipset. Thus, we might have
1373	 * have more DIMMs per channel than actually on the mobo, but this
1374	 * allows the driver to support upto the chipset max, without
1375	 * some fancy mobo determination.
1376	 */
1377	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1378					&num_channels);
1379	num_csrows = num_dimms_per_channel * 2;
1380
1381	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1382		__func__, num_channels, num_dimms_per_channel, num_csrows);
1383
1384	/* allocate a new MC control structure */
1385	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1386
1387	if (mci == NULL)
1388		return -ENOMEM;
1389
1390	kobject_get(&mci->edac_mci_kobj);
1391	debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1392
1393	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1394
1395	pvt = mci->pvt_info;
1396	pvt->system_address = pdev;	/* Record this device in our private */
1397	pvt->maxch = num_channels;
1398	pvt->maxdimmperch = num_dimms_per_channel;
1399
1400	/* 'get' the pci devices we want to reserve for our use */
1401	if (i5000_get_devices(mci, dev_idx))
1402		goto fail0;
1403
1404	/* Time to get serious */
1405	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1406
1407	mci->mc_idx = 0;
1408	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1409	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1410	mci->edac_cap = EDAC_FLAG_NONE;
1411	mci->mod_name = "i5000_edac.c";
1412	mci->mod_ver = I5000_REVISION;
1413	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1414	mci->dev_name = pci_name(pdev);
1415	mci->ctl_page_to_phys = NULL;
1416
1417	/* Set the function pointer to an actual operation function */
1418	mci->edac_check = i5000_check_error;
1419
1420	/* initialize the MC control structure 'csrows' table
1421	 * with the mapping and control information */
1422	if (i5000_init_csrows(mci)) {
1423		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1424			"    because i5000_init_csrows() returned nonzero "
1425			"value\n");
1426		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1427	} else {
1428		debugf1("MC: Enable error reporting now\n");
1429		i5000_enable_error_reporting(mci);
1430	}
1431
1432	/* add this new MC control structure to EDAC's list of MCs */
1433	if (edac_mc_add_mc(mci)) {
1434		debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1435			__FILE__, __func__);
1436		goto fail1;
1437	}
1438
1439	i5000_clear_error(mci);
1440
1441	/* allocating generic PCI control info */
1442	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1443	if (!i5000_pci) {
1444		printk(KERN_WARNING
1445			"%s(): Unable to create PCI control\n",
1446			__func__);
1447		printk(KERN_WARNING
1448			"%s(): PCI error report via EDAC not setup\n",
1449			__func__);
1450	}
1451
1452	return 0;
1453
1454	/* Error exit unwinding stack */
1455fail1:
1456
1457	i5000_put_devices(mci);
1458
1459fail0:
1460	kobject_put(&mci->edac_mci_kobj);
1461	edac_mc_free(mci);
1462	return -ENODEV;
1463}
1464
1465/*
1466 *	i5000_init_one	constructor for one instance of device
1467 *
1468 * 	returns:
1469 *		negative on error
1470 *		count (>= 0)
1471 */
1472static int __devinit i5000_init_one(struct pci_dev *pdev,
1473				const struct pci_device_id *id)
1474{
1475	int rc;
1476
1477	debugf0("MC: %s: %s()\n", __FILE__, __func__);
1478
1479	/* wake up device */
1480	rc = pci_enable_device(pdev);
1481	if (rc)
1482		return rc;
1483
1484	/* now probe and enable the device */
1485	return i5000_probe1(pdev, id->driver_data);
1486}
1487
1488/*
1489 *	i5000_remove_one	destructor for one instance of device
1490 *
1491 */
1492static void __devexit i5000_remove_one(struct pci_dev *pdev)
1493{
1494	struct mem_ctl_info *mci;
1495
1496	debugf0("%s: %s()\n", __FILE__, __func__);
1497
1498	if (i5000_pci)
1499		edac_pci_release_generic_ctl(i5000_pci);
1500
1501	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1502		return;
1503
1504	/* retrieve references to resources, and free those resources */
1505	i5000_put_devices(mci);
1506	kobject_put(&mci->edac_mci_kobj);
1507	edac_mc_free(mci);
1508}
1509
1510/*
1511 *	pci_device_id	table for which devices we are looking for
1512 *
1513 *	The "E500P" device is the first device supported.
1514 */
1515static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1516	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1517	 .driver_data = I5000P},
1518
1519	{0,}			/* 0 terminated list. */
1520};
1521
1522MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1523
1524/*
1525 *	i5000_driver	pci_driver structure for this module
1526 *
1527 */
1528static struct pci_driver i5000_driver = {
1529	.name = KBUILD_BASENAME,
1530	.probe = i5000_init_one,
1531	.remove = __devexit_p(i5000_remove_one),
1532	.id_table = i5000_pci_tbl,
1533};
1534
1535/*
1536 *	i5000_init		Module entry function
1537 *			Try to initialize this module for its devices
1538 */
1539static int __init i5000_init(void)
1540{
1541	int pci_rc;
1542
1543	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1544
1545       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1546       opstate_init();
1547
1548	pci_rc = pci_register_driver(&i5000_driver);
1549
1550	return (pci_rc < 0) ? pci_rc : 0;
1551}
1552
1553/*
1554 *	i5000_exit()	Module exit function
1555 *			Unregister the driver
1556 */
1557static void __exit i5000_exit(void)
1558{
1559	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1560	pci_unregister_driver(&i5000_driver);
1561}
1562
1563module_init(i5000_init);
1564module_exit(i5000_exit);
1565
1566MODULE_LICENSE("GPL");
1567MODULE_AUTHOR
1568    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1569MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1570		I5000_REVISION);
1571
1572module_param(edac_op_state, int, 0444);
1573MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1574module_param(misc_messages, int, 0444);
1575MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1576