• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/dma/ppc4xx/
1/*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
3 *
4 * Author: Yuri Tikhonov <yur@emcraft.com>
5 *
6 * Further porting to arch/powerpc by
7 * 	Anatolij Gustschin <agust@denx.de>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 */
26
27/*
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
32 */
33
34#include <linux/init.h>
35#include <linux/module.h>
36#include <linux/async_tx.h>
37#include <linux/delay.h>
38#include <linux/dma-mapping.h>
39#include <linux/spinlock.h>
40#include <linux/interrupt.h>
41#include <linux/slab.h>
42#include <linux/uaccess.h>
43#include <linux/proc_fs.h>
44#include <linux/of.h>
45#include <linux/of_platform.h>
46#include <asm/dcr.h>
47#include <asm/dcr-regs.h>
48#include "adma.h"
49
50enum ppc_adma_init_code {
51	PPC_ADMA_INIT_OK = 0,
52	PPC_ADMA_INIT_MEMRES,
53	PPC_ADMA_INIT_MEMREG,
54	PPC_ADMA_INIT_ALLOC,
55	PPC_ADMA_INIT_COHERENT,
56	PPC_ADMA_INIT_CHANNEL,
57	PPC_ADMA_INIT_IRQ1,
58	PPC_ADMA_INIT_IRQ2,
59	PPC_ADMA_INIT_REGISTER
60};
61
62static char *ppc_adma_errors[] = {
63	[PPC_ADMA_INIT_OK] = "ok",
64	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
65	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
66	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
67				"structure",
68	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
69				   "hardware descriptors",
70	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
71	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
72	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
73	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
74};
75
76static enum ppc_adma_init_code
77ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
78
79struct ppc_dma_chan_ref {
80	struct dma_chan *chan;
81	struct list_head node;
82};
83
84/* The list of channels exported by ppc440spe ADMA */
85struct list_head
86ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
87
88/* This flag is set when want to refetch the xor chain in the interrupt
89 * handler
90 */
91static u32 do_xor_refetch;
92
93/* Pointer to DMA0, DMA1 CP/CS FIFO */
94static void *ppc440spe_dma_fifo_buf;
95
96/* Pointers to last submitted to DMA0, DMA1 CDBs */
97static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
98static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
99
100/* Pointer to last linked and submitted xor CB */
101static struct ppc440spe_adma_desc_slot *xor_last_linked;
102static struct ppc440spe_adma_desc_slot *xor_last_submit;
103
104/* This array is used in data-check operations for storing a pattern */
105static char ppc440spe_qword[16];
106
107static atomic_t ppc440spe_adma_err_irq_ref;
108static dcr_host_t ppc440spe_mq_dcr_host;
109static unsigned int ppc440spe_mq_dcr_len;
110
111/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
112 * the block size in transactions, then we do not allow to activate more than
113 * only one RXOR transactions simultaneously. So use this var to store
114 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
115 * set) or not (PPC440SPE_RXOR_RUN is clear).
116 */
117static unsigned long ppc440spe_rxor_state;
118
119/* These are used in enable & check routines
120 */
121static u32 ppc440spe_r6_enabled;
122static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
123static struct completion ppc440spe_r6_test_comp;
124
125static int ppc440spe_adma_dma2rxor_prep_src(
126		struct ppc440spe_adma_desc_slot *desc,
127		struct ppc440spe_rxor *cursor, int index,
128		int src_cnt, u32 addr);
129static void ppc440spe_adma_dma2rxor_set_src(
130		struct ppc440spe_adma_desc_slot *desc,
131		int index, dma_addr_t addr);
132static void ppc440spe_adma_dma2rxor_set_mult(
133		struct ppc440spe_adma_desc_slot *desc,
134		int index, u8 mult);
135
136#ifdef ADMA_LL_DEBUG
137#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
138#else
139#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
140#endif
141
142static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
143{
144	struct dma_cdb *cdb;
145	struct xor_cb *cb;
146	int i;
147
148	switch (chan->device->id) {
149	case 0:
150	case 1:
151		cdb = block;
152
153		pr_debug("CDB at %p [%d]:\n"
154			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
155			"\t sg1u 0x%08x sg1l 0x%08x\n"
156			"\t sg2u 0x%08x sg2l 0x%08x\n"
157			"\t sg3u 0x%08x sg3l 0x%08x\n",
158			cdb, chan->device->id,
159			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
160			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
161			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
162			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
163		);
164		break;
165	case 2:
166		cb = block;
167
168		pr_debug("CB at %p [%d]:\n"
169			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
170			"\t cbtah 0x%08x cbtal 0x%08x\n"
171			"\t cblah 0x%08x cblal 0x%08x\n",
172			cb, chan->device->id,
173			cb->cbc, cb->cbbc, cb->cbs,
174			cb->cbtah, cb->cbtal,
175			cb->cblah, cb->cblal);
176		for (i = 0; i < 16; i++) {
177			if (i && !cb->ops[i].h && !cb->ops[i].l)
178				continue;
179			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
180				i, cb->ops[i].h, cb->ops[i].l);
181		}
182		break;
183	}
184}
185
186static void print_cb_list(struct ppc440spe_adma_chan *chan,
187			  struct ppc440spe_adma_desc_slot *iter)
188{
189	for (; iter; iter = iter->hw_next)
190		print_cb(chan, iter->hw_desc);
191}
192
193static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
194			     unsigned int src_cnt)
195{
196	int i;
197
198	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
199	for (i = 0; i < src_cnt; i++)
200		pr_debug("\t0x%016llx ", src[i]);
201	pr_debug("dst:\n\t0x%016llx\n", dst);
202}
203
204static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
205			    unsigned int src_cnt)
206{
207	int i;
208
209	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
210	for (i = 0; i < src_cnt; i++)
211		pr_debug("\t0x%016llx ", src[i]);
212	pr_debug("dst: ");
213	for (i = 0; i < 2; i++)
214		pr_debug("\t0x%016llx ", dst[i]);
215}
216
217static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
218				    unsigned int src_cnt,
219				    const unsigned char *scf)
220{
221	int i;
222
223	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
224	if (scf) {
225		for (i = 0; i < src_cnt; i++)
226			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
227	} else {
228		for (i = 0; i < src_cnt; i++)
229			pr_debug("\t0x%016llx(no) ", src[i]);
230	}
231
232	pr_debug("dst: ");
233	for (i = 0; i < 2; i++)
234		pr_debug("\t0x%016llx ", src[src_cnt + i]);
235}
236
237/******************************************************************************
238 * Command (Descriptor) Blocks low-level routines
239 ******************************************************************************/
240/**
241 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
242 * pseudo operation
243 */
244static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
245					  struct ppc440spe_adma_chan *chan)
246{
247	struct xor_cb *p;
248
249	switch (chan->device->id) {
250	case PPC440SPE_XOR_ID:
251		p = desc->hw_desc;
252		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
253		/* NOP with Command Block Complete Enable */
254		p->cbc = XOR_CBCR_CBCE_BIT;
255		break;
256	case PPC440SPE_DMA0_ID:
257	case PPC440SPE_DMA1_ID:
258		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
259		/* NOP with interrupt */
260		set_bit(PPC440SPE_DESC_INT, &desc->flags);
261		break;
262	default:
263		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
264				__func__);
265		break;
266	}
267}
268
269/**
270 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
271 * pseudo operation
272 */
273static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
274{
275	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
276	desc->hw_next = NULL;
277	desc->src_cnt = 0;
278	desc->dst_cnt = 1;
279}
280
281/**
282 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
283 */
284static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
285					 int src_cnt, unsigned long flags)
286{
287	struct xor_cb *hw_desc = desc->hw_desc;
288
289	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
290	desc->hw_next = NULL;
291	desc->src_cnt = src_cnt;
292	desc->dst_cnt = 1;
293
294	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
295	if (flags & DMA_PREP_INTERRUPT)
296		/* Enable interrupt on completion */
297		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
298}
299
300/**
301 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
302 * operation in DMA2 controller
303 */
304static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
305		int dst_cnt, int src_cnt, unsigned long flags)
306{
307	struct xor_cb *hw_desc = desc->hw_desc;
308
309	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
310	desc->hw_next = NULL;
311	desc->src_cnt = src_cnt;
312	desc->dst_cnt = dst_cnt;
313	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
314	desc->descs_per_op = 0;
315
316	hw_desc->cbc = XOR_CBCR_TGT_BIT;
317	if (flags & DMA_PREP_INTERRUPT)
318		/* Enable interrupt on completion */
319		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
320}
321
322#define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
323#define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
324#define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
325
326/**
327 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
328 * with DMA0/1
329 */
330static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
331				int dst_cnt, int src_cnt, unsigned long flags,
332				unsigned long op)
333{
334	struct dma_cdb *hw_desc;
335	struct ppc440spe_adma_desc_slot *iter;
336	u8 dopc;
337
338	/* Common initialization of a PQ descriptors chain */
339	set_bits(op, &desc->flags);
340	desc->src_cnt = src_cnt;
341	desc->dst_cnt = dst_cnt;
342
343	/* WXOR MULTICAST if both P and Q are being computed
344	 * MV_SG1_SG2 if Q only
345	 */
346	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
347		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
348
349	list_for_each_entry(iter, &desc->group_list, chain_node) {
350		hw_desc = iter->hw_desc;
351		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
352
353		if (likely(!list_is_last(&iter->chain_node,
354				&desc->group_list))) {
355			/* set 'next' pointer */
356			iter->hw_next = list_entry(iter->chain_node.next,
357				struct ppc440spe_adma_desc_slot, chain_node);
358			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
359		} else {
360			/* this is the last descriptor.
361			 * this slot will be pasted from ADMA level
362			 * each time it wants to configure parameters
363			 * of the transaction (src, dst, ...)
364			 */
365			iter->hw_next = NULL;
366			if (flags & DMA_PREP_INTERRUPT)
367				set_bit(PPC440SPE_DESC_INT, &iter->flags);
368			else
369				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
370		}
371	}
372
373	/* Set OPS depending on WXOR/RXOR type of operation */
374	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
375		/* This is a WXOR only chain:
376		 * - first descriptors are for zeroing destinations
377		 *   if PPC440SPE_ZERO_P/Q set;
378		 * - descriptors remained are for GF-XOR operations.
379		 */
380		iter = list_first_entry(&desc->group_list,
381					struct ppc440spe_adma_desc_slot,
382					chain_node);
383
384		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
385			hw_desc = iter->hw_desc;
386			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
387			iter = list_first_entry(&iter->chain_node,
388					struct ppc440spe_adma_desc_slot,
389					chain_node);
390		}
391
392		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
393			hw_desc = iter->hw_desc;
394			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
395			iter = list_first_entry(&iter->chain_node,
396					struct ppc440spe_adma_desc_slot,
397					chain_node);
398		}
399
400		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
401			hw_desc = iter->hw_desc;
402			hw_desc->opc = dopc;
403		}
404	} else {
405		/* This is either RXOR-only or mixed RXOR/WXOR */
406
407		/* The first 1 or 2 slots in chain are always RXOR,
408		 * if need to calculate P & Q, then there are two
409		 * RXOR slots; if only P or only Q, then there is one
410		 */
411		iter = list_first_entry(&desc->group_list,
412					struct ppc440spe_adma_desc_slot,
413					chain_node);
414		hw_desc = iter->hw_desc;
415		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
416
417		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
418			iter = list_first_entry(&iter->chain_node,
419						struct ppc440spe_adma_desc_slot,
420						chain_node);
421			hw_desc = iter->hw_desc;
422			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
423		}
424
425		/* The remaining descs (if any) are WXORs */
426		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
427			iter = list_first_entry(&iter->chain_node,
428						struct ppc440spe_adma_desc_slot,
429						chain_node);
430			list_for_each_entry_from(iter, &desc->group_list,
431						chain_node) {
432				hw_desc = iter->hw_desc;
433				hw_desc->opc = dopc;
434			}
435		}
436	}
437}
438
439/**
440 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
441 * for PQ_ZERO_SUM operation
442 */
443static void ppc440spe_desc_init_dma01pqzero_sum(
444				struct ppc440spe_adma_desc_slot *desc,
445				int dst_cnt, int src_cnt)
446{
447	struct dma_cdb *hw_desc;
448	struct ppc440spe_adma_desc_slot *iter;
449	int i = 0;
450	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
451				   DMA_CDB_OPC_MV_SG1_SG2;
452	/*
453	 * Initialize starting from 2nd or 3rd descriptor dependent
454	 * on dst_cnt. First one or two slots are for cloning P
455	 * and/or Q to chan->pdest and/or chan->qdest as we have
456	 * to preserve original P/Q.
457	 */
458	iter = list_first_entry(&desc->group_list,
459				struct ppc440spe_adma_desc_slot, chain_node);
460	iter = list_entry(iter->chain_node.next,
461			  struct ppc440spe_adma_desc_slot, chain_node);
462
463	if (dst_cnt > 1) {
464		iter = list_entry(iter->chain_node.next,
465				  struct ppc440spe_adma_desc_slot, chain_node);
466	}
467	/* initialize each source descriptor in chain */
468	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
469		hw_desc = iter->hw_desc;
470		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
471		iter->src_cnt = 0;
472		iter->dst_cnt = 0;
473
474		/* This is a ZERO_SUM operation:
475		 * - <src_cnt> descriptors starting from 2nd or 3rd
476		 *   descriptor are for GF-XOR operations;
477		 * - remaining <dst_cnt> descriptors are for checking the result
478		 */
479		if (i++ < src_cnt)
480			/* MV_SG1_SG2 if only Q is being verified
481			 * MULTICAST if both P and Q are being verified
482			 */
483			hw_desc->opc = dopc;
484		else
485			/* DMA_CDB_OPC_DCHECK128 operation */
486			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
487
488		if (likely(!list_is_last(&iter->chain_node,
489					 &desc->group_list))) {
490			/* set 'next' pointer */
491			iter->hw_next = list_entry(iter->chain_node.next,
492						struct ppc440spe_adma_desc_slot,
493						chain_node);
494		} else {
495			/* this is the last descriptor.
496			 * this slot will be pasted from ADMA level
497			 * each time it wants to configure parameters
498			 * of the transaction (src, dst, ...)
499			 */
500			iter->hw_next = NULL;
501			/* always enable interrupt generation since we get
502			 * the status of pqzero from the handler
503			 */
504			set_bit(PPC440SPE_DESC_INT, &iter->flags);
505		}
506	}
507	desc->src_cnt = src_cnt;
508	desc->dst_cnt = dst_cnt;
509}
510
511/**
512 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
513 */
514static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
515					unsigned long flags)
516{
517	struct dma_cdb *hw_desc = desc->hw_desc;
518
519	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
520	desc->hw_next = NULL;
521	desc->src_cnt = 1;
522	desc->dst_cnt = 1;
523
524	if (flags & DMA_PREP_INTERRUPT)
525		set_bit(PPC440SPE_DESC_INT, &desc->flags);
526	else
527		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
528
529	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
530}
531
532/**
533 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
534 */
535static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
536					int value, unsigned long flags)
537{
538	struct dma_cdb *hw_desc = desc->hw_desc;
539
540	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
541	desc->hw_next = NULL;
542	desc->src_cnt = 1;
543	desc->dst_cnt = 1;
544
545	if (flags & DMA_PREP_INTERRUPT)
546		set_bit(PPC440SPE_DESC_INT, &desc->flags);
547	else
548		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
549
550	hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
551	hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
552	hw_desc->opc = DMA_CDB_OPC_DFILL128;
553}
554
555/**
556 * ppc440spe_desc_set_src_addr - set source address into the descriptor
557 */
558static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
559					struct ppc440spe_adma_chan *chan,
560					int src_idx, dma_addr_t addrh,
561					dma_addr_t addrl)
562{
563	struct dma_cdb *dma_hw_desc;
564	struct xor_cb *xor_hw_desc;
565	phys_addr_t addr64, tmplow, tmphi;
566
567	switch (chan->device->id) {
568	case PPC440SPE_DMA0_ID:
569	case PPC440SPE_DMA1_ID:
570		if (!addrh) {
571			addr64 = addrl;
572			tmphi = (addr64 >> 32);
573			tmplow = (addr64 & 0xFFFFFFFF);
574		} else {
575			tmphi = addrh;
576			tmplow = addrl;
577		}
578		dma_hw_desc = desc->hw_desc;
579		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
580		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
581		break;
582	case PPC440SPE_XOR_ID:
583		xor_hw_desc = desc->hw_desc;
584		xor_hw_desc->ops[src_idx].l = addrl;
585		xor_hw_desc->ops[src_idx].h |= addrh;
586		break;
587	}
588}
589
590/**
591 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
592 */
593static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
594			struct ppc440spe_adma_chan *chan, u32 mult_index,
595			int sg_index, unsigned char mult_value)
596{
597	struct dma_cdb *dma_hw_desc;
598	struct xor_cb *xor_hw_desc;
599	u32 *psgu;
600
601	switch (chan->device->id) {
602	case PPC440SPE_DMA0_ID:
603	case PPC440SPE_DMA1_ID:
604		dma_hw_desc = desc->hw_desc;
605
606		switch (sg_index) {
607		/* for RXOR operations set multiplier
608		 * into source cued address
609		 */
610		case DMA_CDB_SG_SRC:
611			psgu = &dma_hw_desc->sg1u;
612			break;
613		/* for WXOR operations set multiplier
614		 * into destination cued address(es)
615		 */
616		case DMA_CDB_SG_DST1:
617			psgu = &dma_hw_desc->sg2u;
618			break;
619		case DMA_CDB_SG_DST2:
620			psgu = &dma_hw_desc->sg3u;
621			break;
622		default:
623			BUG();
624		}
625
626		*psgu |= cpu_to_le32(mult_value << mult_index);
627		break;
628	case PPC440SPE_XOR_ID:
629		xor_hw_desc = desc->hw_desc;
630		break;
631	default:
632		BUG();
633	}
634}
635
636/**
637 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
638 */
639static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
640				struct ppc440spe_adma_chan *chan,
641				dma_addr_t addrh, dma_addr_t addrl,
642				u32 dst_idx)
643{
644	struct dma_cdb *dma_hw_desc;
645	struct xor_cb *xor_hw_desc;
646	phys_addr_t addr64, tmphi, tmplow;
647	u32 *psgu, *psgl;
648
649	switch (chan->device->id) {
650	case PPC440SPE_DMA0_ID:
651	case PPC440SPE_DMA1_ID:
652		if (!addrh) {
653			addr64 = addrl;
654			tmphi = (addr64 >> 32);
655			tmplow = (addr64 & 0xFFFFFFFF);
656		} else {
657			tmphi = addrh;
658			tmplow = addrl;
659		}
660		dma_hw_desc = desc->hw_desc;
661
662		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
663		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
664
665		*psgl = cpu_to_le32((u32)tmplow);
666		*psgu |= cpu_to_le32((u32)tmphi);
667		break;
668	case PPC440SPE_XOR_ID:
669		xor_hw_desc = desc->hw_desc;
670		xor_hw_desc->cbtal = addrl;
671		xor_hw_desc->cbtah |= addrh;
672		break;
673	}
674}
675
676/**
677 * ppc440spe_desc_set_byte_count - set number of data bytes involved
678 * into the operation
679 */
680static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
681				struct ppc440spe_adma_chan *chan,
682				u32 byte_count)
683{
684	struct dma_cdb *dma_hw_desc;
685	struct xor_cb *xor_hw_desc;
686
687	switch (chan->device->id) {
688	case PPC440SPE_DMA0_ID:
689	case PPC440SPE_DMA1_ID:
690		dma_hw_desc = desc->hw_desc;
691		dma_hw_desc->cnt = cpu_to_le32(byte_count);
692		break;
693	case PPC440SPE_XOR_ID:
694		xor_hw_desc = desc->hw_desc;
695		xor_hw_desc->cbbc = byte_count;
696		break;
697	}
698}
699
700/**
701 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
702 */
703static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
704{
705	/* assume that byte_count is aligned on the 512-boundary;
706	 * thus write it directly to the register (bits 23:31 are
707	 * reserved there).
