• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/char/
1/*
2 * Timer device implementation for SGI SN platforms.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
9 *
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer.  The code below is currently specific to the SGI Altix
12 * SHub RTC, however.
13 *
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 *		support via the posix timer interface
19 */
20
21#include <linux/types.h>
22#include <linux/kernel.h>
23#include <linux/ioctl.h>
24#include <linux/module.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/mm.h>
28#include <linux/fs.h>
29#include <linux/mmtimer.h>
30#include <linux/miscdevice.h>
31#include <linux/posix-timers.h>
32#include <linux/interrupt.h>
33#include <linux/time.h>
34#include <linux/math64.h>
35#include <linux/smp_lock.h>
36#include <linux/slab.h>
37
38#include <asm/uaccess.h>
39#include <asm/sn/addrs.h>
40#include <asm/sn/intr.h>
41#include <asm/sn/shub_mmr.h>
42#include <asm/sn/nodepda.h>
43#include <asm/sn/shubio.h>
44
45MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
46MODULE_DESCRIPTION("SGI Altix RTC Timer");
47MODULE_LICENSE("GPL");
48
49/* name of the device, usually in /dev */
50#define MMTIMER_NAME "mmtimer"
51#define MMTIMER_DESC "SGI Altix RTC Timer"
52#define MMTIMER_VERSION "2.1"
53
54#define RTC_BITS 55 /* 55 bits for this implementation */
55
56extern unsigned long sn_rtc_cycles_per_second;
57
58#define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))
59
60#define rtc_time()              (*RTC_COUNTER_ADDR)
61
62static long mmtimer_ioctl(struct file *file, unsigned int cmd,
63						unsigned long arg);
64static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
65
66/*
67 * Period in femtoseconds (10^-15 s)
68 */
69static unsigned long mmtimer_femtoperiod = 0;
70
71static const struct file_operations mmtimer_fops = {
72	.owner = THIS_MODULE,
73	.mmap =	mmtimer_mmap,
74	.unlocked_ioctl = mmtimer_ioctl,
75};
76
77/*
78 * We only have comparison registers RTC1-4 currently available per
79 * node.  RTC0 is used by SAL.
80 */
81/* Check for an RTC interrupt pending */
82static int mmtimer_int_pending(int comparator)
83{
84	if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
85			SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
86		return 1;
87	else
88		return 0;
89}
90
91/* Clear the RTC interrupt pending bit */
92static void mmtimer_clr_int_pending(int comparator)
93{
94	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
95		SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
96}
97
98/* Setup timer on comparator RTC1 */
99static void mmtimer_setup_int_0(int cpu, u64 expires)
100{
101	u64 val;
102
103	/* Disable interrupt */
104	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
105
106	/* Initialize comparator value */
107	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
108
109	/* Clear pending bit */
110	mmtimer_clr_int_pending(0);
111
112	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
113		((u64)cpu_physical_id(cpu) <<
114			SH_RTC1_INT_CONFIG_PID_SHFT);
115
116	/* Set configuration */
117	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
118
119	/* Enable RTC interrupts */
120	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
121
122	/* Initialize comparator value */
123	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
124
125
126}
127
128/* Setup timer on comparator RTC2 */
129static void mmtimer_setup_int_1(int cpu, u64 expires)
130{
131	u64 val;
132
133	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
134
135	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
136
137	mmtimer_clr_int_pending(1);
138
139	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
140		((u64)cpu_physical_id(cpu) <<
141			SH_RTC2_INT_CONFIG_PID_SHFT);
142
143	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
144
145	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
146
147	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
148}
149
150/* Setup timer on comparator RTC3 */
151static void mmtimer_setup_int_2(int cpu, u64 expires)
152{
153	u64 val;
154
155	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
156
157	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
158
159	mmtimer_clr_int_pending(2);
160
161	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
162		((u64)cpu_physical_id(cpu) <<
163			SH_RTC3_INT_CONFIG_PID_SHFT);
164
165	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
166
167	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
168
169	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
170}
171
172/*
173 * This function must be called with interrupts disabled and preemption off
174 * in order to insure that the setup succeeds in a deterministic time frame.
175 * It will check if the interrupt setup succeeded.
