• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/block/
1/*
2 * Xilinx SystemACE device driver
3 *
4 * Copyright 2007 Secret Lab Technologies Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 */
10
11/*
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain.  It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
17 *
18 * This driver is a block device driver for the SystemACE.
19 *
20 * Initialization:
21 *    The driver registers itself as a platform_device driver at module
22 *    load time.  The platform bus will take care of calling the
23 *    ace_probe() method for all SystemACE instances in the system.  Any
24 *    number of SystemACE instances are supported.  ace_probe() calls
25 *    ace_setup() which initialized all data structures, reads the CF
26 *    id structure and registers the device.
27 *
28 * Processing:
29 *    Just about all of the heavy lifting in this driver is performed by
30 *    a Finite State Machine (FSM).  The driver needs to wait on a number
31 *    of events; some raised by interrupts, some which need to be polled
32 *    for.  Describing all of the behaviour in a FSM seems to be the
33 *    easiest way to keep the complexity low and make it easy to
34 *    understand what the driver is doing.  If the block ops or the
35 *    request function need to interact with the hardware, then they
36 *    simply need to flag the request and kick of FSM processing.
37 *
38 *    The FSM itself is atomic-safe code which can be run from any
39 *    context.  The general process flow is:
40 *    1. obtain the ace->lock spinlock.
41 *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
42 *       cleared.
43 *    3. release the lock.
44 *
45 *    Individual states do not sleep in any way.  If a condition needs to
46 *    be waited for then the state much clear the fsm_continue flag and
47 *    either schedule the FSM to be run again at a later time, or expect
48 *    an interrupt to call the FSM when the desired condition is met.
49 *
50 *    In normal operation, the FSM is processed at interrupt context
51 *    either when the driver's tasklet is scheduled, or when an irq is
52 *    raised by the hardware.  The tasklet can be scheduled at any time.
53 *    The request method in particular schedules the tasklet when a new
54 *    request has been indicated by the block layer.  Once started, the
55 *    FSM proceeds as far as it can processing the request until it
56 *    needs on a hardware event.  At this point, it must yield execution.
57 *
58 *    A state has two options when yielding execution:
59 *    1. ace_fsm_yield()
60 *       - Call if need to poll for event.
61 *       - clears the fsm_continue flag to exit the processing loop
62 *       - reschedules the tasklet to run again as soon as possible
63 *    2. ace_fsm_yieldirq()
64 *       - Call if an irq is expected from the HW
65 *       - clears the fsm_continue flag to exit the processing loop
66 *       - does not reschedule the tasklet so the FSM will not be processed
67 *         again until an irq is received.
68 *    After calling a yield function, the state must return control back
69 *    to the FSM main loop.
70 *
71 *    Additionally, the driver maintains a kernel timer which can process
72 *    the FSM.  If the FSM gets stalled, typically due to a missed
73 *    interrupt, then the kernel timer will expire and the driver can
74 *    continue where it left off.
75 *
76 * To Do:
77 *    - Add FPGA configuration control interface.
78 *    - Request major number from lanana
79 */
80
81#undef DEBUG
82
83#include <linux/module.h>
84#include <linux/ctype.h>
85#include <linux/init.h>
86#include <linux/interrupt.h>
87#include <linux/errno.h>
88#include <linux/kernel.h>
89#include <linux/delay.h>
90#include <linux/slab.h>
91#include <linux/blkdev.h>
92#include <linux/smp_lock.h>
93#include <linux/ata.h>
94#include <linux/hdreg.h>
95#include <linux/platform_device.h>
96#if defined(CONFIG_OF)
97#include <linux/of_address.h>
98#include <linux/of_device.h>
99#include <linux/of_platform.h>
100#endif
101
102MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
103MODULE_DESCRIPTION("Xilinx SystemACE device driver");
104MODULE_LICENSE("GPL");
105
106/* SystemACE register definitions */
107#define ACE_BUSMODE (0x00)
108
109#define ACE_STATUS (0x04)
110#define ACE_STATUS_CFGLOCK      (0x00000001)
111#define ACE_STATUS_MPULOCK      (0x00000002)
112#define ACE_STATUS_CFGERROR     (0x00000004)	/* config controller error */
113#define ACE_STATUS_CFCERROR     (0x00000008)	/* CF controller error */
114#define ACE_STATUS_CFDETECT     (0x00000010)
115#define ACE_STATUS_DATABUFRDY   (0x00000020)
116#define ACE_STATUS_DATABUFMODE  (0x00000040)
117#define ACE_STATUS_CFGDONE      (0x00000080)
118#define ACE_STATUS_RDYFORCFCMD  (0x00000100)
119#define ACE_STATUS_CFGMODEPIN   (0x00000200)