708	 */
709	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
710}
711
712/**
713 * ppc440spe_desc_set_dcheck - set CHECK pattern
714 */
715static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
716				struct ppc440spe_adma_chan *chan, u8 *qword)
717{
718	struct dma_cdb *dma_hw_desc;
719
720	switch (chan->device->id) {
721	case PPC440SPE_DMA0_ID:
722	case PPC440SPE_DMA1_ID:
723		dma_hw_desc = desc->hw_desc;
724		iowrite32(qword[0], &dma_hw_desc->sg3l);
725		iowrite32(qword[4], &dma_hw_desc->sg3u);
726		iowrite32(qword[8], &dma_hw_desc->sg2l);
727		iowrite32(qword[12], &dma_hw_desc->sg2u);
728		break;
729	default:
730		BUG();
731	}
732}
733
734/**
735 * ppc440spe_xor_set_link - set link address in xor CB
736 */
737static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
738				struct ppc440spe_adma_desc_slot *next_desc)
739{
740	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
741
742	if (unlikely(!next_desc || !(next_desc->phys))) {
743		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
744			__func__, next_desc,
745			next_desc ? next_desc->phys : 0);
746		BUG();
747	}
748
749	xor_hw_desc->cbs = 0;
750	xor_hw_desc->cblal = next_desc->phys;
751	xor_hw_desc->cblah = 0;
752	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
753}
754
755/**
756 * ppc440spe_desc_set_link - set the address of descriptor following this
757 * descriptor in chain
758 */
759static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
760				struct ppc440spe_adma_desc_slot *prev_desc,
761				struct ppc440spe_adma_desc_slot *next_desc)
762{
763	unsigned long flags;
764	struct ppc440spe_adma_desc_slot *tail = next_desc;
765
766	if (unlikely(!prev_desc || !next_desc ||
767		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
768		/* If previous next is overwritten something is wrong.
769		 * though we may refetch from append to initiate list
770		 * processing; in this case - it's ok.
771		 */
772		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
773			"prev->hw_next=0x%p\n", __func__, prev_desc,
774			next_desc, prev_desc ? prev_desc->hw_next : 0);
775		BUG();
776	}
777
778	local_irq_save(flags);
779
780	/* do s/w chaining both for DMA and XOR descriptors */
781	prev_desc->hw_next = next_desc;
782
783	switch (chan->device->id) {
784	case PPC440SPE_DMA0_ID:
785	case PPC440SPE_DMA1_ID:
786		break;
787	case PPC440SPE_XOR_ID:
788		/* bind descriptor to the chain */
789		while (tail->hw_next)
790			tail = tail->hw_next;
791		xor_last_linked = tail;
792
793		if (prev_desc == xor_last_submit)
794			/* do not link to the last submitted CB */
795			break;
796		ppc440spe_xor_set_link(prev_desc, next_desc);
797		break;
798	}
799
800	local_irq_restore(flags);
801}
802
803/**
804 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
805 */
806static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
807				struct ppc440spe_adma_chan *chan, int src_idx)
808{
809	struct dma_cdb *dma_hw_desc;
810	struct xor_cb *xor_hw_desc;
811
812	switch (chan->device->id) {
813	case PPC440SPE_DMA0_ID:
814	case PPC440SPE_DMA1_ID:
815		dma_hw_desc = desc->hw_desc;
816		/* May have 0, 1, 2, or 3 sources */
817		switch (dma_hw_desc->opc) {
818		case DMA_CDB_OPC_NO_OP:
819		case DMA_CDB_OPC_DFILL128:
820			return 0;
821		case DMA_CDB_OPC_DCHECK128:
822			if (unlikely(src_idx)) {
823				printk(KERN_ERR "%s: try to get %d source for"
824				    " DCHECK128\n", __func__, src_idx);
825				BUG();
826			}
827			return le32_to_cpu(dma_hw_desc->sg1l);
828		case DMA_CDB_OPC_MULTICAST:
829		case DMA_CDB_OPC_MV_SG1_SG2:
830			if (unlikely(src_idx > 2)) {
831				printk(KERN_ERR "%s: try to get %d source from"
832				    " DMA descr\n", __func__, src_idx);
833				BUG();
834			}
835			if (src_idx) {
836				if (le32_to_cpu(dma_hw_desc->sg1u) &
837				    DMA_CUED_XOR_WIN_MSK) {
838					u8 region;
839
840					if (src_idx == 1)
841						return le32_to_cpu(
842						    dma_hw_desc->sg1l) +
843							desc->unmap_len;
844
845					region = (le32_to_cpu(
846					    dma_hw_desc->sg1u)) >>
847						DMA_CUED_REGION_OFF;
848
849					region &= DMA_CUED_REGION_MSK;
850					switch (region) {
851					case DMA_RXOR123:
852						return le32_to_cpu(
853						    dma_hw_desc->sg1l) +
854							(desc->unmap_len << 1);
855					case DMA_RXOR124:
856						return le32_to_cpu(
857						    dma_hw_desc->sg1l) +
858							(desc->unmap_len * 3);
859					case DMA_RXOR125:
860						return le32_to_cpu(
861						    dma_hw_desc->sg1l) +
862							(desc->unmap_len << 2);
863					default:
864						printk(KERN_ERR
865						    "%s: try to"
866						    " get src3 for region %02x"
867						    "PPC440SPE_DESC_RXOR12?\n",
868						    __func__, region);
869						BUG();
870					}
871				} else {
872					printk(KERN_ERR
873						"%s: try to get %d"
874						" source for non-cued descr\n",
875						__func__, src_idx);
876					BUG();
877				}
878			}
879			return le32_to_cpu(dma_hw_desc->sg1l);
880		default:
881			printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
882				__func__, dma_hw_desc->opc);
883			BUG();
884		}
885		return le32_to_cpu(dma_hw_desc->sg1l);
886	case PPC440SPE_XOR_ID:
887		/* May have up to 16 sources */
888		xor_hw_desc = desc->hw_desc;
889		return xor_hw_desc->ops[src_idx].l;
890	}
891	return 0;
892}
893
894/**
895 * ppc440spe_desc_get_dest_addr - extract the destination address from the
896 * descriptor
897 */
898static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
899				struct ppc440spe_adma_chan *chan, int idx)
900{
901	struct dma_cdb *dma_hw_desc;
902	struct xor_cb *xor_hw_desc;
903
904	switch (chan->device->id) {
905	case PPC440SPE_DMA0_ID:
906	case PPC440SPE_DMA1_ID:
907		dma_hw_desc = desc->hw_desc;
908
909		if (likely(!idx))
910			return le32_to_cpu(dma_hw_desc->sg2l);
911		return le32_to_cpu(dma_hw_desc->sg3l);
912	case PPC440SPE_XOR_ID:
913		xor_hw_desc = desc->hw_desc;
914		return xor_hw_desc->cbtal;
915	}
916	return 0;
917}
918
919/**
920 * ppc440spe_desc_get_src_num - extract the number of source addresses from
921 * the descriptor
922 */
923static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
924				struct ppc440spe_adma_chan *chan)
925{
926	struct dma_cdb *dma_hw_desc;
927	struct xor_cb *xor_hw_desc;
928
929	switch (chan->device->id) {
930	case PPC440SPE_DMA0_ID:
931	case PPC440SPE_DMA1_ID:
932		dma_hw_desc = desc->hw_desc;
933
934		switch (dma_hw_desc->opc) {
935		case DMA_CDB_OPC_NO_OP:
936		case DMA_CDB_OPC_DFILL128:
937			return 0;
938		case DMA_CDB_OPC_DCHECK128:
939			return 1;
940		case DMA_CDB_OPC_MV_SG1_SG2:
941		case DMA_CDB_OPC_MULTICAST:
942			/*
943			 * Only for RXOR operations we have more than
944			 * one source
945			 */
946			if (le32_to_cpu(dma_hw_desc->sg1u) &
947			    DMA_CUED_XOR_WIN_MSK) {
948				/* RXOR op, there are 2 or 3 sources */
949				if (((le32_to_cpu(dma_hw_desc->sg1u) >>
950				    DMA_CUED_REGION_OFF) &
951				      DMA_CUED_REGION_MSK) == DMA_RXOR12) {
952					/* RXOR 1-2 */
953					return 2;
954				} else {
955					/* RXOR 1-2-3/1-2-4/1-2-5 */
956					return 3;
957				}
958			}
959			return 1;
960		default:
961			printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
962				__func__, dma_hw_desc->opc);
963			BUG();
964		}
965	case PPC440SPE_XOR_ID:
966		/* up to 16 sources */
967		xor_hw_desc = desc->hw_desc;
968		return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
969	default:
970		BUG();
971	}
972	return 0;
973}
974
975/**
976 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
977 * this descriptor
978 */
979static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
980				struct ppc440spe_adma_chan *chan)
981{
982	struct dma_cdb *dma_hw_desc;
983
984	switch (chan->device->id) {
985	case PPC440SPE_DMA0_ID:
986	case PPC440SPE_DMA1_ID:
987		/* May be 1 or 2 destinations */
988		dma_hw_desc = desc->hw_desc;
989		switch (dma_hw_desc->opc) {
990		case DMA_CDB_OPC_NO_OP:
991		case DMA_CDB_OPC_DCHECK128:
992			return 0;
993		case DMA_CDB_OPC_MV_SG1_SG2:
994		case DMA_CDB_OPC_DFILL128:
995			return 1;
996		case DMA_CDB_OPC_MULTICAST:
997			if (desc->dst_cnt == 2)
998				return 2;
999			else
1000				return 1;
1001		default:
1002			printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1003				__func__, dma_hw_desc->opc);
1004			BUG();
1005		}
1006	case PPC440SPE_XOR_ID:
1007		/* Always only 1 destination */
1008		return 1;
1009	default:
1010		BUG();
1011	}
1012	return 0;
1013}
1014
1015/**
1016 * ppc440spe_desc_get_link - get the address of the descriptor that
1017 * follows this one
1018 */
1019static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1020					struct ppc440spe_adma_chan *chan)
1021{
1022	if (!desc->hw_next)
1023		return 0;
1024
1025	return desc->hw_next->phys;
1026}
1027
1028/**
1029 * ppc440spe_desc_is_aligned - check alignment
1030 */
1031static inline int ppc440spe_desc_is_aligned(
1032	struct ppc440spe_adma_desc_slot *desc, int num_slots)
1033{
1034	return (desc->idx & (num_slots - 1)) ? 0 : 1;
1035}
1036
1037/**
1038 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1039 * XOR operation
1040 */
1041static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1042			int *slots_per_op)
1043{
1044	int slot_cnt;
1045
1046	/* each XOR descriptor provides up to 16 source operands */
1047	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1048
1049	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1050		return slot_cnt;
1051
1052	printk(KERN_ERR "%s: len %d > max %d !!\n",
1053		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1054	BUG();
1055	return slot_cnt;
1056}
1057
1058/**
1059 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1060 * DMA2 PQ operation
1061 */
1062static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1063		int src_cnt, size_t len)
1064{
1065	signed long long order = 0;
1066	int state = 0;
1067	int addr_count = 0;
1068	int i;
1069	for (i = 1; i < src_cnt; i++) {
1070		dma_addr_t cur_addr = srcs[i];
1071		dma_addr_t old_addr = srcs[i-1];
1072		switch (state) {
1073		case 0:
1074			if (cur_addr == old_addr + len) {
1075				/* direct RXOR */
1076				order = 1;
1077				state = 1;
1078				if (i == src_cnt-1)
1079					addr_count++;
1080			} else if (old_addr == cur_addr + len) {
1081				/* reverse RXOR */
1082				order = -1;
1083				state = 1;
1084				if (i == src_cnt-1)
1085					addr_count++;
1086			} else {
1087				state = 3;
1088			}
1089			break;
1090		case 1:
1091			if (i == src_cnt-2 || (order == -1
1092				&& cur_addr != old_addr - len)) {
1093				order = 0;
1094				state = 0;
1095				addr_count++;
1096			} else if (cur_addr == old_addr + len*order) {
1097				state = 2;
1098				if (i == src_cnt-1)
1099					addr_count++;
1100			} else if (cur_addr == old_addr + 2*len) {
1101				state = 2;
1102				if (i == src_cnt-1)
1103					addr_count++;
1104			} else if (cur_addr == old_addr + 3*len) {
1105				state = 2;
1106				if (i == src_cnt-1)
1107					addr_count++;
1108			} else {
1109				order = 0;
1110				state = 0;
1111				addr_count++;
1112			}
1113			break;
1114		case 2:
1115			order = 0;
1116			state = 0;
1117			addr_count++;
1118				break;
1119		}
1120		if (state == 3)
1121			break;
1122	}
1123	if (src_cnt <= 1 || (state != 1 && state != 2)) {
1124		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1125			__func__, src_cnt, state, addr_count, order);
1126		for (i = 0; i < src_cnt; i++)
1127			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1128		BUG();
1129	}
1130
1131	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1132}
1133
1134
1135/******************************************************************************
1136 * ADMA channel low-level routines
1137 ******************************************************************************/
1138
1139static u32
1140ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1141static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1142
1143/**
1144 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1145 */
1146static void ppc440spe_adma_device_clear_eot_status(
1147					struct ppc440spe_adma_chan *chan)
1148{
1149	struct dma_regs *dma_reg;
1150	struct xor_regs *xor_reg;
1151	u8 *p = chan->device->dma_desc_pool_virt;
1152	struct dma_cdb *cdb;
1153	u32 rv, i;
1154
1155	switch (chan->device->id) {
1156	case PPC440SPE_DMA0_ID:
1157	case PPC440SPE_DMA1_ID:
1158		/* read FIFO to ack */
1159		dma_reg = chan->device->dma_reg;
1160		while ((rv = ioread32(&dma_reg->csfpl))) {
1161			i = rv & DMA_CDB_ADDR_MSK;
1162			cdb = (struct dma_cdb *)&p[i -
1163			    (u32)chan->device->dma_desc_pool];
1164
1165			/* Clear opcode to ack. This is necessary for
1166			 * ZeroSum operations only
1167			 */
1168			cdb->opc = 0;
1169
1170			if (test_bit(PPC440SPE_RXOR_RUN,
1171			    &ppc440spe_rxor_state)) {
1172				/* probably this is a completed RXOR op,
1173				 * get pointer to CDB using the fact that
1174				 * physical and virtual addresses of CDB
1175				 * in pools have the same offsets
1176				 */
1177				if (le32_to_cpu(cdb->sg1u) &
1178				    DMA_CUED_XOR_BASE) {
1179					/* this is a RXOR */
1180					clear_bit(PPC440SPE_RXOR_RUN,
1181						  &ppc440spe_rxor_state);
1182				}
1183			}
1184
1185			if (rv & DMA_CDB_STATUS_MSK) {
1186				/* ZeroSum check failed
1187				 */
1188				struct ppc440spe_adma_desc_slot *iter;
1189				dma_addr_t phys = rv & ~DMA_CDB_MSK;
1190
1191				/*
1192				 * Update the status of corresponding
1193				 * descriptor.
1194				 */
1195				list_for_each_entry(iter, &chan->chain,
1196				    chain_node) {
1197					if (iter->phys == phys)
1198						break;
1199				}
1200				/*
1201				 * if cannot find the corresponding
1202				 * slot it's a bug
1203				 */
1204				BUG_ON(&iter->chain_node == &chan->chain);
1205
1206				if (iter->xor_check_result) {
1207					if (test_bit(PPC440SPE_DESC_PCHECK,
1208						     &iter->flags)) {
1209						*iter->xor_check_result |=
1210							SUM_CHECK_P_RESULT;
1211					} else
1212					if (test_bit(PPC440SPE_DESC_QCHECK,
1213						     &iter->flags)) {
1214						*iter->xor_check_result |=
1215							SUM_CHECK_Q_RESULT;
1216					} else
1217						BUG();
1218				}
1219			}
1220		}
1221
1222		rv = ioread32(&dma_reg->dsts);
1223		if (rv) {
1224			pr_err("DMA%d err status: 0x%x\n",
1225			       chan->device->id, rv);
1226			/* write back to clear */
1227			iowrite32(rv, &dma_reg->dsts);
1228		}
1229		break;
1230	case PPC440SPE_XOR_ID:
1231		/* reset status bits to ack */
1232		xor_reg = chan->device->xor_reg;
1233		rv = ioread32be(&xor_reg->sr);
1234		iowrite32be(rv, &xor_reg->sr);
1235
1236		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1237			if (rv & XOR_IE_RPTIE_BIT) {
1238				/* Read PLB Timeout Error.