176 */
177static int mmtimer_setup(int cpu, int comparator, unsigned long expires)
178{
179
180	switch (comparator) {
181	case 0:
182		mmtimer_setup_int_0(cpu, expires);
183		break;
184	case 1:
185		mmtimer_setup_int_1(cpu, expires);
186		break;
187	case 2:
188		mmtimer_setup_int_2(cpu, expires);
189		break;
190	}
191	/* We might've missed our expiration time */
192	if (rtc_time() <= expires)
193		return 1;
194
195	/*
196	 * If an interrupt is already pending then its okay
197	 * if not then we failed
198	 */
199	return mmtimer_int_pending(comparator);
200}
201
202static int mmtimer_disable_int(long nasid, int comparator)
203{
204	switch (comparator) {
205	case 0:
206		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
207			0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
208		break;
209	case 1:
210		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
211			0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
212		break;
213	case 2:
214		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
215			0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
216		break;
217	default:
218		return -EFAULT;
219	}
220	return 0;
221}
222
223#define COMPARATOR	1		/* The comparator to use */
224
225#define TIMER_OFF	0xbadcabLL	/* Timer is not setup */
226#define TIMER_SET	0		/* Comparator is set for this timer */
227
228/* There is one of these for each timer */
229struct mmtimer {
230	struct rb_node list;
231	struct k_itimer *timer;
232	int cpu;
233};
234
235struct mmtimer_node {
236	spinlock_t lock ____cacheline_aligned;
237	struct rb_root timer_head;
238	struct rb_node *next;
239	struct tasklet_struct tasklet;
240};
241static struct mmtimer_node *timers;
242
243
244/*
245 * Add a new mmtimer struct to the node's mmtimer list.
246 * This function assumes the struct mmtimer_node is locked.
247 */
248static void mmtimer_add_list(struct mmtimer *n)
249{
250	int nodeid = n->timer->it.mmtimer.node;
251	unsigned long expires = n->timer->it.mmtimer.expires;
252	struct rb_node **link = &timers[nodeid].timer_head.rb_node;
253	struct rb_node *parent = NULL;
254	struct mmtimer *x;
255
256	/*
257	 * Find the right place in the rbtree:
258	 */
259	while (*link) {
260		parent = *link;
261		x = rb_entry(parent, struct mmtimer, list);
262
263		if (expires < x->timer->it.mmtimer.expires)
264			link = &(*link)->rb_left;
265		else
266			link = &(*link)->rb_right;
267	}
268
269	/*
270	 * Insert the timer to the rbtree and check whether it
271	 * replaces the first pending timer
272	 */
273	rb_link_node(&n->list, parent, link);
274	rb_insert_color(&n->list, &timers[nodeid].timer_head);
275
276	if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
277			struct mmtimer, list)->timer->it.mmtimer.expires)
278		timers[nodeid].next = &n->list;
279}
280
281/*
282 * Set the comparator for the next timer.
283 * This function assumes the struct mmtimer_node is locked.
284 */
285static void mmtimer_set_next_timer(int nodeid)
286{
287	struct mmtimer_node *n = &timers[nodeid];
288	struct mmtimer *x;
289	struct k_itimer *t;
290	int o;
291
292restart:
293	if (n->next == NULL)
294		return;
295
296	x = rb_entry(n->next, struct mmtimer, list);
297	t = x->timer;
298	if (!t->it.mmtimer.incr) {
299		/* Not an interval timer */
300		if (!mmtimer_setup(x->cpu, COMPARATOR,
301					t->it.mmtimer.expires)) {
302			/* Late setup, fire now */
303			tasklet_schedule(&n->tasklet);
304		}
305		return;
306	}
307
308	/* Interval timer */
309	o = 0;
310	while (!mmtimer_setup(x->cpu, COMPARATOR, t->it.mmtimer.expires)) {
311		unsigned long e, e1;
312		struct rb_node *next;
313		t->it.mmtimer.expires += t->it.mmtimer.incr << o;
314		t->it_overrun += 1 << o;
315		o++;
316		if (o > 20) {
317			printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
318			t->it.mmtimer.clock = TIMER_OFF;
319			n->next = rb_next(&x->list);
320			rb_erase(&x->list, &n->timer_head);
321			kfree(x);
322			goto restart;
323		}
324
325		e = t->it.mmtimer.expires;
326		next = rb_next(&x->list);
327
328		if (next == NULL)
329			continue;
330
331		e1 = rb_entry(next, struct mmtimer, list)->
332			timer->it.mmtimer.expires;
333		if (e > e1) {
334			n->next = next;
335			rb_erase(&x->list, &n->timer_head);
336			mmtimer_add_list(x);
337			goto restart;
338		}
339	}
340}
341
342/**
343 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
344 * @file: file structure for the device
345 * @cmd: command to execute
346 * @arg: optional argument to command
347 *
348 * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
349 * failure.
350 *
351 * Valid commands:
352 *
353 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
354 * of the page where the registers are mapped) for the counter in question.