120#define ACE_STATUS_CFGADDR_MASK (0x0000e000)
121#define ACE_STATUS_CFBSY        (0x00020000)
122#define ACE_STATUS_CFRDY        (0x00040000)
123#define ACE_STATUS_CFDWF        (0x00080000)
124#define ACE_STATUS_CFDSC        (0x00100000)
125#define ACE_STATUS_CFDRQ        (0x00200000)
126#define ACE_STATUS_CFCORR       (0x00400000)
127#define ACE_STATUS_CFERR        (0x00800000)
128
129#define ACE_ERROR (0x08)
130#define ACE_CFGLBA (0x0c)
131#define ACE_MPULBA (0x10)
132
133#define ACE_SECCNTCMD (0x14)
134#define ACE_SECCNTCMD_RESET      (0x0100)
135#define ACE_SECCNTCMD_IDENTIFY   (0x0200)
136#define ACE_SECCNTCMD_READ_DATA  (0x0300)
137#define ACE_SECCNTCMD_WRITE_DATA (0x0400)
138#define ACE_SECCNTCMD_ABORT      (0x0600)
139
140#define ACE_VERSION (0x16)
141#define ACE_VERSION_REVISION_MASK (0x00FF)
142#define ACE_VERSION_MINOR_MASK    (0x0F00)
143#define ACE_VERSION_MAJOR_MASK    (0xF000)
144
145#define ACE_CTRL (0x18)
146#define ACE_CTRL_FORCELOCKREQ   (0x0001)
147#define ACE_CTRL_LOCKREQ        (0x0002)
148#define ACE_CTRL_FORCECFGADDR   (0x0004)
149#define ACE_CTRL_FORCECFGMODE   (0x0008)
150#define ACE_CTRL_CFGMODE        (0x0010)
151#define ACE_CTRL_CFGSTART       (0x0020)
152#define ACE_CTRL_CFGSEL         (0x0040)
153#define ACE_CTRL_CFGRESET       (0x0080)
154#define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
155#define ACE_CTRL_ERRORIRQ       (0x0200)
156#define ACE_CTRL_CFGDONEIRQ     (0x0400)
157#define ACE_CTRL_RESETIRQ       (0x0800)
158#define ACE_CTRL_CFGPROG        (0x1000)
159#define ACE_CTRL_CFGADDR_MASK   (0xe000)
160
161#define ACE_FATSTAT (0x1c)
162
163#define ACE_NUM_MINORS 16
164#define ACE_SECTOR_SIZE (512)
165#define ACE_FIFO_SIZE (32)
166#define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
167
168#define ACE_BUS_WIDTH_8  0
169#define ACE_BUS_WIDTH_16 1
170
171struct ace_reg_ops;
172
173struct ace_device {
174	/* driver state data */
175	int id;
176	int media_change;
177	int users;
178	struct list_head list;
179
180	/* finite state machine data */
181	struct tasklet_struct fsm_tasklet;
182	uint fsm_task;		/* Current activity (ACE_TASK_*) */
183	uint fsm_state;		/* Current state (ACE_FSM_STATE_*) */
184	uint fsm_continue_flag;	/* cleared to exit FSM mainloop */
185	uint fsm_iter_num;
186	struct timer_list stall_timer;
187
188	/* Transfer state/result, use for both id and block request */
189	struct request *req;	/* request being processed */
190	void *data_ptr;		/* pointer to I/O buffer */
191	int data_count;		/* number of buffers remaining */
192	int data_result;	/* Result of transfer; 0 := success */
193
194	int id_req_count;	/* count of id requests */
195	int id_result;
196	struct completion id_completion;	/* used when id req finishes */
197	int in_irq;
198
199	/* Details of hardware device */
200	resource_size_t physaddr;
201	void __iomem *baseaddr;
202	int irq;
203	int bus_width;		/* 0 := 8 bit; 1 := 16 bit */
204	struct ace_reg_ops *reg_ops;
205	int lock_count;
206
207	/* Block device data structures */
208	spinlock_t lock;
209	struct device *dev;
210	struct request_queue *queue;
211	struct gendisk *gd;
212
213	/* Inserted CF card parameters */
214	u16 cf_id[ATA_ID_WORDS];
215};
216
217static int ace_major;
218
219/* ---------------------------------------------------------------------
220 * Low level register access
221 */
222
223struct ace_reg_ops {
224	u16(*in) (struct ace_device * ace, int reg);
225	void (*out) (struct ace_device * ace, int reg, u16 val);
226	void (*datain) (struct ace_device * ace);
227	void (*dataout) (struct ace_device * ace);
228};
229
230/* 8 Bit bus width */
231static u16 ace_in_8(struct ace_device *ace, int reg)
232{
233	void __iomem *r = ace->baseaddr + reg;
234	return in_8(r) | (in_8(r + 1) << 8);
235}
236
237static void ace_out_8(struct ace_device *ace, int reg, u16 val)
238{
239	void __iomem *r = ace->baseaddr + reg;
240	out_8(r, val);
241	out_8(r + 1, val >> 8);
242}
243
244static void ace_datain_8(struct ace_device *ace)
245{
246	void __iomem *r = ace->baseaddr + 0x40;
247	u8 *dst = ace->data_ptr;
248	int i = ACE_FIFO_SIZE;
249	while (i--)
250		*dst++ = in_8(r++);
251	ace->data_ptr = dst;
252}
253
254static void ace_dataout_8(struct ace_device *ace)
255{
256	void __iomem *r = ace->baseaddr + 0x40;
257	u8 *src = ace->data_ptr;
258	int i = ACE_FIFO_SIZE;
259	while (i--)
260		out_8(r++, *src++);
261	ace->data_ptr = src;
262}
263
264static struct ace_reg_ops ace_reg_8_ops = {
265	.in = ace_in_8,
266	.out = ace_out_8,
267	.datain = ace_datain_8,
268	.dataout = ace_dataout_8,
269};
270
271/* 16 bit big endian bus attachment */
272static u16 ace_in_be16(struct ace_device *ace, int reg)
273{
274	return in_be16(ace->baseaddr + reg);
275}
276
277static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
278{
279	out_be16(ace->baseaddr + reg, val);
280}
281
282static void ace_datain_be16(struct ace_device *ace)