1239				 * Try to resubmit the CB
1240				 */
1241				u32 val = ioread32be(&xor_reg->ccbalr);
1242
1243				iowrite32be(val, &xor_reg->cblalr);
1244
1245				val = ioread32be(&xor_reg->crsr);
1246				iowrite32be(val | XOR_CRSR_XAE_BIT,
1247					    &xor_reg->crsr);
1248			} else
1249				pr_err("XOR ERR 0x%x status\n", rv);
1250			break;
1251		}
1252
1253		/*  if the XORcore is idle, but there are unprocessed CBs
1254		 * then refetch the s/w chain here
1255		 */
1256		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1257		    do_xor_refetch)
1258			ppc440spe_chan_append(chan);
1259		break;
1260	}
1261}
1262
1263/**
1264 * ppc440spe_chan_is_busy - get the channel status
1265 */
1266static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1267{
1268	struct dma_regs *dma_reg;
1269	struct xor_regs *xor_reg;
1270	int busy = 0;
1271
1272	switch (chan->device->id) {
1273	case PPC440SPE_DMA0_ID:
1274	case PPC440SPE_DMA1_ID:
1275		dma_reg = chan->device->dma_reg;
1276		/*  if command FIFO's head and tail pointers are equal and
1277		 * status tail is the same as command, then channel is free
1278		 */
1279		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1280		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1281			busy = 1;
1282		break;
1283	case PPC440SPE_XOR_ID:
1284		/* use the special status bit for the XORcore
1285		 */
1286		xor_reg = chan->device->xor_reg;
1287		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1288		break;
1289	}
1290
1291	return busy;
1292}
1293
1294/**
1295 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1296 */
1297static void ppc440spe_chan_set_first_xor_descriptor(
1298				struct ppc440spe_adma_chan *chan,
1299				struct ppc440spe_adma_desc_slot *next_desc)
1300{
1301	struct xor_regs *xor_reg = chan->device->xor_reg;
1302
1303	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1304		printk(KERN_INFO "%s: Warn: XORcore is running "
1305			"when try to set the first CDB!\n",
1306			__func__);
1307
1308	xor_last_submit = xor_last_linked = next_desc;
1309
1310	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1311
1312	iowrite32be(next_desc->phys, &xor_reg->cblalr);
1313	iowrite32be(0, &xor_reg->cblahr);
1314	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1315		    &xor_reg->cbcr);
1316
1317	chan->hw_chain_inited = 1;
1318}
1319
1320/**
1321 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1322 * called with irqs disabled
1323 */
1324static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1325		struct ppc440spe_adma_desc_slot *desc)
1326{
1327	u32 pcdb;
1328	struct dma_regs *dma_reg = chan->device->dma_reg;
1329
1330	pcdb = desc->phys;
1331	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1332		pcdb |= DMA_CDB_NO_INT;
1333
1334	chan_last_sub[chan->device->id] = desc;
1335
1336	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1337
1338	iowrite32(pcdb, &dma_reg->cpfpl);
1339}
1340
1341/**
1342 * ppc440spe_chan_append - update the h/w chain in the channel
1343 */
1344static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1345{
1346	struct xor_regs *xor_reg;
1347	struct ppc440spe_adma_desc_slot *iter;
1348	struct xor_cb *xcb;
1349	u32 cur_desc;
1350	unsigned long flags;
1351
1352	local_irq_save(flags);
1353
1354	switch (chan->device->id) {
1355	case PPC440SPE_DMA0_ID:
1356	case PPC440SPE_DMA1_ID:
1357		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1358
1359		if (likely(cur_desc)) {
1360			iter = chan_last_sub[chan->device->id];
1361			BUG_ON(!iter);
1362		} else {
1363			/* first peer */
1364			iter = chan_first_cdb[chan->device->id];
1365			BUG_ON(!iter);
1366			ppc440spe_dma_put_desc(chan, iter);
1367			chan->hw_chain_inited = 1;
1368		}
1369
1370		/* is there something new to append */
1371		if (!iter->hw_next)
1372			break;
1373
1374		/* flush descriptors from the s/w queue to fifo */
1375		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1376			ppc440spe_dma_put_desc(chan, iter);
1377			if (!iter->hw_next)
1378				break;
1379		}
1380		break;
1381	case PPC440SPE_XOR_ID:
1382		/* update h/w links and refetch */
1383		if (!xor_last_submit->hw_next)
1384			break;
1385
1386		xor_reg = chan->device->xor_reg;
1387		/* the last linked CDB has to generate an interrupt
1388		 * that we'd be able to append the next lists to h/w
1389		 * regardless of the XOR engine state at the moment of
1390		 * appending of these next lists
1391		 */
1392		xcb = xor_last_linked->hw_desc;
1393		xcb->cbc |= XOR_CBCR_CBCE_BIT;
1394
1395		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1396			/* XORcore is idle. Refetch now */
1397			do_xor_refetch = 0;
1398			ppc440spe_xor_set_link(xor_last_submit,
1399				xor_last_submit->hw_next);
1400
1401			ADMA_LL_DBG(print_cb_list(chan,
1402				xor_last_submit->hw_next));
1403
1404			xor_last_submit = xor_last_linked;
1405			iowrite32be(ioread32be(&xor_reg->crsr) |
1406				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1407				    &xor_reg->crsr);
1408		} else {
1409			/* XORcore is running. Refetch later in the handler */
1410			do_xor_refetch = 1;
1411		}
1412
1413		break;
1414	}
1415
1416	local_irq_restore(flags);
1417}
1418
1419/**
1420 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1421 */
1422static u32
1423ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1424{
1425	struct dma_regs *dma_reg;
1426	struct xor_regs *xor_reg;
1427
1428	if (unlikely(!chan->hw_chain_inited))
1429		/* h/w descriptor chain is not initialized yet */
1430		return 0;
1431
1432	switch (chan->device->id) {
1433	case PPC440SPE_DMA0_ID:
1434	case PPC440SPE_DMA1_ID:
1435		dma_reg = chan->device->dma_reg;
1436		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1437	case PPC440SPE_XOR_ID:
1438		xor_reg = chan->device->xor_reg;
1439		return ioread32be(&xor_reg->ccbalr);
1440	}
1441	return 0;
1442}
1443
1444/**
1445 * ppc440spe_chan_run - enable the channel
1446 */
1447static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1448{
1449	struct xor_regs *xor_reg;
1450
1451	switch (chan->device->id) {
1452	case PPC440SPE_DMA0_ID:
1453	case PPC440SPE_DMA1_ID:
1454		/* DMAs are always enabled, do nothing */
1455		break;
1456	case PPC440SPE_XOR_ID:
1457		/* drain write buffer */
1458		xor_reg = chan->device->xor_reg;
1459
1460		/* fetch descriptor pointed to in <link> */
1461		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1462			    &xor_reg->crsr);
1463		break;
1464	}
1465}
1466
1467/******************************************************************************
1468 * ADMA device level
1469 ******************************************************************************/
1470
1471static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1472static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1473
1474static dma_cookie_t
1475ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1476
1477static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1478				    dma_addr_t addr, int index);
1479static void
1480ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1481				  dma_addr_t addr, int index);
1482
1483static void
1484ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1485			   dma_addr_t *paddr, unsigned long flags);
1486static void
1487ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1488			  dma_addr_t addr, int index);
1489static void
1490ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1491			       unsigned char mult, int index, int dst_pos);
1492static void
1493ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1494				   dma_addr_t paddr, dma_addr_t qaddr);
1495
1496static struct page *ppc440spe_rxor_srcs[32];
1497
1498/**
1499 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1500 */
1501static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1502{
1503	int i, order = 0, state = 0;
1504	int idx = 0;
1505
1506	if (unlikely(!(src_cnt > 1)))
1507		return 0;
1508
1509	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1510
1511	/* Skip holes in the source list before checking */
1512	for (i = 0; i < src_cnt; i++) {
1513		if (!srcs[i])
1514			continue;
1515		ppc440spe_rxor_srcs[idx++] = srcs[i];
1516	}
1517	src_cnt = idx;
1518
1519	for (i = 1; i < src_cnt; i++) {
1520		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1521		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1522
1523		switch (state) {
1524		case 0:
1525			if (cur_addr == old_addr + len) {
1526				/* direct RXOR */
1527				order = 1;
1528				state = 1;
1529			} else if (old_addr == cur_addr + len) {
1530				/* reverse RXOR */
1531				order = -1;
1532				state = 1;
1533			} else
1534				goto out;
1535			break;
1536		case 1:
1537			if ((i == src_cnt - 2) ||
1538			    (order == -1 && cur_addr != old_addr - len)) {
1539				order = 0;
1540				state = 0;
1541			} else if ((cur_addr == old_addr + len * order) ||
1542				   (cur_addr == old_addr + 2 * len) ||
1543				   (cur_addr == old_addr + 3 * len)) {
1544				state = 2;
1545			} else {
1546				order = 0;
1547				state = 0;
1548			}
1549			break;
1550		case 2:
1551			order = 0;
1552			state = 0;
1553			break;
1554		}
1555	}
1556
1557out:
1558	if (state == 1 || state == 2)
1559		return 1;
1560
1561	return 0;
1562}
1563
1564/**
1565 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1566 *	the operation given on this channel. It's assumed that 'chan' is
1567 *	capable to process 'cap' type of operation.
1568 * @chan: channel to use
1569 * @cap: type of transaction
1570 * @dst_lst: array of destination pointers
1571 * @dst_cnt: number of destination operands
1572 * @src_lst: array of source pointers
1573 * @src_cnt: number of source operands
1574 * @src_sz: size of each source operand
1575 */
1576static int ppc440spe_adma_estimate(struct dma_chan *chan,
1577	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1578	struct page **src_lst, int src_cnt, size_t src_sz)
1579{
1580	int ef = 1;
1581
1582	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1583		/* If RAID-6 capabilities were not activated don't try
1584		 * to use them
1585		 */
1586		if (unlikely(!ppc440spe_r6_enabled))
1587			return -1;
1588	}
1589	/*  In the current implementation of ppc440spe ADMA driver it
1590	 * makes sense to pick out only pq case, because it may be
1591	 * processed:
1592	 * (1) either using Biskup method on DMA2;
1593	 * (2) or on DMA0/1.
1594	 *  Thus we give a favour to (1) if the sources are suitable;
1595	 * else let it be processed on one of the DMA0/1 engines.
1596	 *  In the sum_product case where destination is also the
1597	 * source process it on DMA0/1 only.
1598	 */
1599	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1600
1601		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1602			ef = 0; /* sum_product case, process on DMA0/1 */
1603		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1604			ef = 3; /* override (DMA0/1 + idle) */
1605		else
1606			ef = 0; /* can't process on DMA2 if !rxor */
1607	}
1608
1609	/* channel idleness increases the priority */
1610	if (likely(ef) &&
1611	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1612		ef++;
1613
1614	return ef;
1615}
1616
1617struct dma_chan *
1618ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1619	struct page **dst_lst, int dst_cnt, struct page **src_lst,
1620	int src_cnt, size_t src_sz)
1621{
1622	struct dma_chan *best_chan = NULL;
1623	struct ppc_dma_chan_ref *ref;
1624	int best_rank = -1;
1625
1626	if (unlikely(!src_sz))
1627		return NULL;
1628	if (src_sz > PAGE_SIZE) {
1629		/*
1630		 * should a user of the api ever pass > PAGE_SIZE requests
1631		 * we sort out cases where temporary page-sized buffers
1632		 * are used.
1633		 */
1634		switch (cap) {
1635		case DMA_PQ:
1636			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1637				return NULL;
1638			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1639				return NULL;
1640			break;
1641		case DMA_PQ_VAL:
1642		case DMA_XOR_VAL:
1643			return NULL;
1644		default:
1645			break;
1646		}
1647	}
1648
1649	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1650		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1651			int rank;
1652
1653			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1654					dst_cnt, src_lst, src_cnt, src_sz);
1655			if (rank > best_rank) {
1656				best_rank = rank;
1657				best_chan = ref->chan;
1658			}
1659		}
1660	}
1661
1662	return best_chan;
1663}
1664EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1665
1666/**
1667 * ppc440spe_get_group_entry - get group entry with index idx
1668 * @tdesc: is the last allocated slot in the group.
1669 */
1670static struct ppc440spe_adma_desc_slot *
1671ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1672{
1673	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1674	int i = 0;
1675
1676	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1677		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1678			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1679		BUG();
1680	}
1681
1682	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1683		if (i++ == entry_idx)
1684			break;
1685	}
1686	return iter;
1687}
1688
1689/**
1690 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1691 * @slot: Slot to free
1692 * Caller must hold &ppc440spe_chan->lock while calling this function
1693 */
1694static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1695				      struct ppc440spe_adma_chan *chan)
1696{
1697	int stride = slot->slots_per_op;
1698
1699	while (stride--) {
1700		slot->slots_per_op = 0;
1701		slot = list_entry(slot->slot_node.next,
1702				struct ppc440spe_adma_desc_slot,
1703				slot_node);
1704	}
1705}
1706
1707static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1708				 struct ppc440spe_adma_desc_slot *desc)
1709{
1710	u32 src_cnt, dst_cnt;
1711	dma_addr_t addr;
1712
1713	/*
1714	 * get the number of sources & destination
1715	 * included in this descriptor and unmap
1716	 * them all
1717	 */
1718	src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1719	dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1720
1721	/* unmap destinations */
1722	if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1723		while (dst_cnt--) {
1724			addr = ppc440spe_desc_get_dest_addr(
1725				desc, chan, dst_cnt);
1726			dma_unmap_page(chan->device->dev,
1727					addr, desc->unmap_len,
1728					DMA_FROM_DEVICE);
1729		}
1730	}
1731
1732	/* unmap sources */
1733	if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1734		while (src_cnt--) {
1735			addr = ppc440spe_desc_get_src_addr(
1736				desc, chan, src_cnt);
1737			dma_unmap_page(chan->device->dev,
1738					addr, desc->unmap_len,
1739					DMA_TO_DEVICE);
1740		}
1741	}
1742}
1743
1744/**
1745 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1746 * upon completion
1747 */
1748static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1749		struct ppc440spe_adma_desc_slot *desc,
1750		struct ppc440spe_adma_chan *chan,
1751		dma_cookie_t cookie)
1752{
1753	int i;
1754
1755	BUG_ON(desc->async_tx.cookie < 0);
1756	if (desc->async_tx.cookie > 0) {
1757		cookie = desc->async_tx.cookie;
1758		desc->async_tx.cookie = 0;
1759
1760		/* call the callback (must not sleep or submit new
1761		 * operations to this channel)
1762		 */
1763		if (desc->async_tx.callback)
1764			desc->async_tx.callback(
1765				desc->async_tx.callback_param);
1766
1767		/* unmap dma addresses
1768		 * (unmap_single vs unmap_page?)
1769		 *
1770		 * actually, ppc's dma_unmap_page() functions are empty, so
1771		 * the following code is just for the sake of completeness
1772		 */
1773		if (chan && chan->needs_unmap && desc->group_head &&
1774		     desc->unmap_len) {
1775			struct ppc440spe_adma_desc_slot *unmap =
1776							desc->group_head;
1777			/* assume 1 slot per op always */
1778			u32 slot_count = unmap->slot_cnt;
1779
1780			/* Run through the group list and unmap addresses */
1781			for (i = 0; i < slot_count; i++) {
1782				BUG_ON(!unmap);
1783				ppc440spe_adma_unmap(chan, unmap);
1784				unmap = unmap->hw_next;
1785			}
1786		}
1787	}
1788
1789	/* run dependent operations */
1790	dma_run_dependencies(&desc->async_tx);
1791
1792	return cookie;
1793}
1794
1795/**
1796 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1797 */
1798static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1799		struct ppc440spe_adma_chan *chan)
1800{
1801	/* the client is allowed to attach dependent operations
1802	 * until 'ack' is set
1803	 */
1804	if (!async_tx_test_ack(&desc->async_tx))
1805		return 0;
1806
1807	/* leave the last descriptor in the chain
1808	 * so we can append to it
1809	 */
1810	if (list_is_last(&desc->chain_node, &chan->chain) ||
1811	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1812		return 1;
1813
1814	if (chan->device->id != PPC440SPE_XOR_ID) {
1815		/* our DMA interrupt handler clears opc field of
1816		 * each processed descriptor. For all types of
1817		 * operations except for ZeroSum we do not actually
1818		 * need ack from the interrupt handler. ZeroSum is a
1819		 * special case since the result of this operation
1820		 * is available from the handler only, so if we see
1821		 * such type of descriptor (which is unprocessed yet)
1822		 * then leave it in chain.
1823		 */
1824		struct dma_cdb *cdb = desc->hw_desc;
1825		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1826			return 1;
1827	}
1828
1829	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1830		desc->phys, desc->idx, desc->slots_per_op);
1831
1832	list_del(&desc->chain_node);
1833	ppc440spe_adma_free_slots(desc, chan);
1834	return 0;
1835}
1836
1837/**
1838 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1839 *	which runs through the channel CDBs list until reach the descriptor
1840 *	currently processed. When routine determines that all CDBs of group
1841 *	are completed then corresponding callbacks (if any) are called and slots
1842 *	are freed.
1843 */
1844static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1845{
1846	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1847	dma_cookie_t cookie = 0;
1848	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1849	int busy = ppc440spe_chan_is_busy(chan);
1850	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1851
1852	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1853		chan->device->id, __func__);
1854
1855	if (!current_desc) {
1856		/*  There were no transactions yet, so
1857		 * nothing to clean
1858		 */
1859		return;
1860	}
1861
1862	/* free completed slots from the chain starting with
1863	 * the oldest descriptor
1864	 */
1865	list_for_each_entry_safe(iter, _iter, &chan->chain,
1866					chain_node) {
1867		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1868		    "busy: %d this_desc: %#llx next_desc: %#x "
1869		    "cur: %#x ack: %d\n",
1870		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1871		    ppc440spe_desc_get_link(iter, chan), current_desc,
1872		    async_tx_test_ack(&iter->async_tx));
1873		prefetch(_iter);
1874		prefetch(&_iter->async_tx);
1875
1876		/* do not advance past the current descriptor loaded into the
1877		 * hardware channel,subsequent descriptors are either in process
1878		 * or have not been submitted
1879		 */
1880		if (seen_current)
1881			break;
1882
1883		/* stop the search if we reach the current descriptor and the
1884		 * channel is busy, or if it appears that the current descriptor
1885		 * needs to be re-read (i.e. has been appended to)
1886		 */
1887		if (iter->phys == current_desc) {
1888			BUG_ON(seen_current++);
1889			if (busy || ppc440spe_desc_get_link(iter, chan)) {
1890				/* not all descriptors of the group have
1891				 * been completed; exit.