355 *
356 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
357 * seconds
358 *
359 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
360 * specified by @arg
361 *
362 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
363 *
364 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
365 *
366 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
367 * in the address specified by @arg.
368 */
369static long mmtimer_ioctl(struct file *file, unsigned int cmd,
370						unsigned long arg)
371{
372	int ret = 0;
373
374	lock_kernel();
375
376	switch (cmd) {
377	case MMTIMER_GETOFFSET:	/* offset of the counter */
378		/*
379		 * SN RTC registers are on their own 64k page
380		 */
381		if(PAGE_SIZE <= (1 << 16))
382			ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
383		else
384			ret = -ENOSYS;
385		break;
386
387	case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
388		if(copy_to_user((unsigned long __user *)arg,
389				&mmtimer_femtoperiod, sizeof(unsigned long)))
390			ret = -EFAULT;
391		break;
392
393	case MMTIMER_GETFREQ: /* frequency in Hz */
394		if(copy_to_user((unsigned long __user *)arg,
395				&sn_rtc_cycles_per_second,
396				sizeof(unsigned long)))
397			ret = -EFAULT;
398		break;
399
400	case MMTIMER_GETBITS: /* number of bits in the clock */
401		ret = RTC_BITS;
402		break;
403
404	case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
405		ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
406		break;
407
408	case MMTIMER_GETCOUNTER:
409		if(copy_to_user((unsigned long __user *)arg,
410				RTC_COUNTER_ADDR, sizeof(unsigned long)))
411			ret = -EFAULT;
412		break;
413	default:
414		ret = -ENOTTY;
415		break;
416	}
417	unlock_kernel();
418	return ret;
419}
420
421/**
422 * mmtimer_mmap - maps the clock's registers into userspace
423 * @file: file structure for the device
424 * @vma: VMA to map the registers into
425 *
426 * Calls remap_pfn_range() to map the clock's registers into
427 * the calling process' address space.
428 */
429static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
430{
431	unsigned long mmtimer_addr;
432
433	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
434		return -EINVAL;
435
436	if (vma->vm_flags & VM_WRITE)
437		return -EPERM;
438
439	if (PAGE_SIZE > (1 << 16))
440		return -ENOSYS;
441
442	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
443
444	mmtimer_addr = __pa(RTC_COUNTER_ADDR);
445	mmtimer_addr &= ~(PAGE_SIZE - 1);
446	mmtimer_addr &= 0xfffffffffffffffUL;
447
448	if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
449					PAGE_SIZE, vma->vm_page_prot)) {
450		printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
451		return -EAGAIN;
452	}
453
454	return 0;
455}
456
457static struct miscdevice mmtimer_miscdev = {
458	SGI_MMTIMER,
459	MMTIMER_NAME,
460	&mmtimer_fops
461};
462
463static struct timespec sgi_clock_offset;
464static int sgi_clock_period;
465
466/*
467 * Posix Timer Interface
468 */
469
470static struct timespec sgi_clock_offset;
471static int sgi_clock_period;
472
473static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
474{
475	u64 nsec;
476
477	nsec = rtc_time() * sgi_clock_period
478			+ sgi_clock_offset.tv_nsec;
479	*tp = ns_to_timespec(nsec);
480	tp->tv_sec += sgi_clock_offset.tv_sec;
481	return 0;
482};
483
484static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
485{
486
487	u64 nsec;
488	u32 rem;
489
490	nsec = rtc_time() * sgi_clock_period;
491
492	sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
493
494	if (rem <= tp->tv_nsec)
495		sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
496	else {
497		sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
498		sgi_clock_offset.tv_sec--;
499	}
500	return 0;
501}
502
503/**
504 * mmtimer_interrupt - timer interrupt handler
505 * @irq: irq received
506 * @dev_id: device the irq came from
507 *
508 * Called when one of the comarators matches the counter, This
509 * routine will send signals to processes that have requested
510 * them.
511 *
512 * This interrupt is run in an interrupt context
513 * by the SHUB. It is therefore safe to locally access SHub
514 * registers.