283{
284	int i = ACE_FIFO_SIZE / 2;
285	u16 *dst = ace->data_ptr;
286	while (i--)
287		*dst++ = in_le16(ace->baseaddr + 0x40);
288	ace->data_ptr = dst;
289}
290
291static void ace_dataout_be16(struct ace_device *ace)
292{
293	int i = ACE_FIFO_SIZE / 2;
294	u16 *src = ace->data_ptr;
295	while (i--)
296		out_le16(ace->baseaddr + 0x40, *src++);
297	ace->data_ptr = src;
298}
299
300/* 16 bit little endian bus attachment */
301static u16 ace_in_le16(struct ace_device *ace, int reg)
302{
303	return in_le16(ace->baseaddr + reg);
304}
305
306static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
307{
308	out_le16(ace->baseaddr + reg, val);
309}
310
311static void ace_datain_le16(struct ace_device *ace)
312{
313	int i = ACE_FIFO_SIZE / 2;
314	u16 *dst = ace->data_ptr;
315	while (i--)
316		*dst++ = in_be16(ace->baseaddr + 0x40);
317	ace->data_ptr = dst;
318}
319
320static void ace_dataout_le16(struct ace_device *ace)
321{
322	int i = ACE_FIFO_SIZE / 2;
323	u16 *src = ace->data_ptr;
324	while (i--)
325		out_be16(ace->baseaddr + 0x40, *src++);
326	ace->data_ptr = src;
327}
328
329static struct ace_reg_ops ace_reg_be16_ops = {
330	.in = ace_in_be16,
331	.out = ace_out_be16,
332	.datain = ace_datain_be16,
333	.dataout = ace_dataout_be16,
334};
335
336static struct ace_reg_ops ace_reg_le16_ops = {
337	.in = ace_in_le16,
338	.out = ace_out_le16,
339	.datain = ace_datain_le16,
340	.dataout = ace_dataout_le16,
341};
342
343static inline u16 ace_in(struct ace_device *ace, int reg)
344{
345	return ace->reg_ops->in(ace, reg);
346}
347
348static inline u32 ace_in32(struct ace_device *ace, int reg)
349{
350	return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
351}
352
353static inline void ace_out(struct ace_device *ace, int reg, u16 val)
354{
355	ace->reg_ops->out(ace, reg, val);
356}
357
358static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
359{
360	ace_out(ace, reg, val);
361	ace_out(ace, reg + 2, val >> 16);
362}
363
364/* ---------------------------------------------------------------------
365 * Debug support functions
366 */
367
368#if defined(DEBUG)
369static void ace_dump_mem(void *base, int len)
370{
371	const char *ptr = base;
372	int i, j;
373
374	for (i = 0; i < len; i += 16) {
375		printk(KERN_INFO "%.8x:", i);
376		for (j = 0; j < 16; j++) {
377			if (!(j % 4))
378				printk(" ");
379			printk("%.2x", ptr[i + j]);
380		}
381		printk(" ");
382		for (j = 0; j < 16; j++)
383			printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
384		printk("\n");
385	}
386}
387#else
388static inline void ace_dump_mem(void *base, int len)
389{
390}
391#endif
392
393static void ace_dump_regs(struct ace_device *ace)
394{
395	dev_info(ace->dev,
396		 "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
397		 "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
398		 "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
399		 ace_in32(ace, ACE_CTRL),
400		 ace_in(ace, ACE_SECCNTCMD),
401		 ace_in(ace, ACE_VERSION),
402		 ace_in32(ace, ACE_STATUS),
403		 ace_in32(ace, ACE_MPULBA),
404		 ace_in(ace, ACE_BUSMODE),
405		 ace_in32(ace, ACE_ERROR),
406		 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
407}
408
409void ace_fix_driveid(u16 *id)
410{
411#if defined(__BIG_ENDIAN)
412	int i;
413
414	/* All half words have wrong byte order; swap the bytes */
415	for (i = 0; i < ATA_ID_WORDS; i++, id++)
416		*id = le16_to_cpu(*id);
417#endif
418}
419
420/* ---------------------------------------------------------------------
421 * Finite State Machine (FSM) implementation
422 */
423
424/* FSM tasks; used to direct state transitions */
425#define ACE_TASK_IDLE      0
426#define ACE_TASK_IDENTIFY  1
427#define ACE_TASK_READ      2
428#define ACE_TASK_WRITE     3
429#define ACE_FSM_NUM_TASKS  4
430
431/* FSM state definitions */
432#define ACE_FSM_STATE_IDLE               0
433#define ACE_FSM_STATE_REQ_LOCK           1
434#define ACE_FSM_STATE_WAIT_LOCK          2
435#define ACE_FSM_STATE_WAIT_CFREADY       3
436#define ACE_FSM_STATE_IDENTIFY_PREPARE   4
437#define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
438#define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
439#define ACE_FSM_STATE_REQ_PREPARE        7
440#define ACE_FSM_STATE_REQ_TRANSFER       8
441#define ACE_FSM_STATE_REQ_COMPLETE       9
442#define ACE_FSM_STATE_ERROR             10
443#define ACE_FSM_NUM_STATES              11
444
445/* Set flag to exit FSM loop and reschedule tasklet */
446static inline void ace_fsm_yield(struct ace_device *ace)
447{
448	dev_dbg(ace->dev, "ace_fsm_yield()\n");
449	tasklet_schedule(&ace->fsm_tasklet);
450	ace->fsm_continue_flag = 0;
451}
452
453/* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
454static inline void ace_fsm_yieldirq(struct ace_device *ace)
455{
456	dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
457
458	if (ace->irq == NO_IRQ)