1892				 */
1893				break;
1894			}
1895		}
1896
1897		/* detect the start of a group transaction */
1898		if (!slot_cnt && !slots_per_op) {
1899			slot_cnt = iter->slot_cnt;
1900			slots_per_op = iter->slots_per_op;
1901			if (slot_cnt <= slots_per_op) {
1902				slot_cnt = 0;
1903				slots_per_op = 0;
1904			}
1905		}
1906
1907		if (slot_cnt) {
1908			if (!group_start)
1909				group_start = iter;
1910			slot_cnt -= slots_per_op;
1911		}
1912
1913		/* all the members of a group are complete */
1914		if (slots_per_op != 0 && slot_cnt == 0) {
1915			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1916			int end_of_chain = 0;
1917
1918			/* clean up the group */
1919			slot_cnt = group_start->slot_cnt;
1920			grp_iter = group_start;
1921			list_for_each_entry_safe_from(grp_iter, _grp_iter,
1922				&chan->chain, chain_node) {
1923
1924				cookie = ppc440spe_adma_run_tx_complete_actions(
1925					grp_iter, chan, cookie);
1926
1927				slot_cnt -= slots_per_op;
1928				end_of_chain = ppc440spe_adma_clean_slot(
1929				    grp_iter, chan);
1930				if (end_of_chain && slot_cnt) {
1931					/* Should wait for ZeroSum completion */
1932					if (cookie > 0)
1933						chan->completed_cookie = cookie;
1934					return;
1935				}
1936
1937				if (slot_cnt == 0 || end_of_chain)
1938					break;
1939			}
1940
1941			/* the group should be complete at this point */
1942			BUG_ON(slot_cnt);
1943
1944			slots_per_op = 0;
1945			group_start = NULL;
1946			if (end_of_chain)
1947				break;
1948			else
1949				continue;
1950		} else if (slots_per_op) /* wait for group completion */
1951			continue;
1952
1953		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1954		    cookie);
1955
1956		if (ppc440spe_adma_clean_slot(iter, chan))
1957			break;
1958	}
1959
1960	BUG_ON(!seen_current);
1961
1962	if (cookie > 0) {
1963		chan->completed_cookie = cookie;
1964		pr_debug("\tcompleted cookie %d\n", cookie);
1965	}
1966
1967}
1968
1969/**
1970 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1971 */
1972static void ppc440spe_adma_tasklet(unsigned long data)
1973{
1974	struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1975
1976	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1977	__ppc440spe_adma_slot_cleanup(chan);
1978	spin_unlock(&chan->lock);
1979}
1980
1981/**
1982 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1983 */
1984static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1985{
1986	spin_lock_bh(&chan->lock);
1987	__ppc440spe_adma_slot_cleanup(chan);
1988	spin_unlock_bh(&chan->lock);
1989}
1990
1991/**
1992 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1993 */
1994static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1995		struct ppc440spe_adma_chan *chan, int num_slots,
1996		int slots_per_op)
1997{
1998	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1999	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2000	struct list_head chain = LIST_HEAD_INIT(chain);
2001	int slots_found, retry = 0;
2002
2003
2004	BUG_ON(!num_slots || !slots_per_op);
2005	/* start search from the last allocated descrtiptor
2006	 * if a contiguous allocation can not be found start searching
2007	 * from the beginning of the list
2008	 */
2009retry:
2010	slots_found = 0;
2011	if (retry == 0)
2012		iter = chan->last_used;
2013	else
2014		iter = list_entry(&chan->all_slots,
2015				  struct ppc440spe_adma_desc_slot,
2016				  slot_node);
2017	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2018	    slot_node) {
2019		prefetch(_iter);
2020		prefetch(&_iter->async_tx);
2021		if (iter->slots_per_op) {
2022			slots_found = 0;
2023			continue;
2024		}
2025
2026		/* start the allocation if the slot is correctly aligned */
2027		if (!slots_found++)
2028			alloc_start = iter;
2029
2030		if (slots_found == num_slots) {
2031			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2032			struct ppc440spe_adma_desc_slot *last_used = NULL;
2033
2034			iter = alloc_start;
2035			while (num_slots) {
2036				int i;
2037				/* pre-ack all but the last descriptor */
2038				if (num_slots != slots_per_op)
2039					async_tx_ack(&iter->async_tx);
2040
2041				list_add_tail(&iter->chain_node, &chain);
2042				alloc_tail = iter;
2043				iter->async_tx.cookie = 0;
2044				iter->hw_next = NULL;
2045				iter->flags = 0;
2046				iter->slot_cnt = num_slots;
2047				iter->xor_check_result = NULL;
2048				for (i = 0; i < slots_per_op; i++) {
2049					iter->slots_per_op = slots_per_op - i;
2050					last_used = iter;
2051					iter = list_entry(iter->slot_node.next,
2052						struct ppc440spe_adma_desc_slot,
2053						slot_node);
2054				}
2055				num_slots -= slots_per_op;
2056			}
2057			alloc_tail->group_head = alloc_start;
2058			alloc_tail->async_tx.cookie = -EBUSY;
2059			list_splice(&chain, &alloc_tail->group_list);
2060			chan->last_used = last_used;
2061			return alloc_tail;
2062		}
2063	}
2064	if (!retry++)
2065		goto retry;
2066
2067	/* try to free some slots if the allocation fails */
2068	tasklet_schedule(&chan->irq_tasklet);
2069	return NULL;
2070}
2071
2072/**
2073 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
2074 */
2075static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2076{
2077	struct ppc440spe_adma_chan *ppc440spe_chan;
2078	struct ppc440spe_adma_desc_slot *slot = NULL;
2079	char *hw_desc;
2080	int i, db_sz;
2081	int init;
2082
2083	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2084	init = ppc440spe_chan->slots_allocated ? 0 : 1;
2085	chan->chan_id = ppc440spe_chan->device->id;
2086
2087	/* Allocate descriptor slots */
2088	i = ppc440spe_chan->slots_allocated;
2089	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2090		db_sz = sizeof(struct dma_cdb);
2091	else
2092		db_sz = sizeof(struct xor_cb);
2093
2094	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2095		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2096			       GFP_KERNEL);
2097		if (!slot) {
2098			printk(KERN_INFO "SPE ADMA Channel only initialized"
2099				" %d descriptor slots", i--);
2100			break;
2101		}
2102
2103		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2104		slot->hw_desc = (void *) &hw_desc[i * db_sz];
2105		dma_async_tx_descriptor_init(&slot->async_tx, chan);
2106		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2107		INIT_LIST_HEAD(&slot->chain_node);
2108		INIT_LIST_HEAD(&slot->slot_node);
2109		INIT_LIST_HEAD(&slot->group_list);
2110		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2111		slot->idx = i;
2112
2113		spin_lock_bh(&ppc440spe_chan->lock);
2114		ppc440spe_chan->slots_allocated++;
2115		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2116		spin_unlock_bh(&ppc440spe_chan->lock);
2117	}
2118
2119	if (i && !ppc440spe_chan->last_used) {
2120		ppc440spe_chan->last_used =
2121			list_entry(ppc440spe_chan->all_slots.next,
2122				struct ppc440spe_adma_desc_slot,
2123				slot_node);
2124	}
2125
2126	dev_dbg(ppc440spe_chan->device->common.dev,
2127		"ppc440spe adma%d: allocated %d descriptor slots\n",
2128		ppc440spe_chan->device->id, i);
2129
2130	/* initialize the channel and the chain with a null operation */
2131	if (init) {
2132		switch (ppc440spe_chan->device->id) {
2133		case PPC440SPE_DMA0_ID:
2134		case PPC440SPE_DMA1_ID:
2135			ppc440spe_chan->hw_chain_inited = 0;
2136			/* Use WXOR for self-testing */
2137			if (!ppc440spe_r6_tchan)
2138				ppc440spe_r6_tchan = ppc440spe_chan;
2139			break;
2140		case PPC440SPE_XOR_ID:
2141			ppc440spe_chan_start_null_xor(ppc440spe_chan);
2142			break;
2143		default:
2144			BUG();
2145		}
2146		ppc440spe_chan->needs_unmap = 1;
2147	}
2148
2149	return (i > 0) ? i : -ENOMEM;
2150}
2151
2152/**
2153 * ppc440spe_desc_assign_cookie - assign a cookie
2154 */
2155static dma_cookie_t ppc440spe_desc_assign_cookie(
2156		struct ppc440spe_adma_chan *chan,
2157		struct ppc440spe_adma_desc_slot *desc)
2158{
2159	dma_cookie_t cookie = chan->common.cookie;
2160
2161	cookie++;
2162	if (cookie < 0)
2163		cookie = 1;
2164	chan->common.cookie = desc->async_tx.cookie = cookie;
2165	return cookie;
2166}
2167
2168/**
2169 * ppc440spe_rxor_set_region_data -
2170 */
2171static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2172	u8 xor_arg_no, u32 mask)
2173{
2174	struct xor_cb *xcb = desc->hw_desc;
2175
2176	xcb->ops[xor_arg_no].h |= mask;
2177}
2178
2179/**
2180 * ppc440spe_rxor_set_src -
2181 */
2182static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2183	u8 xor_arg_no, dma_addr_t addr)
2184{
2185	struct xor_cb *xcb = desc->hw_desc;
2186
2187	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2188	xcb->ops[xor_arg_no].l = addr;
2189}
2190
2191/**
2192 * ppc440spe_rxor_set_mult -
2193 */
2194static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2195	u8 xor_arg_no, u8 idx, u8 mult)
2196{
2197	struct xor_cb *xcb = desc->hw_desc;
2198
2199	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2200}
2201
2202/**
2203 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2204 *	has been achieved
2205 */
2206static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2207{
2208	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2209		chan->device->id, chan->pending);
2210
2211	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2212		chan->pending = 0;
2213		ppc440spe_chan_append(chan);
2214	}
2215}
2216
2217/**
2218 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2219 *	(it's not necessary that descriptors will be submitted to the h/w
2220 *	chains too right now)
2221 */
2222static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2223{
2224	struct ppc440spe_adma_desc_slot *sw_desc;
2225	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2226	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2227	int slot_cnt;
2228	int slots_per_op;
2229	dma_cookie_t cookie;
2230
2231	sw_desc = tx_to_ppc440spe_adma_slot(tx);
2232
2233	group_start = sw_desc->group_head;
2234	slot_cnt = group_start->slot_cnt;
2235	slots_per_op = group_start->slots_per_op;
2236
2237	spin_lock_bh(&chan->lock);
2238
2239	cookie = ppc440spe_desc_assign_cookie(chan, sw_desc);
2240
2241	if (unlikely(list_empty(&chan->chain))) {
2242		/* first peer */
2243		list_splice_init(&sw_desc->group_list, &chan->chain);
2244		chan_first_cdb[chan->device->id] = group_start;
2245	} else {
2246		/* isn't first peer, bind CDBs to chain */
2247		old_chain_tail = list_entry(chan->chain.prev,
2248					struct ppc440spe_adma_desc_slot,
2249					chain_node);
2250		list_splice_init(&sw_desc->group_list,
2251		    &old_chain_tail->chain_node);
2252		/* fix up the hardware chain */
2253		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2254	}
2255
2256	/* increment the pending count by the number of operations */
2257	chan->pending += slot_cnt / slots_per_op;
2258	ppc440spe_adma_check_threshold(chan);
2259	spin_unlock_bh(&chan->lock);
2260
2261	dev_dbg(chan->device->common.dev,
2262		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2263		chan->device->id, __func__,
2264		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2265
2266	return cookie;
2267}
2268
2269/**
2270 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2271 */
2272static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2273		struct dma_chan *chan, unsigned long flags)
2274{
2275	struct ppc440spe_adma_chan *ppc440spe_chan;
2276	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2277	int slot_cnt, slots_per_op;
2278
2279	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2280
2281	dev_dbg(ppc440spe_chan->device->common.dev,
2282		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2283		__func__);
2284
2285	spin_lock_bh(&ppc440spe_chan->lock);
2286	slot_cnt = slots_per_op = 1;
2287	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2288			slots_per_op);
2289	if (sw_desc) {
2290		group_start = sw_desc->group_head;
2291		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2292		group_start->unmap_len = 0;
2293		sw_desc->async_tx.flags = flags;
2294	}
2295	spin_unlock_bh(&ppc440spe_chan->lock);
2296
2297	return sw_desc ? &sw_desc->async_tx : NULL;
2298}
2299
2300/**
2301 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2302 */
2303static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2304		struct dma_chan *chan, dma_addr_t dma_dest,
2305		dma_addr_t dma_src, size_t len, unsigned long flags)
2306{
2307	struct ppc440spe_adma_chan *ppc440spe_chan;
2308	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2309	int slot_cnt, slots_per_op;
2310
2311	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2312
2313	if (unlikely(!len))
2314		return NULL;
2315
2316	BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
2317
2318	spin_lock_bh(&ppc440spe_chan->lock);
2319
2320	dev_dbg(ppc440spe_chan->device->common.dev,
2321		"ppc440spe adma%d: %s len: %u int_en %d\n",
2322		ppc440spe_chan->device->id, __func__, len,
2323		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2324	slot_cnt = slots_per_op = 1;
2325	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2326		slots_per_op);
2327	if (sw_desc) {
2328		group_start = sw_desc->group_head;
2329		ppc440spe_desc_init_memcpy(group_start, flags);
2330		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2331		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2332		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2333		sw_desc->unmap_len = len;
2334		sw_desc->async_tx.flags = flags;
2335	}
2336	spin_unlock_bh(&ppc440spe_chan->lock);
2337
2338	return sw_desc ? &sw_desc->async_tx : NULL;
2339}
2340
2341/**
2342 * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
2343 */
2344static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
2345		struct dma_chan *chan, dma_addr_t dma_dest, int value,
2346		size_t len, unsigned long flags)
2347{
2348	struct ppc440spe_adma_chan *ppc440spe_chan;
2349	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2350	int slot_cnt, slots_per_op;
2351
2352	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2353
2354	if (unlikely(!len))
2355		return NULL;
2356
2357	BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT));
2358
2359	spin_lock_bh(&ppc440spe_chan->lock);
2360
2361	dev_dbg(ppc440spe_chan->device->common.dev,
2362		"ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
2363		ppc440spe_chan->device->id, __func__, value, len,
2364		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2365
2366	slot_cnt = slots_per_op = 1;
2367	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2368		slots_per_op);
2369	if (sw_desc) {
2370		group_start = sw_desc->group_head;
2371		ppc440spe_desc_init_memset(group_start, value, flags);
2372		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2373		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2374		sw_desc->unmap_len = len;
2375		sw_desc->async_tx.flags = flags;
2376	}
2377	spin_unlock_bh(&ppc440spe_chan->lock);
2378
2379	return sw_desc ? &sw_desc->async_tx : NULL;
2380}
2381
2382/**
2383 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2384 */
2385static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2386		struct dma_chan *chan, dma_addr_t dma_dest,
2387		dma_addr_t *dma_src, u32 src_cnt, size_t len,
2388		unsigned long flags)
2389{
2390	struct ppc440spe_adma_chan *ppc440spe_chan;
2391	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2392	int slot_cnt, slots_per_op;
2393
2394	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2395
2396	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2397				     dma_dest, dma_src, src_cnt));
2398	if (unlikely(!len))
2399		return NULL;
2400	BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
2401
2402	dev_dbg(ppc440spe_chan->device->common.dev,
2403		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2404		ppc440spe_chan->device->id, __func__, src_cnt, len,
2405		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2406
2407	spin_lock_bh(&ppc440spe_chan->lock);
2408	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2409	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2410			slots_per_op);
2411	if (sw_desc) {
2412		group_start = sw_desc->group_head;
2413		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2414		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2415		while (src_cnt--)
2416			ppc440spe_adma_memcpy_xor_set_src(group_start,
2417				dma_src[src_cnt], src_cnt);
2418		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2419		sw_desc->unmap_len = len;
2420		sw_desc->async_tx.flags = flags;
2421	}
2422	spin_unlock_bh(&ppc440spe_chan->lock);
2423
2424	return sw_desc ? &sw_desc->async_tx : NULL;
2425}
2426
2427static inline void
2428ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2429				int src_cnt);
2430static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2431
2432/**
2433 * ppc440spe_adma_init_dma2rxor_slot -
2434 */
2435static void ppc440spe_adma_init_dma2rxor_slot(
2436		struct ppc440spe_adma_desc_slot *desc,
2437		dma_addr_t *src, int src_cnt)
2438{
2439	int i;
2440
2441	/* initialize CDB */
2442	for (i = 0; i < src_cnt; i++) {
2443		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2444						 desc->src_cnt, (u32)src[i]);
2445	}
2446}
2447
2448/**
2449 * ppc440spe_dma01_prep_mult -
2450 * for Q operation where destination is also the source
2451 */
2452static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2453		struct ppc440spe_adma_chan *ppc440spe_chan,
2454		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2455		const unsigned char *scf, size_t len, unsigned long flags)
2456{
2457	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2458	unsigned long op = 0;
2459	int slot_cnt;
2460
2461	set_bit(PPC440SPE_DESC_WXOR, &op);
2462	slot_cnt = 2;
2463
2464	spin_lock_bh(&ppc440spe_chan->lock);
2465
2466	/* use WXOR, each descriptor occupies one slot */
2467	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2468	if (sw_desc) {
2469		struct ppc440spe_adma_chan *chan;
2470		struct ppc440spe_adma_desc_slot *iter;
2471		struct dma_cdb *hw_desc;
2472
2473		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2474		set_bits(op, &sw_desc->flags);
2475		sw_desc->src_cnt = src_cnt;
2476		sw_desc->dst_cnt = dst_cnt;
2477		/* First descriptor, zero data in the destination and copy it
2478		 * to q page using MULTICAST transfer.
2479		 */
2480		iter = list_first_entry(&sw_desc->group_list,
2481					struct ppc440spe_adma_desc_slot,
2482					chain_node);
2483		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2484		/* set 'next' pointer */
2485		iter->hw_next = list_entry(iter->chain_node.next,
2486					   struct ppc440spe_adma_desc_slot,
2487					   chain_node);
2488		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2489		hw_desc = iter->hw_desc;
2490		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2491
2492		ppc440spe_desc_set_dest_addr(iter, chan,
2493					     DMA_CUED_XOR_BASE, dst[0], 0);
2494		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2495		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2496					    src[0]);
2497		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2498		iter->unmap_len = len;
2499
2500		/*
2501		 * Second descriptor, multiply data from the q page
2502		 * and store the result in real destination.
2503		 */
2504		iter = list_first_entry(&iter->chain_node,
2505					struct ppc440spe_adma_desc_slot,
2506					chain_node);
2507		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2508		iter->hw_next = NULL;
2509		if (flags & DMA_PREP_INTERRUPT)
2510			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2511		else
2512			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2513
2514		hw_desc = iter->hw_desc;
2515		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2516		ppc440spe_desc_set_src_addr(iter, chan, 0,
2517					    DMA_CUED_XOR_HB, dst[1]);
2518		ppc440spe_desc_set_dest_addr(iter, chan,
2519					     DMA_CUED_XOR_BASE, dst[0], 0);
2520
2521		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2522					    DMA_CDB_SG_DST1, scf[0]);
2523		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2524		iter->unmap_len = len;
2525		sw_desc->async_tx.flags = flags;
2526	}
2527
2528	spin_unlock_bh(&ppc440spe_chan->lock);
2529
2530	return sw_desc;
2531}
2532
2533/**
2534 * ppc440spe_dma01_prep_sum_product -
2535 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2536 * the source.
2537 */
2538static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2539		struct ppc440spe_adma_chan *ppc440spe_chan,
2540		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2541		const unsigned char *scf, size_t len, unsigned long flags)
2542{
2543	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2544	unsigned long op = 0;
2545	int slot_cnt;
2546
2547	set_bit(PPC440SPE_DESC_WXOR, &op);
2548	slot_cnt = 3;
2549
2550	spin_lock_bh(&ppc440spe_chan->lock);
2551
2552	/* WXOR, each descriptor occupies one slot */
2553	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2554	if (sw_desc) {
2555		struct ppc440spe_adma_chan *chan;
2556		struct ppc440spe_adma_desc_slot *iter;
2557		struct dma_cdb *hw_desc;
2558
2559		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2560		set_bits(op, &sw_desc->flags);
2561		sw_desc->src_cnt = src_cnt;
2562		sw_desc->dst_cnt = 1;
2563		/* 1st descriptor, src[1] data to q page and zero destination */
2564		iter = list_first_entry(&sw_desc->group_list,
2565					struct ppc440spe_adma_desc_slot,
2566					chain_node);
2567		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2568		iter->hw_next = list_entry(iter->chain_node.next,
2569					   struct ppc440spe_adma_desc_slot,
2570					   chain_node);
2571		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2572		hw_desc = iter->hw_desc;
2573		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2574
2575		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2576					     *dst, 0);
2577		ppc440spe_desc_set_dest_addr(iter, chan, 0,
2578					     ppc440spe_chan->qdest, 1);
2579		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2580					    src[1]);
2581		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2582		iter->unmap_len = len;
2583
2584		/* 2nd descriptor, multiply src[1] data and store the
2585		 * result in destination */
2586		iter = list_first_entry(&iter->chain_node,
2587					struct ppc440spe_adma_desc_slot,
2588					chain_node);
2589		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2590		/* set 'next' pointer */
2591		iter->hw_next = list_entry(iter->chain_node.next,
2592					   struct ppc440spe_adma_desc_slot,
2593					   chain_node);
2594		if (flags & DMA_PREP_INTERRUPT)
2595			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2596		else
2597			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2598
2599		hw_desc = iter->hw_desc;
2600		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2601		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2602					    ppc440spe_chan->qdest);
2603		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2604					     *dst, 0);
2605		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
2606					    DMA_CDB_SG_DST1, scf[1]);
2607		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2608		iter->unmap_len = len;
2609
2610		/*
2611		 * 3rd descriptor, multiply src[0] data and xor it
2612		 * with destination
2613		 */
2614		iter = list_first_entry(&iter->chain_node,
2615					struct ppc440spe_adma_desc_slot,
2616					chain_node);
2617		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2618		iter->hw_next = NULL;
2619		if (flags & DMA_PREP_INTERRUPT)
2620			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2621		else
2622			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2623
2624		hw_desc = iter->hw_desc;
2625		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2626		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2627					    src[0]);
2628		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2629					     *dst, 0);
2630		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2631					    DMA_CDB_SG_DST1, scf[0]);
2632		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2633		iter->unmap_len = len;
2634		sw_desc->async_tx.flags = flags;
2635	}
2636
2637	spin_unlock_bh(&ppc440spe_chan->lock);
2638
2639	return sw_desc;
2640}
2641
2642static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2643		struct ppc440spe_adma_chan *ppc440spe_chan,
2644		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2645		const unsigned char *scf, size_t len, unsigned long flags)
2646{
2647	int slot_cnt;
2648	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2649	unsigned long op = 0;
2650	unsigned char mult = 1;
2651
2652	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2653		 __func__, dst_cnt, src_cnt, len);
2654	/*  select operations WXOR/RXOR depending on the
2655	 * source addresses of operators and the number
2656	 * of destinations (RXOR support only Q-parity calculations)
2657	 */
2658	set_bit(PPC440SPE_DESC_WXOR, &op);
2659	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2660		/* no active RXOR;
2661		 * do RXOR if:
2662		 * - there are more than 1 source,
2663		 * - len is aligned on 512-byte boundary,
2664		 * - source addresses fit to one of 4 possible regions.