515 */
516static irqreturn_t
517mmtimer_interrupt(int irq, void *dev_id)
518{
519	unsigned long expires = 0;
520	int result = IRQ_NONE;
521	unsigned indx = cpu_to_node(smp_processor_id());
522	struct mmtimer *base;
523
524	spin_lock(&timers[indx].lock);
525	base = rb_entry(timers[indx].next, struct mmtimer, list);
526	if (base == NULL) {
527		spin_unlock(&timers[indx].lock);
528		return result;
529	}
530
531	if (base->cpu == smp_processor_id()) {
532		if (base->timer)
533			expires = base->timer->it.mmtimer.expires;
534		/* expires test won't work with shared irqs */
535		if ((mmtimer_int_pending(COMPARATOR) > 0) ||
536			(expires && (expires <= rtc_time()))) {
537			mmtimer_clr_int_pending(COMPARATOR);
538			tasklet_schedule(&timers[indx].tasklet);
539			result = IRQ_HANDLED;
540		}
541	}
542	spin_unlock(&timers[indx].lock);
543	return result;
544}
545
546static void mmtimer_tasklet(unsigned long data)
547{
548	int nodeid = data;
549	struct mmtimer_node *mn = &timers[nodeid];
550	struct mmtimer *x;
551	struct k_itimer *t;
552	unsigned long flags;
553
554	/* Send signal and deal with periodic signals */
555	spin_lock_irqsave(&mn->lock, flags);
556	if (!mn->next)
557		goto out;
558
559	x = rb_entry(mn->next, struct mmtimer, list);
560	t = x->timer;
561
562	if (t->it.mmtimer.clock == TIMER_OFF)
563		goto out;
564
565	t->it_overrun = 0;
566
567	mn->next = rb_next(&x->list);
568	rb_erase(&x->list, &mn->timer_head);
569
570	if (posix_timer_event(t, 0) != 0)
571		t->it_overrun++;
572
573	if(t->it.mmtimer.incr) {
574		t->it.mmtimer.expires += t->it.mmtimer.incr;
575		mmtimer_add_list(x);
576	} else {
577		/* Ensure we don't false trigger in mmtimer_interrupt */
578		t->it.mmtimer.clock = TIMER_OFF;
579		t->it.mmtimer.expires = 0;
580		kfree(x);
581	}
582	/* Set comparator for next timer, if there is one */
583	mmtimer_set_next_timer(nodeid);
584
585	t->it_overrun_last = t->it_overrun;
586out:
587	spin_unlock_irqrestore(&mn->lock, flags);
588}
589
590static int sgi_timer_create(struct k_itimer *timer)
591{
592	/* Insure that a newly created timer is off */
593	timer->it.mmtimer.clock = TIMER_OFF;
594	return 0;
595}
596
597/* This does not really delete a timer. It just insures
598 * that the timer is not active
599 *
600 * Assumption: it_lock is already held with irq's disabled
601 */
602static int sgi_timer_del(struct k_itimer *timr)
603{
604	cnodeid_t nodeid = timr->it.mmtimer.node;
605	unsigned long irqflags;
606
607	spin_lock_irqsave(&timers[nodeid].lock, irqflags);
608	if (timr->it.mmtimer.clock != TIMER_OFF) {
609		unsigned long expires = timr->it.mmtimer.expires;
610		struct rb_node *n = timers[nodeid].timer_head.rb_node;
611		struct mmtimer *uninitialized_var(t);
612		int r = 0;
613
614		timr->it.mmtimer.clock = TIMER_OFF;
615		timr->it.mmtimer.expires = 0;
616
617		while (n) {
618			t = rb_entry(n, struct mmtimer, list);
619			if (t->timer == timr)
620				break;
621
622			if (expires < t->timer->it.mmtimer.expires)
623				n = n->rb_left;
624			else
625				n = n->rb_right;
626		}
627
628		if (!n) {
629			spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
630			return 0;
631		}
632
633		if (timers[nodeid].next == n) {
634			timers[nodeid].next = rb_next(n);
635			r = 1;
636		}
637
638		rb_erase(n, &timers[nodeid].timer_head);
639		kfree(t);
640
641		if (r) {
642			mmtimer_disable_int(cnodeid_to_nasid(nodeid),
643				COMPARATOR);
644			mmtimer_set_next_timer(nodeid);
645		}
646	}
647	spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
648	return 0;
649}
650
651/* Assumption: it_lock is already held with irq's disabled */
652static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
653{
654
655	if (timr->it.mmtimer.clock == TIMER_OFF) {
656		cur_setting->it_interval.tv_nsec = 0;
657		cur_setting->it_interval.tv_sec = 0;
658		cur_setting->it_value.tv_nsec = 0;
659		cur_setting->it_value.tv_sec =0;
660		return;
661	}
662
663	cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
664	cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
665}
666
667
668static int sgi_timer_set(struct k_itimer *timr, int flags,
669	struct itimerspec * new_setting,
670	struct itimerspec * old_setting)
671{
672	unsigned long when, period, irqflags;
673	int err = 0;
674	cnodeid_t nodeid;
675	struct mmtimer *base;
676	struct rb_node *n;
677
678	if (old_setting)
679		sgi_timer_get(timr, old_setting);
680
681	sgi_timer_del(timr);
682	when = timespec_to_ns(&new_setting->it_value);
683	period = timespec_to_ns(&new_setting->it_interval);
684
685	if (when == 0)
686		/* Clear timer */
687		return 0;
688
689	base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
690	if (base == NULL)
691		return -ENOMEM;
692
693	if (flags & TIMER_ABSTIME) {
694		struct timespec n;
695		unsigned long now;
696
697		getnstimeofday(&n);
698		now = timespec_to_ns(&n);
699		if (when > now)
700			when -= now;
701		else
702			/* Fire the timer immediately */
703			when = 0;
704	}
705
706	/*
707	 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
708	 * to getnstimeofday() in order to be as faithful as possible to the time
709	 * specified.