459		/* No IRQ assigned, so need to poll */
460		tasklet_schedule(&ace->fsm_tasklet);
461	ace->fsm_continue_flag = 0;
462}
463
464/* Get the next read/write request; ending requests that we don't handle */
465struct request *ace_get_next_request(struct request_queue * q)
466{
467	struct request *req;
468
469	while ((req = blk_peek_request(q)) != NULL) {
470		if (req->cmd_type == REQ_TYPE_FS)
471			break;
472		blk_start_request(req);
473		__blk_end_request_all(req, -EIO);
474	}
475	return req;
476}
477
478static void ace_fsm_dostate(struct ace_device *ace)
479{
480	struct request *req;
481	u32 status;
482	u16 val;
483	int count;
484
485#if defined(DEBUG)
486	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
487		ace->fsm_state, ace->id_req_count);
488#endif
489
490	/* Verify that there is actually a CF in the slot. If not, then
491	 * bail out back to the idle state and wake up all the waiters */
492	status = ace_in32(ace, ACE_STATUS);
493	if ((status & ACE_STATUS_CFDETECT) == 0) {
494		ace->fsm_state = ACE_FSM_STATE_IDLE;
495		ace->media_change = 1;
496		set_capacity(ace->gd, 0);
497		dev_info(ace->dev, "No CF in slot\n");
498
499		/* Drop all in-flight and pending requests */
500		if (ace->req) {
501			__blk_end_request_all(ace->req, -EIO);
502			ace->req = NULL;
503		}
504		while ((req = blk_fetch_request(ace->queue)) != NULL)
505			__blk_end_request_all(req, -EIO);
506
507		/* Drop back to IDLE state and notify waiters */
508		ace->fsm_state = ACE_FSM_STATE_IDLE;
509		ace->id_result = -EIO;
510		while (ace->id_req_count) {
511			complete(&ace->id_completion);
512			ace->id_req_count--;
513		}
514	}
515
516	switch (ace->fsm_state) {
517	case ACE_FSM_STATE_IDLE:
518		/* See if there is anything to do */
519		if (ace->id_req_count || ace_get_next_request(ace->queue)) {
520			ace->fsm_iter_num++;
521			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
522			mod_timer(&ace->stall_timer, jiffies + HZ);
523			if (!timer_pending(&ace->stall_timer))
524				add_timer(&ace->stall_timer);
525			break;
526		}
527		del_timer(&ace->stall_timer);
528		ace->fsm_continue_flag = 0;
529		break;
530
531	case ACE_FSM_STATE_REQ_LOCK:
532		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
533			/* Already have the lock, jump to next state */
534			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
535			break;
536		}
537
538		/* Request the lock */
539		val = ace_in(ace, ACE_CTRL);
540		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
541		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
542		break;
543
544	case ACE_FSM_STATE_WAIT_LOCK:
545		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
546			/* got the lock; move to next state */
547			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
548			break;
549		}
550
551		/* wait a bit for the lock */
552		ace_fsm_yield(ace);
553		break;
554
555	case ACE_FSM_STATE_WAIT_CFREADY:
556		status = ace_in32(ace, ACE_STATUS);
557		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
558		    (status & ACE_STATUS_CFBSY)) {
559			/* CF card isn't ready; it needs to be polled */
560			ace_fsm_yield(ace);
561			break;
562		}
563
564		/* Device is ready for command; determine what to do next */
565		if (ace->id_req_count)
566			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
567		else
568			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
569		break;
570
571	case ACE_FSM_STATE_IDENTIFY_PREPARE:
572		/* Send identify command */
573		ace->fsm_task = ACE_TASK_IDENTIFY;
574		ace->data_ptr = ace->cf_id;
575		ace->data_count = ACE_BUF_PER_SECTOR;
576		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
577
578		/* As per datasheet, put config controller in reset */
579		val = ace_in(ace, ACE_CTRL);
580		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
581
582		/* irq handler takes over from this point; wait for the
583		 * transfer to complete */
584		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
585		ace_fsm_yieldirq(ace);
586		break;
587
588	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
589		/* Check that the sysace is ready to receive data */
590		status = ace_in32(ace, ACE_STATUS);
591		if (status & ACE_STATUS_CFBSY) {
592			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
593				ace->fsm_task, ace->fsm_iter_num,
594				ace->data_count);
595			ace_fsm_yield(ace);
596			break;
597		}
598		if (!(status & ACE_STATUS_DATABUFRDY)) {
599			ace_fsm_yield(ace);
600			break;
601		}
602
603		/* Transfer the next buffer */
604		ace->reg_ops->datain(ace);
605		ace->data_count--;
606
607		/* If there are still buffers to be transfers; jump out here */
608		if (ace->data_count != 0) {
609			ace_fsm_yieldirq(ace);
610			break;
611		}
612
613		/* transfer finished; kick state machine */
614		dev_dbg(ace->dev, "identify finished\n");
615		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
616		break;
617