2665		 */
2666		if (src_cnt > 1 &&
2667		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2668		    (src[0] + len) == src[1]) {
2669			/* may do RXOR R1 R2 */
2670			set_bit(PPC440SPE_DESC_RXOR, &op);
2671			if (src_cnt != 2) {
2672				/* may try to enhance region of RXOR */
2673				if ((src[1] + len) == src[2]) {
2674					/* do RXOR R1 R2 R3 */
2675					set_bit(PPC440SPE_DESC_RXOR123,
2676						&op);
2677				} else if ((src[1] + len * 2) == src[2]) {
2678					/* do RXOR R1 R2 R4 */
2679					set_bit(PPC440SPE_DESC_RXOR124, &op);
2680				} else if ((src[1] + len * 3) == src[2]) {
2681					/* do RXOR R1 R2 R5 */
2682					set_bit(PPC440SPE_DESC_RXOR125,
2683						&op);
2684				} else {
2685					/* do RXOR R1 R2 */
2686					set_bit(PPC440SPE_DESC_RXOR12,
2687						&op);
2688				}
2689			} else {
2690				/* do RXOR R1 R2 */
2691				set_bit(PPC440SPE_DESC_RXOR12, &op);
2692			}
2693		}
2694
2695		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2696			/* can not do this operation with RXOR */
2697			clear_bit(PPC440SPE_RXOR_RUN,
2698				&ppc440spe_rxor_state);
2699		} else {
2700			/* can do; set block size right now */
2701			ppc440spe_desc_set_rxor_block_size(len);
2702		}
2703	}
2704
2705	/* Number of necessary slots depends on operation type selected */
2706	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2707		/*  This is a WXOR only chain. Need descriptors for each
2708		 * source to GF-XOR them with WXOR, and need descriptors
2709		 * for each destination to zero them with WXOR
2710		 */
2711		slot_cnt = src_cnt;
2712
2713		if (flags & DMA_PREP_ZERO_P) {
2714			slot_cnt++;
2715			set_bit(PPC440SPE_ZERO_P, &op);
2716		}
2717		if (flags & DMA_PREP_ZERO_Q) {
2718			slot_cnt++;
2719			set_bit(PPC440SPE_ZERO_Q, &op);
2720		}
2721	} else {
2722		/*  Need 1/2 descriptor for RXOR operation, and
2723		 * need (src_cnt - (2 or 3)) for WXOR of sources
2724		 * remained (if any)
2725		 */
2726		slot_cnt = dst_cnt;
2727
2728		if (flags & DMA_PREP_ZERO_P)
2729			set_bit(PPC440SPE_ZERO_P, &op);
2730		if (flags & DMA_PREP_ZERO_Q)
2731			set_bit(PPC440SPE_ZERO_Q, &op);
2732
2733		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2734			slot_cnt += src_cnt - 2;
2735		else
2736			slot_cnt += src_cnt - 3;
2737
2738		/*  Thus we have either RXOR only chain or
2739		 * mixed RXOR/WXOR
2740		 */
2741		if (slot_cnt == dst_cnt)
2742			/* RXOR only chain */
2743			clear_bit(PPC440SPE_DESC_WXOR, &op);
2744	}
2745
2746	spin_lock_bh(&ppc440spe_chan->lock);
2747	/* for both RXOR/WXOR each descriptor occupies one slot */
2748	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2749	if (sw_desc) {
2750		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2751				flags, op);
2752
2753		/* setup dst/src/mult */
2754		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2755			 __func__, dst[0], dst[1]);
2756		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2757		while (src_cnt--) {
2758			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2759						  src_cnt);
2760
2761			/* NOTE: "Multi = 0 is equivalent to = 1" as it
2762			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2763			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2764			 * leads to zeroing source data after RXOR.
2765			 * So, for P case set-up mult=1 explicitly.
2766			 */
2767			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2768				mult = scf[src_cnt];
2769			ppc440spe_adma_pq_set_src_mult(sw_desc,
2770				mult, src_cnt,  dst_cnt - 1);
2771		}
2772
2773		/* Setup byte count foreach slot just allocated */
2774		sw_desc->async_tx.flags = flags;
2775		list_for_each_entry(iter, &sw_desc->group_list,
2776				chain_node) {
2777			ppc440spe_desc_set_byte_count(iter,
2778				ppc440spe_chan, len);
2779			iter->unmap_len = len;
2780		}
2781	}
2782	spin_unlock_bh(&ppc440spe_chan->lock);
2783
2784	return sw_desc;
2785}
2786
2787static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2788		struct ppc440spe_adma_chan *ppc440spe_chan,
2789		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2790		const unsigned char *scf, size_t len, unsigned long flags)
2791{
2792	int slot_cnt, descs_per_op;
2793	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2794	unsigned long op = 0;
2795	unsigned char mult = 1;
2796
2797	BUG_ON(!dst_cnt);
2798	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2799		 __func__, dst_cnt, src_cnt, len);*/
2800
2801	spin_lock_bh(&ppc440spe_chan->lock);
2802	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2803	if (descs_per_op < 0) {
2804		spin_unlock_bh(&ppc440spe_chan->lock);
2805		return NULL;
2806	}
2807
2808	/* depending on number of sources we have 1 or 2 RXOR chains */
2809	slot_cnt = descs_per_op * dst_cnt;
2810
2811	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2812	if (sw_desc) {
2813		op = slot_cnt;
2814		sw_desc->async_tx.flags = flags;
2815		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2816			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2817				--op ? 0 : flags);
2818			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2819				len);
2820			iter->unmap_len = len;
2821
2822			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2823			iter->rxor_cursor.len = len;
2824			iter->descs_per_op = descs_per_op;
2825		}
2826		op = 0;
2827		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2828			op++;
2829			if (op % descs_per_op == 0)
2830				ppc440spe_adma_init_dma2rxor_slot(iter, src,
2831								  src_cnt);
2832			if (likely(!list_is_last(&iter->chain_node,
2833						 &sw_desc->group_list))) {
2834				/* set 'next' pointer */
2835				iter->hw_next =
2836					list_entry(iter->chain_node.next,
2837						struct ppc440spe_adma_desc_slot,
2838						chain_node);
2839				ppc440spe_xor_set_link(iter, iter->hw_next);
2840			} else {
2841				/* this is the last descriptor. */
2842				iter->hw_next = NULL;
2843			}
2844		}
2845
2846		/* fixup head descriptor */
2847		sw_desc->dst_cnt = dst_cnt;
2848		if (flags & DMA_PREP_ZERO_P)
2849			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2850		if (flags & DMA_PREP_ZERO_Q)
2851			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2852
2853		/* setup dst/src/mult */
2854		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2855
2856		while (src_cnt--) {
2857			/* handle descriptors (if dst_cnt == 2) inside
2858			 * the ppc440spe_adma_pq_set_srcxxx() functions
2859			 */
2860			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2861						  src_cnt);
2862			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2863				mult = scf[src_cnt];
2864			ppc440spe_adma_pq_set_src_mult(sw_desc,
2865					mult, src_cnt, dst_cnt - 1);
2866		}
2867	}
2868	spin_unlock_bh(&ppc440spe_chan->lock);
2869	ppc440spe_desc_set_rxor_block_size(len);
2870	return sw_desc;
2871}
2872
2873/**
2874 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2875 */
2876static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2877		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2878		unsigned int src_cnt, const unsigned char *scf,
2879		size_t len, unsigned long flags)
2880{
2881	struct ppc440spe_adma_chan *ppc440spe_chan;
2882	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2883	int dst_cnt = 0;
2884
2885	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2886
2887	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2888				    dst, src, src_cnt));
2889	BUG_ON(!len);
2890	BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT));
2891	BUG_ON(!src_cnt);
2892
2893	if (src_cnt == 1 && dst[1] == src[0]) {
2894		dma_addr_t dest[2];
2895
2896		/* dst[1] is real destination (Q) */
2897		dest[0] = dst[1];
2898		/* this is the page to multicast source data to */
2899		dest[1] = ppc440spe_chan->qdest;
2900		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2901				dest, 2, src, src_cnt, scf, len, flags);
2902		return sw_desc ? &sw_desc->async_tx : NULL;
2903	}
2904
2905	if (src_cnt == 2 && dst[1] == src[1]) {
2906		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2907					&dst[1], src, 2, scf, len, flags);
2908		return sw_desc ? &sw_desc->async_tx : NULL;
2909	}
2910
2911	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2912		BUG_ON(!dst[0]);
2913		dst_cnt++;
2914		flags |= DMA_PREP_ZERO_P;
2915	}
2916
2917	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2918		BUG_ON(!dst[1]);
2919		dst_cnt++;
2920		flags |= DMA_PREP_ZERO_Q;
2921	}
2922
2923	BUG_ON(!dst_cnt);
2924
2925	dev_dbg(ppc440spe_chan->device->common.dev,
2926		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2927		ppc440spe_chan->device->id, __func__, src_cnt, len,
2928		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2929
2930	switch (ppc440spe_chan->device->id) {
2931	case PPC440SPE_DMA0_ID:
2932	case PPC440SPE_DMA1_ID:
2933		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2934				dst, dst_cnt, src, src_cnt, scf,
2935				len, flags);
2936		break;
2937
2938	case PPC440SPE_XOR_ID:
2939		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2940				dst, dst_cnt, src, src_cnt, scf,
2941				len, flags);
2942		break;
2943	}
2944
2945	return sw_desc ? &sw_desc->async_tx : NULL;
2946}
2947
2948/**
2949 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2950 * a PQ_ZERO_SUM operation
2951 */
2952static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2953		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2954		unsigned int src_cnt, const unsigned char *scf, size_t len,
2955		enum sum_check_flags *pqres, unsigned long flags)
2956{
2957	struct ppc440spe_adma_chan *ppc440spe_chan;
2958	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2959	dma_addr_t pdest, qdest;
2960	int slot_cnt, slots_per_op, idst, dst_cnt;
2961
2962	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2963
2964	if (flags & DMA_PREP_PQ_DISABLE_P)
2965		pdest = 0;
2966	else
2967		pdest = pq[0];
2968
2969	if (flags & DMA_PREP_PQ_DISABLE_Q)
2970		qdest = 0;
2971	else
2972		qdest = pq[1];
2973
2974	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2975					    src, src_cnt, scf));
2976
2977	/* Always use WXOR for P/Q calculations (two destinations).
2978	 * Need 1 or 2 extra slots to verify results are zero.
2979	 */
2980	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2981
2982	/* One additional slot per destination to clone P/Q
2983	 * before calculation (we have to preserve destinations).
2984	 */
2985	slot_cnt = src_cnt + dst_cnt * 2;
2986	slots_per_op = 1;
2987
2988	spin_lock_bh(&ppc440spe_chan->lock);
2989	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2990					     slots_per_op);
2991	if (sw_desc) {
2992		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2993
2994		/* Setup byte count for each slot just allocated */
2995		sw_desc->async_tx.flags = flags;
2996		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2997			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2998						      len);
2999			iter->unmap_len = len;
3000		}
3001
3002		if (pdest) {
3003			struct dma_cdb *hw_desc;
3004			struct ppc440spe_adma_chan *chan;
3005
3006			iter = sw_desc->group_head;
3007			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3008			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3009			iter->hw_next = list_entry(iter->chain_node.next,
3010						struct ppc440spe_adma_desc_slot,
3011						chain_node);
3012			hw_desc = iter->hw_desc;
3013			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3014			iter->src_cnt = 0;
3015			iter->dst_cnt = 0;
3016			ppc440spe_desc_set_dest_addr(iter, chan, 0,
3017						     ppc440spe_chan->pdest, 0);
3018			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
3019			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3020						      len);
3021			iter->unmap_len = 0;
3022			/* override pdest to preserve original P */
3023			pdest = ppc440spe_chan->pdest;
3024		}
3025		if (qdest) {
3026			struct dma_cdb *hw_desc;
3027			struct ppc440spe_adma_chan *chan;
3028
3029			iter = list_first_entry(&sw_desc->group_list,
3030						struct ppc440spe_adma_desc_slot,
3031						chain_node);
3032			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3033
3034			if (pdest) {
3035				iter = list_entry(iter->chain_node.next,
3036						struct ppc440spe_adma_desc_slot,
3037						chain_node);
3038			}
3039
3040			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
3041			iter->hw_next = list_entry(iter->chain_node.next,
3042						struct ppc440spe_adma_desc_slot,
3043						chain_node);
3044			hw_desc = iter->hw_desc;
3045			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
3046			iter->src_cnt = 0;
3047			iter->dst_cnt = 0;
3048			ppc440spe_desc_set_dest_addr(iter, chan, 0,
3049						     ppc440spe_chan->qdest, 0);
3050			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
3051			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
3052						      len);
3053			iter->unmap_len = 0;
3054			/* override qdest to preserve original Q */
3055			qdest = ppc440spe_chan->qdest;
3056		}
3057
3058		/* Setup destinations for P/Q ops */
3059		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3060
3061		/* Setup zero QWORDs into DCHECK CDBs */
3062		idst = dst_cnt;
3063		list_for_each_entry_reverse(iter, &sw_desc->group_list,
3064					    chain_node) {
3065			/*
3066			 * The last CDB corresponds to Q-parity check,
3067			 * the one before last CDB corresponds
3068			 * P-parity check
3069			 */
3070			if (idst == DMA_DEST_MAX_NUM) {
3071				if (idst == dst_cnt) {
3072					set_bit(PPC440SPE_DESC_QCHECK,
3073						&iter->flags);
3074				} else {
3075					set_bit(PPC440SPE_DESC_PCHECK,
3076						&iter->flags);
3077				}
3078			} else {
3079				if (qdest) {
3080					set_bit(PPC440SPE_DESC_QCHECK,
3081						&iter->flags);
3082				} else {
3083					set_bit(PPC440SPE_DESC_PCHECK,
3084						&iter->flags);
3085				}
3086			}
3087			iter->xor_check_result = pqres;
3088
3089			/*
3090			 * set it to zero, if check fail then result will
3091			 * be updated
3092			 */
3093			*iter->xor_check_result = 0;
3094			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3095				ppc440spe_qword);
3096
3097			if (!(--dst_cnt))
3098				break;
3099		}
3100
3101		/* Setup sources and mults for P/Q ops */
3102		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3103						     chain_node) {
3104			struct ppc440spe_adma_chan *chan;
3105			u32 mult_dst;
3106
3107			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3108			ppc440spe_desc_set_src_addr(iter, chan, 0,
3109						    DMA_CUED_XOR_HB,
3110						    src[src_cnt - 1]);
3111			if (qdest) {
3112				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3113							   DMA_CDB_SG_DST1;
3114				ppc440spe_desc_set_src_mult(iter, chan,
3115							    DMA_CUED_MULT1_OFF,
3116							    mult_dst,
3117							    scf[src_cnt - 1]);
3118			}
3119			if (!(--src_cnt))
3120				break;
3121		}
3122	}
3123	spin_unlock_bh(&ppc440spe_chan->lock);
3124	return sw_desc ? &sw_desc->async_tx : NULL;
3125}
3126
3127/**
3128 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3129 * XOR ZERO_SUM operation
3130 */
3131static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3132		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3133		size_t len, enum sum_check_flags *result, unsigned long flags)
3134{
3135	struct dma_async_tx_descriptor *tx;
3136	dma_addr_t pq[2];
3137
3138	/* validate P, disable Q */
3139	pq[0] = src[0];
3140	pq[1] = 0;
3141	flags |= DMA_PREP_PQ_DISABLE_Q;
3142
3143	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3144						src_cnt - 1, 0, len,
3145						result, flags);
3146	return tx;
3147}
3148
3149/**
3150 * ppc440spe_adma_set_dest - set destination address into descriptor
3151 */
3152static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3153		dma_addr_t addr, int index)
3154{
3155	struct ppc440spe_adma_chan *chan;
3156
3157	BUG_ON(index >= sw_desc->dst_cnt);
3158
3159	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3160
3161	switch (chan->device->id) {
3162	case PPC440SPE_DMA0_ID:
3163	case PPC440SPE_DMA1_ID:
3164		/* to do: support transfers lengths >
3165		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3166		 */
3167		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3168			chan, 0, addr, index);
3169		break;
3170	case PPC440SPE_XOR_ID:
3171		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3172		ppc440spe_desc_set_dest_addr(sw_desc,
3173			chan, 0, addr, index);
3174		break;
3175	}
3176}
3177
3178static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3179		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3180{
3181	/*  To clear destinations update the descriptor
3182	 * (P or Q depending on index) as follows:
3183	 * addr is destination (0 corresponds to SG2):
3184	 */
3185	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3186
3187	/* ... and the addr is source: */
3188	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3189
3190	/* addr is always SG2 then the mult is always DST1 */
3191	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3192				    DMA_CDB_SG_DST1, 1);
3193}
3194
3195/**
3196 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3197 * for the PQXOR operation
3198 */
3199static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3200		dma_addr_t *addrs, unsigned long flags)
3201{
3202	struct ppc440spe_adma_desc_slot *iter;
3203	struct ppc440spe_adma_chan *chan;
3204	dma_addr_t paddr, qaddr;
3205	dma_addr_t addr = 0, ppath, qpath;
3206	int index = 0, i;
3207
3208	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3209
3210	if (flags & DMA_PREP_PQ_DISABLE_P)
3211		paddr = 0;
3212	else
3213		paddr = addrs[0];
3214
3215	if (flags & DMA_PREP_PQ_DISABLE_Q)
3216		qaddr = 0;
3217	else
3218		qaddr = addrs[1];
3219
3220	if (!paddr || !qaddr)
3221		addr = paddr ? paddr : qaddr;
3222
3223	switch (chan->device->id) {
3224	case PPC440SPE_DMA0_ID:
3225	case PPC440SPE_DMA1_ID:
3226		/* walk through the WXOR source list and set P/Q-destinations
3227		 * for each slot:
3228		 */
3229		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3230			/* This is WXOR-only chain; may have 1/2 zero descs */
3231			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3232				index++;
3233			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3234				index++;
3235
3236			iter = ppc440spe_get_group_entry(sw_desc, index);
3237			if (addr) {
3238				/* one destination */
3239				list_for_each_entry_from(iter,
3240					&sw_desc->group_list, chain_node)
3241					ppc440spe_desc_set_dest_addr(iter, chan,
3242						DMA_CUED_XOR_BASE, addr, 0);
3243			} else {
3244				/* two destinations */
3245				list_for_each_entry_from(iter,
3246					&sw_desc->group_list, chain_node) {
3247					ppc440spe_desc_set_dest_addr(iter, chan,
3248						DMA_CUED_XOR_BASE, paddr, 0);
3249					ppc440spe_desc_set_dest_addr(iter, chan,
3250						DMA_CUED_XOR_BASE, qaddr, 1);
3251				}
3252			}
3253
3254			if (index) {
3255				/*  To clear destinations update the descriptor
3256				 * (1st,2nd, or both depending on flags)
3257				 */
3258				index = 0;
3259				if (test_bit(PPC440SPE_ZERO_P,
3260						&sw_desc->flags)) {
3261					iter = ppc440spe_get_group_entry(
3262							sw_desc, index++);
3263					ppc440spe_adma_pq_zero_op(iter, chan,
3264							paddr);
3265				}
3266
3267				if (test_bit(PPC440SPE_ZERO_Q,
3268						&sw_desc->flags)) {
3269					iter = ppc440spe_get_group_entry(
3270							sw_desc, index++);
3271					ppc440spe_adma_pq_zero_op(iter, chan,
3272							qaddr);
3273				}
3274
3275				return;
3276			}
3277		} else {
3278			/* This is RXOR-only or RXOR/WXOR mixed chain */
3279
3280			/* If we want to include destination into calculations,
3281			 * then make dest addresses cued with mult=1 (XOR).