710	 */
711	when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
712	period = (period + sgi_clock_period - 1)  / sgi_clock_period;
713
714	/*
715	 * We are allocating a local SHub comparator. If we would be moved to another
716	 * cpu then another SHub may be local to us. Prohibit that by switching off
717	 * preemption.
718	 */
719	preempt_disable();
720
721	nodeid =  cpu_to_node(smp_processor_id());
722
723	/* Lock the node timer structure */
724	spin_lock_irqsave(&timers[nodeid].lock, irqflags);
725
726	base->timer = timr;
727	base->cpu = smp_processor_id();
728
729	timr->it.mmtimer.clock = TIMER_SET;
730	timr->it.mmtimer.node = nodeid;
731	timr->it.mmtimer.incr = period;
732	timr->it.mmtimer.expires = when;
733
734	n = timers[nodeid].next;
735
736	/* Add the new struct mmtimer to node's timer list */
737	mmtimer_add_list(base);
738
739	if (timers[nodeid].next == n) {
740		/* No need to reprogram comparator for now */
741		spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
742		preempt_enable();
743		return err;
744	}
745
746	/* We need to reprogram the comparator */
747	if (n)
748		mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
749
750	mmtimer_set_next_timer(nodeid);
751
752	/* Unlock the node timer structure */
753	spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
754
755	preempt_enable();
756
757	return err;
758}
759
760static struct k_clock sgi_clock = {
761	.res = 0,
762	.clock_set = sgi_clock_set,
763	.clock_get = sgi_clock_get,
764	.timer_create = sgi_timer_create,
765	.nsleep = do_posix_clock_nonanosleep,
766	.timer_set = sgi_timer_set,
767	.timer_del = sgi_timer_del,
768	.timer_get = sgi_timer_get
769};
770
771/**
772 * mmtimer_init - device initialization routine
773 *
774 * Does initial setup for the mmtimer device.
775 */
776static int __init mmtimer_init(void)
777{
778	cnodeid_t node, maxn = -1;
779
780	if (!ia64_platform_is("sn2"))
781		return 0;
782
783	/*
784	 * Sanity check the cycles/sec variable
785	 */
786	if (sn_rtc_cycles_per_second < 100000) {
787		printk(KERN_ERR "%s: unable to determine clock frequency\n",
788		       MMTIMER_NAME);
789		goto out1;
790	}
791
792	mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
793			       2) / sn_rtc_cycles_per_second;
794
795	if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
796		printk(KERN_WARNING "%s: unable to allocate interrupt.",
797			MMTIMER_NAME);
798		goto out1;
799	}
800
801	if (misc_register(&mmtimer_miscdev)) {
802		printk(KERN_ERR "%s: failed to register device\n",
803		       MMTIMER_NAME);
804		goto out2;
805	}
806
807	/* Get max numbered node, calculate slots needed */
808	for_each_online_node(node) {
809		maxn = node;
810	}
811	maxn++;
812
813	/* Allocate list of node ptrs to mmtimer_t's */
814	timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
815	if (timers == NULL) {
816		printk(KERN_ERR "%s: failed to allocate memory for device\n",
817				MMTIMER_NAME);
818		goto out3;
819	}
820
821	/* Initialize struct mmtimer's for each online node */
822	for_each_online_node(node) {
823		spin_lock_init(&timers[node].lock);
824		tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
825			(unsigned long) node);
826	}
827
828	sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
829	register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
830
831	printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
832	       sn_rtc_cycles_per_second/(unsigned long)1E6);
833
834	return 0;
835
836out3:
837	kfree(timers);
838	misc_deregister(&mmtimer_miscdev);
839out2:
840	free_irq(SGI_MMTIMER_VECTOR, NULL);
841out1:
842	return -1;
843}
844
845module_init(mmtimer_init);
846