618	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
619		ace_fix_driveid(ace->cf_id);
620		ace_dump_mem(ace->cf_id, 512);	/* Debug: Dump out disk ID */
621
622		if (ace->data_result) {
623			/* Error occured, disable the disk */
624			ace->media_change = 1;
625			set_capacity(ace->gd, 0);
626			dev_err(ace->dev, "error fetching CF id (%i)\n",
627				ace->data_result);
628		} else {
629			ace->media_change = 0;
630
631			/* Record disk parameters */
632			set_capacity(ace->gd,
633				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
634			dev_info(ace->dev, "capacity: %i sectors\n",
635				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
636		}
637
638		/* We're done, drop to IDLE state and notify waiters */
639		ace->fsm_state = ACE_FSM_STATE_IDLE;
640		ace->id_result = ace->data_result;
641		while (ace->id_req_count) {
642			complete(&ace->id_completion);
643			ace->id_req_count--;
644		}
645		break;
646
647	case ACE_FSM_STATE_REQ_PREPARE:
648		req = ace_get_next_request(ace->queue);
649		if (!req) {
650			ace->fsm_state = ACE_FSM_STATE_IDLE;
651			break;
652		}
653		blk_start_request(req);
654
655		/* Okay, it's a data request, set it up for transfer */
656		dev_dbg(ace->dev,
657			"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
658			(unsigned long long)blk_rq_pos(req),
659			blk_rq_sectors(req), blk_rq_cur_sectors(req),
660			rq_data_dir(req));
661
662		ace->req = req;
663		ace->data_ptr = req->buffer;
664		ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
665		ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
666
667		count = blk_rq_sectors(req);
668		if (rq_data_dir(req)) {
669			/* Kick off write request */
670			dev_dbg(ace->dev, "write data\n");
671			ace->fsm_task = ACE_TASK_WRITE;
672			ace_out(ace, ACE_SECCNTCMD,
673				count | ACE_SECCNTCMD_WRITE_DATA);
674		} else {
675			/* Kick off read request */
676			dev_dbg(ace->dev, "read data\n");
677			ace->fsm_task = ACE_TASK_READ;
678			ace_out(ace, ACE_SECCNTCMD,
679				count | ACE_SECCNTCMD_READ_DATA);
680		}
681
682		/* As per datasheet, put config controller in reset */
683		val = ace_in(ace, ACE_CTRL);
684		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
685
686		/* Move to the transfer state.  The systemace will raise
687		 * an interrupt once there is something to do
688		 */
689		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
690		if (ace->fsm_task == ACE_TASK_READ)
691			ace_fsm_yieldirq(ace);	/* wait for data ready */
692		break;
693
694	case ACE_FSM_STATE_REQ_TRANSFER:
695		/* Check that the sysace is ready to receive data */
696		status = ace_in32(ace, ACE_STATUS);
697		if (status & ACE_STATUS_CFBSY) {
698			dev_dbg(ace->dev,
699				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
700				ace->fsm_task, ace->fsm_iter_num,
701				blk_rq_cur_sectors(ace->req) * 16,
702				ace->data_count, ace->in_irq);
703			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
704			break;
705		}
706		if (!(status & ACE_STATUS_DATABUFRDY)) {
707			dev_dbg(ace->dev,
708				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
709				ace->fsm_task, ace->fsm_iter_num,
710				blk_rq_cur_sectors(ace->req) * 16,
711				ace->data_count, ace->in_irq);
712			ace_fsm_yieldirq(ace);
713			break;
714		}
715
716		/* Transfer the next buffer */
717		if (ace->fsm_task == ACE_TASK_WRITE)
718			ace->reg_ops->dataout(ace);
719		else
720			ace->reg_ops->datain(ace);
721		ace->data_count--;
722
723		/* If there are still buffers to be transfers; jump out here */
724		if (ace->data_count != 0) {
725			ace_fsm_yieldirq(ace);
726			break;
727		}
728
729		/* bio finished; is there another one? */
730		if (__blk_end_request_cur(ace->req, 0)) {
731			/* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
732			 *      blk_rq_sectors(ace->req),
733			 *      blk_rq_cur_sectors(ace->req));
734			 */
735			ace->data_ptr = ace->req->buffer;
736			ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
737			ace_fsm_yieldirq(ace);
738			break;
739		}
740
741		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
742		break;
743
744	case ACE_FSM_STATE_REQ_COMPLETE:
745		ace->req = NULL;
746
747		/* Finished request; go to idle state */
748		ace->fsm_state = ACE_FSM_STATE_IDLE;
749		break;
750
751	default:
752		ace->fsm_state = ACE_FSM_STATE_IDLE;
753		break;
754	}
755}
756
757static void ace_fsm_tasklet(unsigned long data)
758{
759	struct ace_device *ace = (void *)data;
760	unsigned long flags;
761
762	spin_lock_irqsave(&ace->lock, flags);
763
764	/* Loop over state machine until told to stop */
765	ace->fsm_continue_flag = 1;
766	while (ace->fsm_continue_flag)
767		ace_fsm_dostate(ace);
768
769	spin_unlock_irqrestore(&ace->lock, flags);
770}
771
772static void ace_stall_timer(unsigned long data)
773{
774	struct ace_device *ace = (void *)data;
775	unsigned long flags;
776
777	dev_warn(ace->dev,