3282			 */
3283			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3284					DMA_CUED_XOR_HB :
3285					DMA_CUED_XOR_BASE |
3286						(1 << DMA_CUED_MULT1_OFF);
3287			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3288					DMA_CUED_XOR_HB :
3289					DMA_CUED_XOR_BASE |
3290						(1 << DMA_CUED_MULT1_OFF);
3291
3292			/* Setup destination(s) in RXOR slot(s) */
3293			iter = ppc440spe_get_group_entry(sw_desc, index++);
3294			ppc440spe_desc_set_dest_addr(iter, chan,
3295						paddr ? ppath : qpath,
3296						paddr ? paddr : qaddr, 0);
3297			if (!addr) {
3298				/* two destinations */
3299				iter = ppc440spe_get_group_entry(sw_desc,
3300								 index++);
3301				ppc440spe_desc_set_dest_addr(iter, chan,
3302						qpath, qaddr, 0);
3303			}
3304
3305			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3306				/* Setup destination(s) in remaining WXOR
3307				 * slots
3308				 */
3309				iter = ppc440spe_get_group_entry(sw_desc,
3310								 index);
3311				if (addr) {
3312					/* one destination */
3313					list_for_each_entry_from(iter,
3314					    &sw_desc->group_list,
3315					    chain_node)
3316						ppc440spe_desc_set_dest_addr(
3317							iter, chan,
3318							DMA_CUED_XOR_BASE,
3319							addr, 0);
3320
3321				} else {
3322					/* two destinations */
3323					list_for_each_entry_from(iter,
3324					    &sw_desc->group_list,
3325					    chain_node) {
3326						ppc440spe_desc_set_dest_addr(
3327							iter, chan,
3328							DMA_CUED_XOR_BASE,
3329							paddr, 0);
3330						ppc440spe_desc_set_dest_addr(
3331							iter, chan,
3332							DMA_CUED_XOR_BASE,
3333							qaddr, 1);
3334					}
3335				}
3336			}
3337
3338		}
3339		break;
3340
3341	case PPC440SPE_XOR_ID:
3342		/* DMA2 descriptors have only 1 destination, so there are
3343		 * two chains - one for each dest.
3344		 * If we want to include destination into calculations,
3345		 * then make dest addresses cued with mult=1 (XOR).
3346		 */
3347		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3348				DMA_CUED_XOR_HB :
3349				DMA_CUED_XOR_BASE |
3350					(1 << DMA_CUED_MULT1_OFF);
3351
3352		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3353				DMA_CUED_XOR_HB :
3354				DMA_CUED_XOR_BASE |
3355					(1 << DMA_CUED_MULT1_OFF);
3356
3357		iter = ppc440spe_get_group_entry(sw_desc, 0);
3358		for (i = 0; i < sw_desc->descs_per_op; i++) {
3359			ppc440spe_desc_set_dest_addr(iter, chan,
3360				paddr ? ppath : qpath,
3361				paddr ? paddr : qaddr, 0);
3362			iter = list_entry(iter->chain_node.next,
3363					  struct ppc440spe_adma_desc_slot,
3364					  chain_node);
3365		}
3366
3367		if (!addr) {
3368			/* Two destinations; setup Q here */
3369			iter = ppc440spe_get_group_entry(sw_desc,
3370				sw_desc->descs_per_op);
3371			for (i = 0; i < sw_desc->descs_per_op; i++) {
3372				ppc440spe_desc_set_dest_addr(iter,
3373					chan, qpath, qaddr, 0);
3374				iter = list_entry(iter->chain_node.next,
3375						struct ppc440spe_adma_desc_slot,
3376						chain_node);
3377			}
3378		}
3379
3380		break;
3381	}
3382}
3383
3384/**
3385 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3386 * for the PQ_ZERO_SUM operation
3387 */
3388static void ppc440spe_adma_pqzero_sum_set_dest(
3389		struct ppc440spe_adma_desc_slot *sw_desc,
3390		dma_addr_t paddr, dma_addr_t qaddr)
3391{
3392	struct ppc440spe_adma_desc_slot *iter, *end;
3393	struct ppc440spe_adma_chan *chan;
3394	dma_addr_t addr = 0;
3395	int idx;
3396
3397	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3398
3399	/* walk through the WXOR source list and set P/Q-destinations
3400	 * for each slot
3401	 */
3402	idx = (paddr && qaddr) ? 2 : 1;
3403	/* set end */
3404	list_for_each_entry_reverse(end, &sw_desc->group_list,
3405				    chain_node) {
3406		if (!(--idx))
3407			break;
3408	}
3409	/* set start */
3410	idx = (paddr && qaddr) ? 2 : 1;
3411	iter = ppc440spe_get_group_entry(sw_desc, idx);
3412
3413	if (paddr && qaddr) {
3414		/* two destinations */
3415		list_for_each_entry_from(iter, &sw_desc->group_list,
3416					 chain_node) {
3417			if (unlikely(iter == end))
3418				break;
3419			ppc440spe_desc_set_dest_addr(iter, chan,
3420						DMA_CUED_XOR_BASE, paddr, 0);
3421			ppc440spe_desc_set_dest_addr(iter, chan,
3422						DMA_CUED_XOR_BASE, qaddr, 1);
3423		}
3424	} else {
3425		/* one destination */
3426		addr = paddr ? paddr : qaddr;
3427		list_for_each_entry_from(iter, &sw_desc->group_list,
3428					 chain_node) {
3429			if (unlikely(iter == end))
3430				break;
3431			ppc440spe_desc_set_dest_addr(iter, chan,
3432						DMA_CUED_XOR_BASE, addr, 0);
3433		}
3434	}
3435
3436	/*  The remaining descriptors are DATACHECK. These have no need in
3437	 * destination. Actually, these destinations are used there
3438	 * as sources for check operation. So, set addr as source.
3439	 */
3440	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3441
3442	if (!addr) {
3443		end = list_entry(end->chain_node.next,
3444				 struct ppc440spe_adma_desc_slot, chain_node);
3445		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3446	}
3447}
3448
3449/**
3450 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3451 */
3452static inline void ppc440spe_desc_set_xor_src_cnt(
3453			struct ppc440spe_adma_desc_slot *desc,
3454			int src_cnt)
3455{
3456	struct xor_cb *hw_desc = desc->hw_desc;
3457
3458	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3459	hw_desc->cbc |= src_cnt;
3460}
3461
3462/**
3463 * ppc440spe_adma_pq_set_src - set source address into descriptor
3464 */
3465static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3466		dma_addr_t addr, int index)
3467{
3468	struct ppc440spe_adma_chan *chan;
3469	dma_addr_t haddr = 0;
3470	struct ppc440spe_adma_desc_slot *iter = NULL;
3471
3472	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3473
3474	switch (chan->device->id) {
3475	case PPC440SPE_DMA0_ID:
3476	case PPC440SPE_DMA1_ID:
3477		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3478		 */
3479		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3480			/* RXOR-only or RXOR/WXOR operation */
3481			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3482				&sw_desc->flags) ?  2 : 3;
3483
3484			if (index == 0) {
3485				/* 1st slot (RXOR) */
3486				/* setup sources region (R1-2-3, R1-2-4,
3487				 * or R1-2-5)
3488				 */
3489				if (test_bit(PPC440SPE_DESC_RXOR12,
3490						&sw_desc->flags))
3491					haddr = DMA_RXOR12 <<
3492						DMA_CUED_REGION_OFF;
3493				else if (test_bit(PPC440SPE_DESC_RXOR123,
3494				    &sw_desc->flags))
3495					haddr = DMA_RXOR123 <<
3496						DMA_CUED_REGION_OFF;
3497				else if (test_bit(PPC440SPE_DESC_RXOR124,
3498				    &sw_desc->flags))
3499					haddr = DMA_RXOR124 <<
3500						DMA_CUED_REGION_OFF;
3501				else if (test_bit(PPC440SPE_DESC_RXOR125,
3502				    &sw_desc->flags))
3503					haddr = DMA_RXOR125 <<
3504						DMA_CUED_REGION_OFF;
3505				else
3506					BUG();
3507				haddr |= DMA_CUED_XOR_BASE;
3508				iter = ppc440spe_get_group_entry(sw_desc, 0);
3509			} else if (index < iskip) {
3510				/* 1st slot (RXOR)
3511				 * shall actually set source address only once
3512				 * instead of first <iskip>
3513				 */
3514				iter = NULL;
3515			} else {
3516				/* 2nd/3d and next slots (WXOR);
3517				 * skip first slot with RXOR
3518				 */
3519				haddr = DMA_CUED_XOR_HB;
3520				iter = ppc440spe_get_group_entry(sw_desc,
3521				    index - iskip + sw_desc->dst_cnt);
3522			}
3523		} else {
3524			int znum = 0;
3525
3526			/* WXOR-only operation; skip first slots with
3527			 * zeroing destinations
3528			 */
3529			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3530				znum++;
3531			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3532				znum++;
3533
3534			haddr = DMA_CUED_XOR_HB;
3535			iter = ppc440spe_get_group_entry(sw_desc,
3536					index + znum);
3537		}
3538
3539		if (likely(iter)) {
3540			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3541
3542			if (!index &&
3543			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3544			    sw_desc->dst_cnt == 2) {
3545				/* if we have two destinations for RXOR, then
3546				 * setup source in the second descr too
3547				 */
3548				iter = ppc440spe_get_group_entry(sw_desc, 1);
3549				ppc440spe_desc_set_src_addr(iter, chan, 0,
3550					haddr, addr);
3551			}
3552		}
3553		break;
3554
3555	case PPC440SPE_XOR_ID:
3556		/* DMA2 may do Biskup */
3557		iter = sw_desc->group_head;
3558		if (iter->dst_cnt == 2) {
3559			/* both P & Q calculations required; set P src here */
3560			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3561
3562			/* this is for Q */
3563			iter = ppc440spe_get_group_entry(sw_desc,
3564				sw_desc->descs_per_op);
3565		}
3566		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3567		break;
3568	}
3569}
3570
3571/**
3572 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3573 */
3574static void ppc440spe_adma_memcpy_xor_set_src(
3575		struct ppc440spe_adma_desc_slot *sw_desc,
3576		dma_addr_t addr, int index)
3577{
3578	struct ppc440spe_adma_chan *chan;
3579
3580	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3581	sw_desc = sw_desc->group_head;
3582
3583	if (likely(sw_desc))
3584		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3585}
3586
3587/**
3588 * ppc440spe_adma_dma2rxor_inc_addr  -
3589 */
3590static void ppc440spe_adma_dma2rxor_inc_addr(
3591		struct ppc440spe_adma_desc_slot *desc,
3592		struct ppc440spe_rxor *cursor, int index, int src_cnt)
3593{
3594	cursor->addr_count++;
3595	if (index == src_cnt - 1) {
3596		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3597	} else if (cursor->addr_count == XOR_MAX_OPS) {
3598		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3599		cursor->addr_count = 0;
3600		cursor->desc_count++;
3601	}
3602}
3603
3604/**
3605 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3606 */
3607static int ppc440spe_adma_dma2rxor_prep_src(
3608		struct ppc440spe_adma_desc_slot *hdesc,
3609		struct ppc440spe_rxor *cursor, int index,
3610		int src_cnt, u32 addr)
3611{
3612	int rval = 0;
3613	u32 sign;
3614	struct ppc440spe_adma_desc_slot *desc = hdesc;
3615	int i;
3616
3617	for (i = 0; i < cursor->desc_count; i++) {
3618		desc = list_entry(hdesc->chain_node.next,
3619				  struct ppc440spe_adma_desc_slot,
3620				  chain_node);
3621	}
3622
3623	switch (cursor->state) {
3624	case 0:
3625		if (addr == cursor->addrl + cursor->len) {
3626			/* direct RXOR */
3627			cursor->state = 1;
3628			cursor->xor_count++;
3629			if (index == src_cnt-1) {
3630				ppc440spe_rxor_set_region(desc,
3631					cursor->addr_count,
3632					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3633				ppc440spe_adma_dma2rxor_inc_addr(
3634					desc, cursor, index, src_cnt);
3635			}
3636		} else if (cursor->addrl == addr + cursor->len) {
3637			/* reverse RXOR */
3638			cursor->state = 1;
3639			cursor->xor_count++;
3640			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3641			if (index == src_cnt-1) {
3642				ppc440spe_rxor_set_region(desc,
3643					cursor->addr_count,
3644					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3645				ppc440spe_adma_dma2rxor_inc_addr(
3646					desc, cursor, index, src_cnt);
3647			}
3648		} else {
3649			printk(KERN_ERR "Cannot build "
3650				"DMA2 RXOR command block.\n");
3651			BUG();
3652		}
3653		break;
3654	case 1:
3655		sign = test_bit(cursor->addr_count,
3656				desc->reverse_flags)
3657			? -1 : 1;
3658		if (index == src_cnt-2 || (sign == -1
3659			&& addr != cursor->addrl - 2*cursor->len)) {
3660			cursor->state = 0;
3661			cursor->xor_count = 1;
3662			cursor->addrl = addr;
3663			ppc440spe_rxor_set_region(desc,
3664				cursor->addr_count,
3665				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3666			ppc440spe_adma_dma2rxor_inc_addr(
3667				desc, cursor, index, src_cnt);
3668		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
3669			cursor->state = 2;
3670			cursor->xor_count = 0;
3671			ppc440spe_rxor_set_region(desc,
3672				cursor->addr_count,
3673				DMA_RXOR123 << DMA_CUED_REGION_OFF);
3674			if (index == src_cnt-1) {
3675				ppc440spe_adma_dma2rxor_inc_addr(
3676					desc, cursor, index, src_cnt);
3677			}
3678		} else if (addr == cursor->addrl + 3*cursor->len) {
3679			cursor->state = 2;
3680			cursor->xor_count = 0;
3681			ppc440spe_rxor_set_region(desc,
3682				cursor->addr_count,
3683				DMA_RXOR124 << DMA_CUED_REGION_OFF);
3684			if (index == src_cnt-1) {
3685				ppc440spe_adma_dma2rxor_inc_addr(
3686					desc, cursor, index, src_cnt);
3687			}
3688		} else if (addr == cursor->addrl + 4*cursor->len) {
3689			cursor->state = 2;
3690			cursor->xor_count = 0;
3691			ppc440spe_rxor_set_region(desc,
3692				cursor->addr_count,
3693				DMA_RXOR125 << DMA_CUED_REGION_OFF);
3694			if (index == src_cnt-1) {
3695				ppc440spe_adma_dma2rxor_inc_addr(
3696					desc, cursor, index, src_cnt);
3697			}
3698		} else {
3699			cursor->state = 0;
3700			cursor->xor_count = 1;
3701			cursor->addrl = addr;
3702			ppc440spe_rxor_set_region(desc,
3703				cursor->addr_count,
3704				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3705			ppc440spe_adma_dma2rxor_inc_addr(
3706				desc, cursor, index, src_cnt);
3707		}
3708		break;
3709	case 2:
3710		cursor->state = 0;
3711		cursor->addrl = addr;
3712		cursor->xor_count++;
3713		if (index) {
3714			ppc440spe_adma_dma2rxor_inc_addr(
3715				desc, cursor, index, src_cnt);
3716		}
3717		break;
3718	}
3719
3720	return rval;
3721}
3722
3723/**
3724 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3725 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3726 */
3727static void ppc440spe_adma_dma2rxor_set_src(
3728		struct ppc440spe_adma_desc_slot *desc,
3729		int index, dma_addr_t addr)
3730{
3731	struct xor_cb *xcb = desc->hw_desc;
3732	int k = 0, op = 0, lop = 0;
3733
3734	/* get the RXOR operand which corresponds to index addr */
3735	while (op <= index) {
3736		lop = op;
3737		if (k == XOR_MAX_OPS) {
3738			k = 0;
3739			desc = list_entry(desc->chain_node.next,
3740				struct ppc440spe_adma_desc_slot, chain_node);
3741			xcb = desc->hw_desc;
3742
3743		}
3744		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3745		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3746			op += 2;
3747		else
3748			op += 3;
3749	}
3750
3751	BUG_ON(k < 1);
3752
3753	if (test_bit(k-1, desc->reverse_flags)) {
3754		/* reverse operand order; put last op in RXOR group */
3755		if (index == op - 1)
3756			ppc440spe_rxor_set_src(desc, k - 1, addr);
3757	} else {
3758		/* direct operand order; put first op in RXOR group */
3759		if (index == lop)
3760			ppc440spe_rxor_set_src(desc, k - 1, addr);
3761	}
3762}
3763
3764/**
3765 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3766 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3767 */
3768static void ppc440spe_adma_dma2rxor_set_mult(
3769		struct ppc440spe_adma_desc_slot *desc,
3770		int index, u8 mult)
3771{
3772	struct xor_cb *xcb = desc->hw_desc;
3773	int k = 0, op = 0, lop = 0;
3774
3775	/* get the RXOR operand which corresponds to index mult */
3776	while (op <= index) {
3777		lop = op;
3778		if (k == XOR_MAX_OPS) {
3779			k = 0;
3780			desc = list_entry(desc->chain_node.next,
3781					  struct ppc440spe_adma_desc_slot,
3782					  chain_node);
3783			xcb = desc->hw_desc;
3784
3785		}
3786		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3787		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3788			op += 2;
3789		else
3790			op += 3;
3791	}
3792
3793	BUG_ON(k < 1);
3794	if (test_bit(k-1, desc->reverse_flags)) {
3795		/* reverse order */
3796		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3797	} else {
3798		/* direct order */
3799		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3800	}
3801}
3802
3803/**
3804 * ppc440spe_init_rxor_cursor -
3805 */
3806static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3807{
3808	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3809	cursor->state = 2;
3810}
3811
3812/**
3813 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3814 * descriptor for the PQXOR operation
3815 */
3816static void ppc440spe_adma_pq_set_src_mult(
3817		struct ppc440spe_adma_desc_slot *sw_desc,
3818		unsigned char mult, int index, int dst_pos)
3819{
3820	struct ppc440spe_adma_chan *chan;
3821	u32 mult_idx, mult_dst;
3822	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3823
3824	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3825
3826	switch (chan->device->id) {
3827	case PPC440SPE_DMA0_ID:
3828	case PPC440SPE_DMA1_ID:
3829		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3830			int region = test_bit(PPC440SPE_DESC_RXOR12,
3831					&sw_desc->flags) ? 2 : 3;
3832
3833			if (index < region) {
3834				/* RXOR multipliers */
3835				iter = ppc440spe_get_group_entry(sw_desc,
3836					sw_desc->dst_cnt - 1);
3837				if (sw_desc->dst_cnt == 2)
3838					iter1 = ppc440spe_get_group_entry(
3839							sw_desc, 0);
3840
3841				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3842				mult_dst = DMA_CDB_SG_SRC;
3843			} else {
3844				/* WXOR multiplier */
3845				iter = ppc440spe_get_group_entry(sw_desc,
3846							index - region +
3847							sw_desc->dst_cnt);
3848				mult_idx = DMA_CUED_MULT1_OFF;
3849				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3850						     DMA_CDB_SG_DST1;
3851			}
3852		} else {
3853			int znum = 0;
3854
3855			/* WXOR-only;
3856			 * skip first slots with destinations (if ZERO_DST has
3857			 * place)
3858			 */
3859			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3860				znum++;
3861			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3862				znum++;
3863
3864			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3865			mult_idx = DMA_CUED_MULT1_OFF;
3866			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3867		}
3868
3869		if (likely(iter)) {
3870			ppc440spe_desc_set_src_mult(iter, chan,
3871				mult_idx, mult_dst, mult);
3872
3873			if (unlikely(iter1)) {
3874				/* if we have two destinations for RXOR, then
3875				 * we've just set Q mult. Set-up P now.