778		 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
779		 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
780		 ace->data_count);
781	spin_lock_irqsave(&ace->lock, flags);
782
783	/* Rearm the stall timer *before* entering FSM (which may then
784	 * delete the timer) */
785	mod_timer(&ace->stall_timer, jiffies + HZ);
786
787	/* Loop over state machine until told to stop */
788	ace->fsm_continue_flag = 1;
789	while (ace->fsm_continue_flag)
790		ace_fsm_dostate(ace);
791
792	spin_unlock_irqrestore(&ace->lock, flags);
793}
794
795/* ---------------------------------------------------------------------
796 * Interrupt handling routines
797 */
798static int ace_interrupt_checkstate(struct ace_device *ace)
799{
800	u32 sreg = ace_in32(ace, ACE_STATUS);
801	u16 creg = ace_in(ace, ACE_CTRL);
802
803	/* Check for error occurance */
804	if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
805	    (creg & ACE_CTRL_ERRORIRQ)) {
806		dev_err(ace->dev, "transfer failure\n");
807		ace_dump_regs(ace);
808		return -EIO;
809	}
810
811	return 0;
812}
813
814static irqreturn_t ace_interrupt(int irq, void *dev_id)
815{
816	u16 creg;
817	struct ace_device *ace = dev_id;
818
819	/* be safe and get the lock */
820	spin_lock(&ace->lock);
821	ace->in_irq = 1;
822
823	/* clear the interrupt */
824	creg = ace_in(ace, ACE_CTRL);
825	ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
826	ace_out(ace, ACE_CTRL, creg);
827
828	/* check for IO failures */
829	if (ace_interrupt_checkstate(ace))
830		ace->data_result = -EIO;
831
832	if (ace->fsm_task == 0) {
833		dev_err(ace->dev,
834			"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
835			ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
836			ace_in(ace, ACE_SECCNTCMD));
837		dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
838			ace->fsm_task, ace->fsm_state, ace->data_count);
839	}
840
841	/* Loop over state machine until told to stop */
842	ace->fsm_continue_flag = 1;
843	while (ace->fsm_continue_flag)
844		ace_fsm_dostate(ace);
845
846	/* done with interrupt; drop the lock */
847	ace->in_irq = 0;
848	spin_unlock(&ace->lock);
849
850	return IRQ_HANDLED;
851}
852
853/* ---------------------------------------------------------------------
854 * Block ops
855 */
856static void ace_request(struct request_queue * q)
857{
858	struct request *req;
859	struct ace_device *ace;
860
861	req = ace_get_next_request(q);
862
863	if (req) {
864		ace = req->rq_disk->private_data;
865		tasklet_schedule(&ace->fsm_tasklet);
866	}
867}
868
869static int ace_media_changed(struct gendisk *gd)
870{
871	struct ace_device *ace = gd->private_data;
872	dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
873
874	return ace->media_change;
875}
876
877static int ace_revalidate_disk(struct gendisk *gd)
878{
879	struct ace_device *ace = gd->private_data;
880	unsigned long flags;
881
882	dev_dbg(ace->dev, "ace_revalidate_disk()\n");
883
884	if (ace->media_change) {
885		dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
886
887		spin_lock_irqsave(&ace->lock, flags);
888		ace->id_req_count++;
889		spin_unlock_irqrestore(&ace->lock, flags);
890
891		tasklet_schedule(&ace->fsm_tasklet);
892		wait_for_completion(&ace->id_completion);
893	}
894
895	dev_dbg(ace->dev, "revalidate complete\n");
896	return ace->id_result;
897}
898
899static int ace_open(struct block_device *bdev, fmode_t mode)
900{
901	struct ace_device *ace = bdev->bd_disk->private_data;
902	unsigned long flags;
903
904	dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
905
906	lock_kernel();
907	spin_lock_irqsave(&ace->lock, flags);
908	ace->users++;
909	spin_unlock_irqrestore(&ace->lock, flags);
910
911	check_disk_change(bdev);
912	unlock_kernel();
913
914	return 0;
915}
916
917static int ace_release(struct gendisk *disk, fmode_t mode)
918{
919	struct ace_device *ace = disk->private_data;
920	unsigned long flags;
921	u16 val;
922
923	dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
924
925	lock_kernel();
926	spin_lock_irqsave(&ace->lock, flags);
927	ace->users--;
928	if (ace->users == 0) {
929		val = ace_in(ace, ACE_CTRL);
930		ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
931	}
932	spin_unlock_irqrestore(&ace->lock, flags);
933	unlock_kernel();
934	return 0;
935}
936
937static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
938{
939	struct ace_device *ace = bdev->bd_disk->private_data;
940	u16 *cf_id = ace->cf_id;
941
942	dev_dbg(ace->dev, "ace_getgeo()\n");
943
944	geo->heads	= cf_id[ATA_ID_HEADS];
945	geo->sectors	= cf_id[ATA_ID_SECTORS];
946	geo->cylinders	= cf_id[ATA_ID_CYLS];
947
948	return 0;
949}
950
951static const struct block_device_operations ace_fops = {
952	.owner = THIS_MODULE,
953	.open = ace_open,
954	.release = ace_release,
955	.media_changed = ace_media_changed,
956	.revalidate_disk = ace_revalidate_disk,
957	.getgeo = ace_getgeo,
958};
959
960/* --------------------------------------------------------------------
961 * SystemACE device setup/teardown code
962 */
963static int __devinit ace_setup(struct ace_device *ace)
964{
965	u16 version;
966	u16 val;
967	int rc;
968
969	dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
970	dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
971		(unsigned long long)ace->physaddr, ace->irq);
972
973	spin_lock_init(&ace->lock);
974	init_completion(&ace->id_completion);
975
976	/*
977	 * Map the device
978	 */
979	ace->baseaddr = ioremap(ace->physaddr, 0x80);
980	if (!ace->baseaddr)
981		goto err_ioremap;
982
983	/*
984	 * Initialize the state machine tasklet and stall timer
985	 */
986	tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
987	setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
988
989	/*
990	 * Initialize the request queue
991	 */
992	ace->queue = blk_init_queue(ace_request, &ace->lock);
993	if (ace->queue == NULL)
994		goto err_blk_initq;
995	blk_queue_logical_block_size(ace->queue, 512);
996
997	/*
998	 * Allocate and initialize GD structure
999	 */
1000	ace->gd = alloc_disk(ACE_NUM_MINORS);
1001	if (!ace->gd)
1002		goto err_alloc_disk;
1003
1004	ace->gd->major = ace_major;
1005	ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1006	ace->gd->fops = &ace_fops;
1007	ace->gd->queue = ace->queue;
1008	ace->gd->private_data = ace;
1009	snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1010
1011	/* set bus width */
1012	if (ace->bus_width == ACE_BUS_WIDTH_16) {
1013		/* 0x0101 should work regardless of endianess */
1014		ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1015
1016		/* read it back to determine endianess */
1017		if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1018			ace->reg_ops = &ace_reg_le16_ops;
1019		else
1020			ace->reg_ops = &ace_reg_be16_ops;
1021	} else {
1022		ace_out_8(ace, ACE_BUSMODE, 0x00);
1023		ace->reg_ops = &ace_reg_8_ops;
1024	}
1025
1026	/* Make sure version register is sane */
1027	version = ace_in(ace, ACE_VERSION);
1028	if ((version == 0) || (version == 0xFFFF))
1029		goto err_read;
1030
1031	/* Put sysace in a sane state by clearing most control reg bits */
1032	ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1033		ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1034
1035	/* Now we can hook up the irq handler */
1036	if (ace->irq != NO_IRQ) {
1037		rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1038		if (rc) {
1039			/* Failure - fall back to polled mode */
1040			dev_err(ace->dev, "request_irq failed\n");
1041			ace->irq = NO_IRQ;
1042		}
1043	}
1044
1045	/* Enable interrupts */
1046	val = ace_in(ace, ACE_CTRL);
1047	val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1048	ace_out(ace, ACE_CTRL, val);
1049
1050	/* Print the identification */
1051	dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1052		 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1053	dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1054		(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1055
1056	ace->media_change = 1;
1057	ace_revalidate_disk(ace->gd);
1058
1059	/* Make the sysace device 'live' */
1060	add_disk(ace->gd);
1061
1062	return 0;
1063
1064err_read:
1065	put_disk(ace->gd);
1066err_alloc_disk:
1067	blk_cleanup_queue(ace->queue);
1068err_blk_initq:
1069	iounmap(ace->baseaddr);
1070err_ioremap:
1071	dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1072		 (unsigned long long) ace->physaddr);
1073	return -ENOMEM;
1074}
1075
1076static void __devexit ace_teardown(struct ace_device *ace)
1077{
1078	if (ace->gd) {
1079		del_gendisk(ace->gd);
1080		put_disk(ace->gd);
1081	}
1082
1083	if (ace->queue)
1084		blk_cleanup_queue(ace->queue);
1085
1086	tasklet_kill(&ace->fsm_tasklet);
1087
1088	if (ace->irq != NO_IRQ)
1089		free_irq(ace->irq, ace);
1090
1091	iounmap(ace->baseaddr);
1092}
1093
1094static int __devinit
1095ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1096	  int irq, int bus_width)
1097{
1098	struct ace_device *ace;
1099	int rc;
1100	dev_dbg(dev, "ace_alloc(%p)\n", dev);
1101
1102	if (!physaddr) {
1103		rc = -ENODEV;
1104		goto err_noreg;
1105	}
1106
1107	/* Allocate and initialize the ace device structure */
1108	ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1109	if (!ace) {
1110		rc = -ENOMEM;
1111		goto err_alloc;
1112	}
1113
1114	ace->dev = dev;
1115	ace->id = id;
1116	ace->physaddr = physaddr;
1117	ace->irq = irq;
1118	ace->bus_width = bus_width;
1119
1120	/* Call the setup code */
1121	rc = ace_setup(ace);
1122	if (rc)
1123		goto err_setup;
1124
1125	dev_set_drvdata(dev, ace);
1126	return 0;
1127
1128err_setup:
1129	dev_set_drvdata(dev, NULL);
1130	kfree(ace);
1131err_alloc:
1132err_noreg:
1133	dev_err(dev, "could not initialize device, err=%i\n", rc);
1134	return rc;
1135}
1136
1137static void __devexit ace_free(struct device *dev)
1138{