3876				 */
3877				ppc440spe_desc_set_src_mult(iter1, chan,
3878					mult_idx, mult_dst, 1);
3879			}
3880
3881		}
3882		break;
3883
3884	case PPC440SPE_XOR_ID:
3885		iter = sw_desc->group_head;
3886		if (sw_desc->dst_cnt == 2) {
3887			/* both P & Q calculations required; set P mult here */
3888			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3889
3890			/* and then set Q mult */
3891			iter = ppc440spe_get_group_entry(sw_desc,
3892			       sw_desc->descs_per_op);
3893		}
3894		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3895		break;
3896	}
3897}
3898
3899/**
3900 * ppc440spe_adma_free_chan_resources - free the resources allocated
3901 */
3902static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3903{
3904	struct ppc440spe_adma_chan *ppc440spe_chan;
3905	struct ppc440spe_adma_desc_slot *iter, *_iter;
3906	int in_use_descs = 0;
3907
3908	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3909	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3910
3911	spin_lock_bh(&ppc440spe_chan->lock);
3912	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3913					chain_node) {
3914		in_use_descs++;
3915		list_del(&iter->chain_node);
3916	}
3917	list_for_each_entry_safe_reverse(iter, _iter,
3918			&ppc440spe_chan->all_slots, slot_node) {
3919		list_del(&iter->slot_node);
3920		kfree(iter);
3921		ppc440spe_chan->slots_allocated--;
3922	}
3923	ppc440spe_chan->last_used = NULL;
3924
3925	dev_dbg(ppc440spe_chan->device->common.dev,
3926		"ppc440spe adma%d %s slots_allocated %d\n",
3927		ppc440spe_chan->device->id,
3928		__func__, ppc440spe_chan->slots_allocated);
3929	spin_unlock_bh(&ppc440spe_chan->lock);
3930
3931	/* one is ok since we left it on there on purpose */
3932	if (in_use_descs > 1)
3933		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3934			in_use_descs - 1);
3935}
3936
3937/**
3938 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3939 * @chan: ADMA channel handle
3940 * @cookie: ADMA transaction identifier
3941 * @txstate: a holder for the current state of the channel
3942 */
3943static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3944			dma_cookie_t cookie, struct dma_tx_state *txstate)
3945{
3946	struct ppc440spe_adma_chan *ppc440spe_chan;
3947	dma_cookie_t last_used;
3948	dma_cookie_t last_complete;
3949	enum dma_status ret;
3950
3951	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3952	last_used = chan->cookie;
3953	last_complete = ppc440spe_chan->completed_cookie;
3954
3955	dma_set_tx_state(txstate, last_complete, last_used, 0);
3956
3957	ret = dma_async_is_complete(cookie, last_complete, last_used);
3958	if (ret == DMA_SUCCESS)
3959		return ret;
3960
3961	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3962
3963	last_used = chan->cookie;
3964	last_complete = ppc440spe_chan->completed_cookie;
3965
3966	dma_set_tx_state(txstate, last_complete, last_used, 0);
3967
3968	return dma_async_is_complete(cookie, last_complete, last_used);
3969}
3970
3971/**
3972 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3973 */
3974static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3975{
3976	struct ppc440spe_adma_chan *chan = data;
3977
3978	dev_dbg(chan->device->common.dev,
3979		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3980
3981	tasklet_schedule(&chan->irq_tasklet);
3982	ppc440spe_adma_device_clear_eot_status(chan);
3983
3984	return IRQ_HANDLED;
3985}
3986
3987/**
3988 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3989 *	do the same things as a eot handler
3990 */
3991static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3992{
3993	struct ppc440spe_adma_chan *chan = data;
3994
3995	dev_dbg(chan->device->common.dev,
3996		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3997
3998	tasklet_schedule(&chan->irq_tasklet);
3999	ppc440spe_adma_device_clear_eot_status(chan);
4000
4001	return IRQ_HANDLED;
4002}
4003
4004/**
4005 * ppc440spe_test_callback - called when test operation has been done
4006 */
4007static void ppc440spe_test_callback(void *unused)
4008{
4009	complete(&ppc440spe_r6_test_comp);
4010}
4011
4012/**
4013 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
4014 */
4015static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
4016{
4017	struct ppc440spe_adma_chan *ppc440spe_chan;
4018
4019	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4020	dev_dbg(ppc440spe_chan->device->common.dev,
4021		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
4022		__func__, ppc440spe_chan->pending);
4023
4024	if (ppc440spe_chan->pending) {
4025		ppc440spe_chan->pending = 0;
4026		ppc440spe_chan_append(ppc440spe_chan);
4027	}
4028}
4029
4030/**
4031 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
4032 *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
4033 *	specific operation)
4034 */
4035static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
4036{
4037	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
4038	dma_cookie_t cookie;
4039	int slot_cnt, slots_per_op;
4040
4041	dev_dbg(chan->device->common.dev,
4042		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
4043
4044	spin_lock_bh(&chan->lock);
4045	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
4046	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
4047	if (sw_desc) {
4048		group_start = sw_desc->group_head;
4049		list_splice_init(&sw_desc->group_list, &chan->chain);
4050		async_tx_ack(&sw_desc->async_tx);
4051		ppc440spe_desc_init_null_xor(group_start);
4052
4053		cookie = chan->common.cookie;
4054		cookie++;
4055		if (cookie <= 1)
4056			cookie = 2;
4057
4058		/* initialize the completed cookie to be less than
4059		 * the most recently used cookie
4060		 */
4061		chan->completed_cookie = cookie - 1;
4062		chan->common.cookie = sw_desc->async_tx.cookie = cookie;
4063
4064		/* channel should not be busy */
4065		BUG_ON(ppc440spe_chan_is_busy(chan));
4066
4067		/* set the descriptor address */
4068		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
4069
4070		/* run the descriptor */
4071		ppc440spe_chan_run(chan);
4072	} else
4073		printk(KERN_ERR "ppc440spe adma%d"
4074			" failed to allocate null descriptor\n",
4075			chan->device->id);
4076	spin_unlock_bh(&chan->lock);
4077}
4078
4079/**
4080 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4081 *	For this we just perform one WXOR operation with the same source
4082 *	and destination addresses, the GF-multiplier is 1; so if RAID-6
4083 *	capabilities are enabled then we'll get src/dst filled with zero.
4084 */
4085static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4086{
4087	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4088	struct page *pg;
4089	char *a;
4090	dma_addr_t dma_addr, addrs[2];
4091	unsigned long op = 0;
4092	int rval = 0;
4093
4094	set_bit(PPC440SPE_DESC_WXOR, &op);
4095
4096	pg = alloc_page(GFP_KERNEL);
4097	if (!pg)
4098		return -ENOMEM;
4099
4100	spin_lock_bh(&chan->lock);
4101	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4102	if (sw_desc) {
4103		/* 1 src, 1 dsr, int_ena, WXOR */
4104		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4105		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4106			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4107			iter->unmap_len = PAGE_SIZE;
4108		}
4109	} else {
4110		rval = -EFAULT;
4111		spin_unlock_bh(&chan->lock);
4112		goto exit;
4113	}
4114	spin_unlock_bh(&chan->lock);
4115
4116	/* Fill the test page with ones */
4117	memset(page_address(pg), 0xFF, PAGE_SIZE);
4118	dma_addr = dma_map_page(chan->device->dev, pg, 0,
4119				PAGE_SIZE, DMA_BIDIRECTIONAL);
4120
4121	/* Setup addresses */
4122	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4123	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4124	addrs[0] = dma_addr;
4125	addrs[1] = 0;
4126	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4127
4128	async_tx_ack(&sw_desc->async_tx);
4129	sw_desc->async_tx.callback = ppc440spe_test_callback;
4130	sw_desc->async_tx.callback_param = NULL;
4131
4132	init_completion(&ppc440spe_r6_test_comp);
4133
4134	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4135	ppc440spe_adma_issue_pending(&chan->common);
4136
4137	wait_for_completion(&ppc440spe_r6_test_comp);
4138
4139	/* Now check if the test page is zeroed */
4140	a = page_address(pg);
4141	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4142		/* page is zero - RAID-6 enabled */
4143		rval = 0;
4144	} else {
4145		/* RAID-6 was not enabled */
4146		rval = -EINVAL;
4147	}
4148exit:
4149	__free_page(pg);
4150	return rval;
4151}
4152
4153static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4154{
4155	switch (adev->id) {
4156	case PPC440SPE_DMA0_ID:
4157	case PPC440SPE_DMA1_ID:
4158		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4159		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4160		dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
4161		dma_cap_set(DMA_PQ, adev->common.cap_mask);
4162		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4163		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4164		break;
4165	case PPC440SPE_XOR_ID:
4166		dma_cap_set(DMA_XOR, adev->common.cap_mask);
4167		dma_cap_set(DMA_PQ, adev->common.cap_mask);
4168		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4169		adev->common.cap_mask = adev->common.cap_mask;
4170		break;
4171	}
4172
4173	/* Set base routines */
4174	adev->common.device_alloc_chan_resources =
4175				ppc440spe_adma_alloc_chan_resources;
4176	adev->common.device_free_chan_resources =
4177				ppc440spe_adma_free_chan_resources;
4178	adev->common.device_tx_status = ppc440spe_adma_tx_status;
4179	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4180
4181	/* Set prep routines based on capability */
4182	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4183		adev->common.device_prep_dma_memcpy =
4184			ppc440spe_adma_prep_dma_memcpy;
4185	}
4186	if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
4187		adev->common.device_prep_dma_memset =
4188			ppc440spe_adma_prep_dma_memset;
4189	}
4190	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4191		adev->common.max_xor = XOR_MAX_OPS;
4192		adev->common.device_prep_dma_xor =
4193			ppc440spe_adma_prep_dma_xor;
4194	}
4195	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4196		switch (adev->id) {
4197		case PPC440SPE_DMA0_ID:
4198			dma_set_maxpq(&adev->common,
4199				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4200			break;
4201		case PPC440SPE_DMA1_ID:
4202			dma_set_maxpq(&adev->common,
4203				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4204			break;
4205		case PPC440SPE_XOR_ID:
4206			adev->common.max_pq = XOR_MAX_OPS * 3;
4207			break;
4208		}
4209		adev->common.device_prep_dma_pq =
4210			ppc440spe_adma_prep_dma_pq;
4211	}
4212	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4213		switch (adev->id) {
4214		case PPC440SPE_DMA0_ID:
4215			adev->common.max_pq = DMA0_FIFO_SIZE /
4216						sizeof(struct dma_cdb);
4217			break;
4218		case PPC440SPE_DMA1_ID:
4219			adev->common.max_pq = DMA1_FIFO_SIZE /
4220						sizeof(struct dma_cdb);
4221			break;
4222		}
4223		adev->common.device_prep_dma_pq_val =
4224			ppc440spe_adma_prep_dma_pqzero_sum;
4225	}
4226	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4227		switch (adev->id) {
4228		case PPC440SPE_DMA0_ID:
4229			adev->common.max_xor = DMA0_FIFO_SIZE /
4230						sizeof(struct dma_cdb);
4231			break;
4232		case PPC440SPE_DMA1_ID:
4233			adev->common.max_xor = DMA1_FIFO_SIZE /
4234						sizeof(struct dma_cdb);
4235			break;
4236		}
4237		adev->common.device_prep_dma_xor_val =
4238			ppc440spe_adma_prep_dma_xor_zero_sum;
4239	}
4240	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4241		adev->common.device_prep_dma_interrupt =
4242			ppc440spe_adma_prep_dma_interrupt;
4243	}
4244	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4245	  "( %s%s%s%s%s%s%s)\n",
4246	  dev_name(adev->dev),
4247	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4248	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4249	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4250	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4251	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4252	  dma_has_cap(DMA_MEMSET, adev->common.cap_mask)  ? "memset " : "",
4253	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4254}
4255
4256static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4257				     struct ppc440spe_adma_chan *chan,
4258				     int *initcode)
4259{
4260	struct platform_device *ofdev;
4261	struct device_node *np;
4262	int ret;
4263
4264	ofdev = container_of(adev->dev, struct platform_device, dev);
4265	np = ofdev->dev.of_node;
4266	if (adev->id != PPC440SPE_XOR_ID) {
4267		adev->err_irq = irq_of_parse_and_map(np, 1);
4268		if (adev->err_irq == NO_IRQ) {
4269			dev_warn(adev->dev, "no err irq resource?\n");
4270			*initcode = PPC_ADMA_INIT_IRQ2;
4271			adev->err_irq = -ENXIO;
4272		} else
4273			atomic_inc(&ppc440spe_adma_err_irq_ref);
4274	} else {
4275		adev->err_irq = -ENXIO;
4276	}
4277
4278	adev->irq = irq_of_parse_and_map(np, 0);
4279	if (adev->irq == NO_IRQ) {
4280		dev_err(adev->dev, "no irq resource\n");
4281		*initcode = PPC_ADMA_INIT_IRQ1;
4282		ret = -ENXIO;
4283		goto err_irq_map;
4284	}
4285	dev_dbg(adev->dev, "irq %d, err irq %d\n",
4286		adev->irq, adev->err_irq);
4287
4288	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4289			  0, dev_driver_string(adev->dev), chan);
4290	if (ret) {
4291		dev_err(adev->dev, "can't request irq %d\n",
4292			adev->irq);
4293		*initcode = PPC_ADMA_INIT_IRQ1;
4294		ret = -EIO;
4295		goto err_req1;
4296	}
4297
4298	/* only DMA engines have a separate error IRQ
4299	 * so it's Ok if err_irq < 0 in XOR engine case.
4300	 */
4301	if (adev->err_irq > 0) {
4302		/* both DMA engines share common error IRQ */
4303		ret = request_irq(adev->err_irq,
4304				  ppc440spe_adma_err_handler,
4305				  IRQF_SHARED,
4306				  dev_driver_string(adev->dev),
4307				  chan);
4308		if (ret) {
4309			dev_err(adev->dev, "can't request irq %d\n",
4310				adev->err_irq);
4311			*initcode = PPC_ADMA_INIT_IRQ2;
4312			ret = -EIO;
4313			goto err_req2;
4314		}
4315	}
4316
4317	if (adev->id == PPC440SPE_XOR_ID) {
4318		/* enable XOR engine interrupts */
4319		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4320			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4321			    &adev->xor_reg->ier);
4322	} else {
4323		u32 mask, enable;
4324
4325		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4326		if (!np) {
4327			pr_err("%s: can't find I2O device tree node\n",
4328				__func__);
4329			ret = -ENODEV;
4330			goto err_req2;
4331		}
4332		adev->i2o_reg = of_iomap(np, 0);
4333		if (!adev->i2o_reg) {
4334			pr_err("%s: failed to map I2O registers\n", __func__);
4335			of_node_put(np);
4336			ret = -EINVAL;
4337			goto err_req2;
4338		}
4339		of_node_put(np);
4340		/* Unmask 'CS FIFO Attention' interrupts and
4341		 * enable generating interrupts on errors
4342		 */
4343		enable = (adev->id == PPC440SPE_DMA0_ID) ?
4344			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4345			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4346		mask = ioread32(&adev->i2o_reg->iopim) & enable;
4347		iowrite32(mask, &adev->i2o_reg->iopim);
4348	}
4349	return 0;
4350
4351err_req2:
4352	free_irq(adev->irq, chan);
4353err_req1:
4354	irq_dispose_mapping(adev->irq);
4355err_irq_map:
4356	if (adev->err_irq > 0) {
4357		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4358			irq_dispose_mapping(adev->err_irq);
4359	}
4360	return ret;
4361}
4362
4363static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4364					struct ppc440spe_adma_chan *chan)
4365{
4366	u32 mask, disable;
4367
4368	if (adev->id == PPC440SPE_XOR_ID) {
4369		/* disable XOR engine interrupts */
4370		mask = ioread32be(&adev->xor_reg->ier);
4371		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4372			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4373		iowrite32be(mask, &adev->xor_reg->ier);
4374	} else {
4375		/* disable DMAx engine interrupts */
4376		disable = (adev->id == PPC440SPE_DMA0_ID) ?
4377			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4378			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4379		mask = ioread32(&adev->i2o_reg->iopim) | disable;
4380		iowrite32(mask, &adev->i2o_reg->iopim);
4381	}
4382	free_irq(adev->irq, chan);
4383	irq_dispose_mapping(adev->irq);
4384	if (adev->err_irq > 0) {
4385		free_irq(adev->err_irq, chan);
4386		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4387			irq_dispose_mapping(adev->err_irq);
4388			iounmap(adev->i2o_reg);
4389		}
4390	}
4391}
4392
4393/**
4394 * ppc440spe_adma_probe - probe the asynch device
4395 */
4396static int __devinit ppc440spe_adma_probe(struct platform_device *ofdev,
4397					  const struct of_device_id *match)
4398{
4399	struct device_node *np = ofdev->dev.of_node;
4400	struct resource res;
4401	struct ppc440spe_adma_device *adev;
4402	struct ppc440spe_adma_chan *chan;
4403	struct ppc_dma_chan_ref *ref, *_ref;
4404	int ret = 0, initcode = PPC_ADMA_INIT_OK;
4405	const u32 *idx;
4406	int len;
4407	void *regs;
4408	u32 id, pool_size;
4409
4410	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4411		id = PPC440SPE_XOR_ID;
4412		/* As far as the XOR engine is concerned, it does not
4413		 * use FIFOs but uses linked list. So there is no dependency
4414		 * between pool size to allocate and the engine configuration.