1139	struct ace_device *ace = dev_get_drvdata(dev);
1140	dev_dbg(dev, "ace_free(%p)\n", dev);
1141
1142	if (ace) {
1143		ace_teardown(ace);
1144		dev_set_drvdata(dev, NULL);
1145		kfree(ace);
1146	}
1147}
1148
1149/* ---------------------------------------------------------------------
1150 * Platform Bus Support
1151 */
1152
1153static int __devinit ace_probe(struct platform_device *dev)
1154{
1155	resource_size_t physaddr = 0;
1156	int bus_width = ACE_BUS_WIDTH_16;
1157	int id = dev->id;
1158	int irq = NO_IRQ;
1159	int i;
1160
1161	dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1162
1163	for (i = 0; i < dev->num_resources; i++) {
1164		if (dev->resource[i].flags & IORESOURCE_MEM)
1165			physaddr = dev->resource[i].start;
1166		if (dev->resource[i].flags & IORESOURCE_IRQ)
1167			irq = dev->resource[i].start;
1168	}
1169
1170	/* Call the bus-independant setup code */
1171	return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1172}
1173
1174/*
1175 * Platform bus remove() method
1176 */
1177static int __devexit ace_remove(struct platform_device *dev)
1178{
1179	ace_free(&dev->dev);
1180	return 0;
1181}
1182
1183static struct platform_driver ace_platform_driver = {
1184	.probe = ace_probe,
1185	.remove = __devexit_p(ace_remove),
1186	.driver = {
1187		.owner = THIS_MODULE,
1188		.name = "xsysace",
1189	},
1190};
1191
1192/* ---------------------------------------------------------------------
1193 * OF_Platform Bus Support
1194 */
1195
1196#if defined(CONFIG_OF)
1197static int __devinit
1198ace_of_probe(struct platform_device *op, const struct of_device_id *match)
1199{
1200	struct resource res;
1201	resource_size_t physaddr;
1202	const u32 *id;
1203	int irq, bus_width, rc;
1204
1205	dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
1206
1207	/* device id */
1208	id = of_get_property(op->dev.of_node, "port-number", NULL);
1209
1210	/* physaddr */
1211	rc = of_address_to_resource(op->dev.of_node, 0, &res);
1212	if (rc) {
1213		dev_err(&op->dev, "invalid address\n");
1214		return rc;
1215	}
1216	physaddr = res.start;
1217
1218	/* irq */
1219	irq = irq_of_parse_and_map(op->dev.of_node, 0);
1220
1221	/* bus width */
1222	bus_width = ACE_BUS_WIDTH_16;
1223	if (of_find_property(op->dev.of_node, "8-bit", NULL))
1224		bus_width = ACE_BUS_WIDTH_8;
1225
1226	/* Call the bus-independant setup code */
1227	return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
1228}
1229
1230static int __devexit ace_of_remove(struct platform_device *op)
1231{
1232	ace_free(&op->dev);
1233	return 0;
1234}
1235
1236/* Match table for of_platform binding */
1237static const struct of_device_id ace_of_match[] __devinitconst = {
1238	{ .compatible = "xlnx,opb-sysace-1.00.b", },
1239	{ .compatible = "xlnx,opb-sysace-1.00.c", },
1240	{ .compatible = "xlnx,xps-sysace-1.00.a", },
1241	{ .compatible = "xlnx,sysace", },
1242	{},
1243};
1244MODULE_DEVICE_TABLE(of, ace_of_match);
1245
1246static struct of_platform_driver ace_of_driver = {
1247	.probe = ace_of_probe,
1248	.remove = __devexit_p(ace_of_remove),
1249	.driver = {
1250		.name = "xsysace",
1251		.owner = THIS_MODULE,
1252		.of_match_table = ace_of_match,
1253	},
1254};
1255
1256/* Registration helpers to keep the number of #ifdefs to a minimum */
1257static inline int __init ace_of_register(void)
1258{
1259	pr_debug("xsysace: registering OF binding\n");
1260	return of_register_platform_driver(&ace_of_driver);
1261}
1262
1263static inline void __exit ace_of_unregister(void)
1264{
1265	of_unregister_platform_driver(&ace_of_driver);
1266}
1267#else /* CONFIG_OF */
1268/* CONFIG_OF not enabled; do nothing helpers */
1269static inline int __init ace_of_register(void) { return 0; }
1270static inline void __exit ace_of_unregister(void) { }
1271#endif /* CONFIG_OF */
1272
1273/* ---------------------------------------------------------------------
1274 * Module init/exit routines
1275 */
1276static int __init ace_init(void)
1277{
1278	int rc;
1279
1280	ace_major = register_blkdev(ace_major, "xsysace");
1281	if (ace_major <= 0) {
1282		rc = -ENOMEM;
1283		goto err_blk;
1284	}
1285
1286	rc = ace_of_register();
1287	if (rc)
1288		goto err_of;
1289
1290	pr_debug("xsysace: registering platform binding\n");
1291	rc = platform_driver_register(&ace_platform_driver);
1292	if (rc)
1293		goto err_plat;
1294
1295	pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1296	return 0;
1297
1298err_plat:
1299	ace_of_unregister();
1300err_of:
1301	unregister_blkdev(ace_major, "xsysace");
1302err_blk:
1303	printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1304	return rc;
1305}
1306
1307static void __exit ace_exit(void)
1308{
1309	pr_debug("Unregistering Xilinx SystemACE driver\n");
1310	platform_driver_unregister(&ace_platform_driver);
1311	ace_of_unregister();
1312	unregister_blkdev(ace_major, "xsysace");
1313}
1314
1315module_init(ace_init);
1316module_exit(ace_exit);
1317