4415		 */
4416		pool_size = PAGE_SIZE << 1;
4417	} else {
4418		/* it is DMA0 or DMA1 */
4419		idx = of_get_property(np, "cell-index", &len);
4420		if (!idx || (len != sizeof(u32))) {
4421			dev_err(&ofdev->dev, "Device node %s has missing "
4422				"or invalid cell-index property\n",
4423				np->full_name);
4424			return -EINVAL;
4425		}
4426		id = *idx;
4427		/* DMA0,1 engines use FIFO to maintain CDBs, so we
4428		 * should allocate the pool accordingly to size of this
4429		 * FIFO. Thus, the pool size depends on the FIFO depth:
4430		 * how much CDBs pointers the FIFO may contain then so
4431		 * much CDBs we should provide in the pool.
4432		 * That is
4433		 *   CDB size = 32B;
4434		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4435		 *   Pool size = CDBs number * CDB size =
4436		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4437		 */
4438		pool_size = (id == PPC440SPE_DMA0_ID) ?
4439			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4440		pool_size <<= 2;
4441	}
4442
4443	if (of_address_to_resource(np, 0, &res)) {
4444		dev_err(&ofdev->dev, "failed to get memory resource\n");
4445		initcode = PPC_ADMA_INIT_MEMRES;
4446		ret = -ENODEV;
4447		goto out;
4448	}
4449
4450	if (!request_mem_region(res.start, resource_size(&res),
4451				dev_driver_string(&ofdev->dev))) {
4452		dev_err(&ofdev->dev, "failed to request memory region "
4453			"(0x%016llx-0x%016llx)\n",
4454			(u64)res.start, (u64)res.end);
4455		initcode = PPC_ADMA_INIT_MEMREG;
4456		ret = -EBUSY;
4457		goto out;
4458	}
4459
4460	/* create a device */
4461	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4462	if (!adev) {
4463		dev_err(&ofdev->dev, "failed to allocate device\n");
4464		initcode = PPC_ADMA_INIT_ALLOC;
4465		ret = -ENOMEM;
4466		goto err_adev_alloc;
4467	}
4468
4469	adev->id = id;
4470	adev->pool_size = pool_size;
4471	/* allocate coherent memory for hardware descriptors */
4472	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4473					adev->pool_size, &adev->dma_desc_pool,
4474					GFP_KERNEL);
4475	if (adev->dma_desc_pool_virt == NULL) {
4476		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4477			"memory for hardware descriptors\n",
4478			adev->pool_size);
4479		initcode = PPC_ADMA_INIT_COHERENT;
4480		ret = -ENOMEM;
4481		goto err_dma_alloc;
4482	}
4483	dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n",
4484		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4485
4486	regs = ioremap(res.start, resource_size(&res));
4487	if (!regs) {
4488		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4489		goto err_regs_alloc;
4490	}
4491
4492	if (adev->id == PPC440SPE_XOR_ID) {
4493		adev->xor_reg = regs;
4494		/* Reset XOR */
4495		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4496		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4497	} else {
4498		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4499				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4500		adev->dma_reg = regs;
4501		/* DMAx_FIFO_SIZE is defined in bytes,
4502		 * <fsiz> - is defined in number of CDB pointers (8byte).
4503		 * DMA FIFO Length = CSlength + CPlength, where
4504		 * CSlength = CPlength = (fsiz + 1) * 8.
4505		 */
4506		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4507			  &adev->dma_reg->fsiz);
4508		/* Configure DMA engine */
4509		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4510			  &adev->dma_reg->cfg);
4511		/* Clear Status */
4512		iowrite32(~0, &adev->dma_reg->dsts);
4513	}
4514
4515	adev->dev = &ofdev->dev;
4516	adev->common.dev = &ofdev->dev;
4517	INIT_LIST_HEAD(&adev->common.channels);
4518	dev_set_drvdata(&ofdev->dev, adev);
4519
4520	/* create a channel */
4521	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4522	if (!chan) {
4523		dev_err(&ofdev->dev, "can't allocate channel structure\n");
4524		initcode = PPC_ADMA_INIT_CHANNEL;
4525		ret = -ENOMEM;
4526		goto err_chan_alloc;
4527	}
4528
4529	spin_lock_init(&chan->lock);
4530	INIT_LIST_HEAD(&chan->chain);
4531	INIT_LIST_HEAD(&chan->all_slots);
4532	chan->device = adev;
4533	chan->common.device = &adev->common;
4534	list_add_tail(&chan->common.device_node, &adev->common.channels);
4535	tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4536		     (unsigned long)chan);
4537
4538	/* allocate and map helper pages for async validation or
4539	 * async_mult/async_sum_product operations on DMA0/1.
4540	 */
4541	if (adev->id != PPC440SPE_XOR_ID) {
4542		chan->pdest_page = alloc_page(GFP_KERNEL);
4543		chan->qdest_page = alloc_page(GFP_KERNEL);
4544		if (!chan->pdest_page ||
4545		    !chan->qdest_page) {
4546			if (chan->pdest_page)
4547				__free_page(chan->pdest_page);
4548			if (chan->qdest_page)
4549				__free_page(chan->qdest_page);
4550			ret = -ENOMEM;
4551			goto err_page_alloc;
4552		}
4553		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4554					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4555		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4556					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4557	}
4558
4559	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4560	if (ref) {
4561		ref->chan = &chan->common;
4562		INIT_LIST_HEAD(&ref->node);
4563		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4564	} else {
4565		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4566		ret = -ENOMEM;
4567		goto err_ref_alloc;
4568	}
4569
4570	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4571	if (ret)
4572		goto err_irq;
4573
4574	ppc440spe_adma_init_capabilities(adev);
4575
4576	ret = dma_async_device_register(&adev->common);
4577	if (ret) {
4578		initcode = PPC_ADMA_INIT_REGISTER;
4579		dev_err(&ofdev->dev, "failed to register dma device\n");
4580		goto err_dev_reg;
4581	}
4582
4583	goto out;
4584
4585err_dev_reg:
4586	ppc440spe_adma_release_irqs(adev, chan);
4587err_irq:
4588	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4589		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4590			list_del(&ref->node);
4591			kfree(ref);
4592		}
4593	}
4594err_ref_alloc:
4595	if (adev->id != PPC440SPE_XOR_ID) {
4596		dma_unmap_page(&ofdev->dev, chan->pdest,
4597			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4598		dma_unmap_page(&ofdev->dev, chan->qdest,
4599			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4600		__free_page(chan->pdest_page);
4601		__free_page(chan->qdest_page);
4602	}
4603err_page_alloc:
4604	kfree(chan);
4605err_chan_alloc:
4606	if (adev->id == PPC440SPE_XOR_ID)
4607		iounmap(adev->xor_reg);
4608	else
4609		iounmap(adev->dma_reg);
4610err_regs_alloc:
4611	dma_free_coherent(adev->dev, adev->pool_size,
4612			  adev->dma_desc_pool_virt,
4613			  adev->dma_desc_pool);
4614err_dma_alloc:
4615	kfree(adev);
4616err_adev_alloc:
4617	release_mem_region(res.start, resource_size(&res));
4618out:
4619	if (id < PPC440SPE_ADMA_ENGINES_NUM)
4620		ppc440spe_adma_devices[id] = initcode;
4621
4622	return ret;
4623}
4624
4625/**
4626 * ppc440spe_adma_remove - remove the asynch device
4627 */
4628static int __devexit ppc440spe_adma_remove(struct platform_device *ofdev)
4629{
4630	struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
4631	struct device_node *np = ofdev->dev.of_node;
4632	struct resource res;
4633	struct dma_chan *chan, *_chan;
4634	struct ppc_dma_chan_ref *ref, *_ref;
4635	struct ppc440spe_adma_chan *ppc440spe_chan;
4636
4637	dev_set_drvdata(&ofdev->dev, NULL);
4638	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4639		ppc440spe_adma_devices[adev->id] = -1;
4640
4641	dma_async_device_unregister(&adev->common);
4642
4643	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4644				 device_node) {
4645		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4646		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4647		tasklet_kill(&ppc440spe_chan->irq_tasklet);
4648		if (adev->id != PPC440SPE_XOR_ID) {
4649			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4650					PAGE_SIZE, DMA_BIDIRECTIONAL);
4651			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4652					PAGE_SIZE, DMA_BIDIRECTIONAL);
4653			__free_page(ppc440spe_chan->pdest_page);
4654			__free_page(ppc440spe_chan->qdest_page);
4655		}
4656		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4657					 node) {
4658			if (ppc440spe_chan ==
4659			    to_ppc440spe_adma_chan(ref->chan)) {
4660				list_del(&ref->node);
4661				kfree(ref);
4662			}
4663		}
4664		list_del(&chan->device_node);
4665		kfree(ppc440spe_chan);
4666	}
4667
4668	dma_free_coherent(adev->dev, adev->pool_size,
4669			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
4670	if (adev->id == PPC440SPE_XOR_ID)
4671		iounmap(adev->xor_reg);
4672	else
4673		iounmap(adev->dma_reg);
4674	of_address_to_resource(np, 0, &res);
4675	release_mem_region(res.start, resource_size(&res));
4676	kfree(adev);
4677	return 0;
4678}
4679
4680/*
4681 * /sys driver interface to enable h/w RAID-6 capabilities
4682 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4683 * directory are "devices", "enable" and "poly".
4684 * "devices" shows available engines.
4685 * "enable" is used to enable RAID-6 capabilities or to check
4686 * whether these has been activated.
4687 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4688 */
4689
4690static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4691{
4692	ssize_t size = 0;
4693	int i;
4694
4695	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4696		if (ppc440spe_adma_devices[i] == -1)
4697			continue;
4698		size += snprintf(buf + size, PAGE_SIZE - size,
4699				 "PPC440SP(E)-ADMA.%d: %s\n", i,
4700				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4701	}
4702	return size;
4703}
4704
4705static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4706{
4707	return snprintf(buf, PAGE_SIZE,
4708			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4709			ppc440spe_r6_enabled ? "EN" : "DIS");
4710}
4711
4712static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4713					const char *buf, size_t count)
4714{
4715	unsigned long val;
4716
4717	if (!count || count > 11)
4718		return -EINVAL;
4719
4720	if (!ppc440spe_r6_tchan)
4721		return -EFAULT;
4722
4723	/* Write a key */
4724	sscanf(buf, "%lx", &val);
4725	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4726	isync();
4727
4728	/* Verify whether it really works now */
4729	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4730		pr_info("PPC440SP(e) RAID-6 has been activated "
4731			"successfully\n");
4732		ppc440spe_r6_enabled = 1;
4733	} else {
4734		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4735			" Error key ?\n");
4736		ppc440spe_r6_enabled = 0;
4737	}
4738	return count;
4739}
4740
4741static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4742{
4743	ssize_t size = 0;
4744	u32 reg;
4745
4746#ifdef CONFIG_440SP
4747	/* 440SP has fixed polynomial */
4748	reg = 0x4d;
4749#else
4750	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4751	reg >>= MQ0_CFBHL_POLY;
4752	reg &= 0xFF;
4753#endif
4754
4755	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4756			"uses 0x1%02x polynomial.\n", reg);
4757	return size;
4758}
4759
4760static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4761				      const char *buf, size_t count)
4762{
4763	unsigned long reg, val;
4764
4765#ifdef CONFIG_440SP
4766	/* 440SP uses default 0x14D polynomial only */
4767	return -EINVAL;
4768#endif
4769
4770	if (!count || count > 6)
4771		return -EINVAL;
4772
4773	/* e.g., 0x14D or 0x11D */
4774	sscanf(buf, "%lx", &val);
4775
4776	if (val & ~0x1FF)
4777		return -EINVAL;
4778
4779	val &= 0xFF;
4780	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4781	reg &= ~(0xFF << MQ0_CFBHL_POLY);
4782	reg |= val << MQ0_CFBHL_POLY;
4783	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4784
4785	return count;
4786}
4787
4788static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4789static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4790		   store_ppc440spe_r6enable);
4791static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4792		   store_ppc440spe_r6poly);
4793
4794/*
4795 * Common initialisation for RAID engines; allocate memory for
4796 * DMAx FIFOs, perform configuration common for all DMA engines.
4797 * Further DMA engine specific configuration is done at probe time.
4798 */
4799static int ppc440spe_configure_raid_devices(void)
4800{
4801	struct device_node *np;
4802	struct resource i2o_res;
4803	struct i2o_regs __iomem *i2o_reg;
4804	dcr_host_t i2o_dcr_host;
4805	unsigned int dcr_base, dcr_len;
4806	int i, ret;
4807
4808	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4809	if (!np) {
4810		pr_err("%s: can't find I2O device tree node\n",
4811			__func__);
4812		return -ENODEV;
4813	}
4814
4815	if (of_address_to_resource(np, 0, &i2o_res)) {
4816		of_node_put(np);
4817		return -EINVAL;
4818	}
4819
4820	i2o_reg = of_iomap(np, 0);
4821	if (!i2o_reg) {
4822		pr_err("%s: failed to map I2O registers\n", __func__);
4823		of_node_put(np);
4824		return -EINVAL;
4825	}
4826
4827	/* Get I2O DCRs base */
4828	dcr_base = dcr_resource_start(np, 0);
4829	dcr_len = dcr_resource_len(np, 0);
4830	if (!dcr_base && !dcr_len) {
4831		pr_err("%s: can't get DCR registers base/len!\n",
4832			np->full_name);
4833		of_node_put(np);
4834		iounmap(i2o_reg);
4835		return -ENODEV;
4836	}
4837
4838	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4839	if (!DCR_MAP_OK(i2o_dcr_host)) {
4840		pr_err("%s: failed to map DCRs!\n", np->full_name);
4841		of_node_put(np);
4842		iounmap(i2o_reg);
4843		return -ENODEV;
4844	}
4845	of_node_put(np);
4846
4847	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4848	 * the base address of FIFO memory space.
4849	 * Actually we need twice more physical memory than programmed in the
4850	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4851	 */
4852	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4853					 GFP_KERNEL);
4854	if (!ppc440spe_dma_fifo_buf) {
4855		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4856		iounmap(i2o_reg);
4857		dcr_unmap(i2o_dcr_host, dcr_len);
4858		return -ENOMEM;
4859	}
4860
4861	/*
4862	 * Configure h/w
4863	 */
4864	/* Reset I2O/DMA */
4865	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4866	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4867
4868	/* Setup the base address of mmaped registers */
4869	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4870	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4871						I2O_REG_ENABLE);
4872	dcr_unmap(i2o_dcr_host, dcr_len);
4873
4874	/* Setup FIFO memory space base address */
4875	iowrite32(0, &i2o_reg->ifbah);
4876	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4877
4878	/* set zero FIFO size for I2O, so the whole
4879	 * ppc440spe_dma_fifo_buf is used by DMAs.
4880	 * DMAx_FIFOs will be configured while probe.
4881	 */
4882	iowrite32(0, &i2o_reg->ifsiz);
4883	iounmap(i2o_reg);
4884
4885	/* To prepare WXOR/RXOR functionality we need access to
4886	 * Memory Queue Module DCRs (finally it will be enabled
4887	 * via /sys interface of the ppc440spe ADMA driver).
4888	 */
4889	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4890	if (!np) {
4891		pr_err("%s: can't find MQ device tree node\n",
4892			__func__);
4893		ret = -ENODEV;
4894		goto out_free;
4895	}
4896
4897	/* Get MQ DCRs base */
4898	dcr_base = dcr_resource_start(np, 0);
4899	dcr_len = dcr_resource_len(np, 0);
4900	if (!dcr_base && !dcr_len) {
4901		pr_err("%s: can't get DCR registers base/len!\n",
4902			np->full_name);
4903		ret = -ENODEV;
4904		goto out_mq;
4905	}
4906
4907	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4908	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4909		pr_err("%s: failed to map DCRs!\n", np->full_name);
4910		ret = -ENODEV;
4911		goto out_mq;
4912	}
4913	of_node_put(np);
4914	ppc440spe_mq_dcr_len = dcr_len;
4915
4916	/* Set HB alias */
4917	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4918
4919	/* Set:
4920	 * - LL transaction passing limit to 1;
4921	 * - Memory controller cycle limit to 1;
4922	 * - Galois Polynomial to 0x14d (default)
4923	 */
4924	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4925		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4926		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4927
4928	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4929	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4930		ppc440spe_adma_devices[i] = -1;
4931
4932	return 0;
4933
4934out_mq:
4935	of_node_put(np);
4936out_free:
4937	kfree(ppc440spe_dma_fifo_buf);
4938	return ret;
4939}
4940
4941static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = {
4942	{ .compatible	= "ibm,dma-440spe", },
4943	{ .compatible	= "amcc,xor-accelerator", },
4944	{},
4945};
4946MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4947
4948static struct of_platform_driver ppc440spe_adma_driver = {
4949	.probe = ppc440spe_adma_probe,
4950	.remove = __devexit_p(ppc440spe_adma_remove),
4951	.driver = {
4952		.name = "PPC440SP(E)-ADMA",
4953		.owner = THIS_MODULE,
4954		.of_match_table = ppc440spe_adma_of_match,
4955	},
4956};
4957
4958static __init int ppc440spe_adma_init(void)
4959{
4960	int ret;
4961
4962	ret = ppc440spe_configure_raid_devices();
4963	if (ret)
4964		return ret;
4965
4966	ret = of_register_platform_driver(&ppc440spe_adma_driver);
4967	if (ret) {
4968		pr_err("%s: failed to register platform driver\n",
4969			__func__);
4970		goto out_reg;
4971	}
4972
4973	/* Initialization status */
4974	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4975				 &driver_attr_devices);
4976	if (ret)
4977		goto out_dev;
4978
4979	/* RAID-6 h/w enable entry */
4980	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4981				 &driver_attr_enable);
4982	if (ret)
4983		goto out_en;
4984
4985	/* GF polynomial to use */
4986	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4987				 &driver_attr_poly);
4988	if (!ret)
4989		return ret;
4990
4991	driver_remove_file(&ppc440spe_adma_driver.driver,
4992			   &driver_attr_enable);
4993out_en:
4994	driver_remove_file(&ppc440spe_adma_driver.driver,
4995			   &driver_attr_devices);
4996out_dev:
4997	/* User will not be able to enable h/w RAID-6 */
4998	pr_err("%s: failed to create RAID-6 driver interface\n",
4999		__func__);
5000	of_unregister_platform_driver(&ppc440spe_adma_driver);
5001out_reg:
5002	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
5003	kfree(ppc440spe_dma_fifo_buf);
5004	return ret;
5005}
5006
5007static void __exit ppc440spe_adma_exit(void)
5008{
5009	driver_remove_file(&ppc440spe_adma_driver.driver,
5010			   &driver_attr_poly);
5011	driver_remove_file(&ppc440spe_adma_driver.driver,
5012			   &driver_attr_enable);
5013	driver_remove_file(&ppc440spe_adma_driver.driver,
5014			   &driver_attr_devices);
5015	of_unregister_platform_driver(&ppc440spe_adma_driver);
5016	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
5017	kfree(ppc440spe_dma_fifo_buf);
5018}
5019
5020arch_initcall(ppc440spe_adma_init);
5021module_exit(ppc440spe_adma_exit);
5022
5023MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
5024MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
5025MODULE_LICENSE("GPL");
5026