• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/drivers/ata/
1/*
2 * Driver for the Octeon bootbus compact flash.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2005 - 2009 Cavium Networks
9 * Copyright (C) 2008 Wind River Systems
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/libata.h>
15#include <linux/irq.h>
16#include <linux/slab.h>
17#include <linux/platform_device.h>
18#include <linux/workqueue.h>
19#include <scsi/scsi_host.h>
20
21#include <asm/octeon/octeon.h>
22
23/*
24 * The Octeon bootbus compact flash interface is connected in at least
25 * 3 different configurations on various evaluation boards:
26 *
27 * -- 8  bits no irq, no DMA
28 * -- 16 bits no irq, no DMA
29 * -- 16 bits True IDE mode with DMA, but no irq.
30 *
31 * In the last case the DMA engine can generate an interrupt when the
32 * transfer is complete.  For the first two cases only PIO is supported.
33 *
34 */
35
36#define DRV_NAME	"pata_octeon_cf"
37#define DRV_VERSION	"2.1"
38
39
40struct octeon_cf_port {
41	struct workqueue_struct *wq;
42	struct delayed_work delayed_finish;
43	struct ata_port *ap;
44	int dma_finished;
45};
46
47static struct scsi_host_template octeon_cf_sht = {
48	ATA_PIO_SHT(DRV_NAME),
49};
50
51/**
52 * Convert nanosecond based time to setting used in the
53 * boot bus timing register, based on timing multiple
54 */
55static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
56{
57	unsigned int val;
58
59	/*
60	 * Compute # of eclock periods to get desired duration in
61	 * nanoseconds.
62	 */
63	val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
64			  1000 * tim_mult);
65
66	return val;
67}
68
69static void octeon_cf_set_boot_reg_cfg(int cs)
70{
71	union cvmx_mio_boot_reg_cfgx reg_cfg;
72	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
73	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
74	reg_cfg.s.tim_mult = 2;	/* Timing mutiplier 2x */
75	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
76	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
77	reg_cfg.s.we_ext = 0;	/* No write enable extension */
78	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
79	reg_cfg.s.en = 1;	/* Enable this region */
80	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
81	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
82	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
83}
84
85/**
86 * Called after libata determines the needed PIO mode. This
87 * function programs the Octeon bootbus regions to support the
88 * timing requirements of the PIO mode.
89 *
90 * @ap:     ATA port information
91 * @dev:    ATA device
92 */
93static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
94{
95	struct octeon_cf_data *ocd = ap->dev->platform_data;
96	union cvmx_mio_boot_reg_timx reg_tim;
97	int cs = ocd->base_region;
98	int T;
99	struct ata_timing timing;
100
101	int use_iordy;
102	int trh;
103	int pause;
104	/* These names are timing parameters from the ATA spec */
105	int t1;
106	int t2;
107	int t2i;
108
109	T = (int)(2000000000000LL / octeon_get_clock_rate());
110
111	if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
112		BUG();
113
114	t1 = timing.setup;
115	if (t1)
116		t1--;
117	t2 = timing.active;
118	if (t2)
119		t2--;
120	t2i = timing.act8b;
121	if (t2i)
122		t2i--;
123
124	trh = ns_to_tim_reg(2, 20);
125	if (trh)
126		trh--;
127
128	pause = timing.cycle - timing.active - timing.setup - trh;
129	if (pause)
130		pause--;
131
132	octeon_cf_set_boot_reg_cfg(cs);
133	if (ocd->dma_engine >= 0)
134		/* True IDE mode, program both chip selects.  */
135		octeon_cf_set_boot_reg_cfg(cs + 1);
136
137
138	use_iordy = ata_pio_need_iordy(dev);
139
140	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
141	/* Disable page mode */
142	reg_tim.s.pagem = 0;
143	/* Enable dynamic timing */
144	reg_tim.s.waitm = use_iordy;
145	/* Pages are disabled */
146	reg_tim.s.pages = 0;
147	/* We don't use multiplexed address mode */
148	reg_tim.s.ale = 0;
149	/* Not used */
150	reg_tim.s.page = 0;
151	/* Time after IORDY to coninue to assert the data */
152	reg_tim.s.wait = 0;
153	/* Time to wait to complete the cycle. */
154	reg_tim.s.pause = pause;
155	/* How long to hold after a write to de-assert CE. */
156	reg_tim.s.wr_hld = trh;
157	/* How long to wait after a read to de-assert CE. */
158	reg_tim.s.rd_hld = trh;
159	/* How long write enable is asserted */
160	reg_tim.s.we = t2;
161	/* How long read enable is asserted */
162	reg_tim.s.oe = t2;
163	/* Time after CE that read/write starts */
164	reg_tim.s.ce = ns_to_tim_reg(2, 5);
165	/* Time before CE that address is valid */
166	reg_tim.s.adr = 0;
167
168	/* Program the bootbus region timing for the data port chip select. */
169	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
170	if (ocd->dma_engine >= 0)
171		/* True IDE mode, program both chip selects.  */
172		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
173}
174
175static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
176{
177	struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
178	union cvmx_mio_boot_dma_timx dma_tim;
179	unsigned int oe_a;
180	unsigned int oe_n;
181	unsigned int dma_ackh;
182	unsigned int dma_arq;
183	unsigned int pause;
184	unsigned int T0, Tkr, Td;
185	unsigned int tim_mult;
186
187	const struct ata_timing *timing;
188
189	timing = ata_timing_find_mode(dev->dma_mode);
190	T0	= timing->cycle;
191	Td	= timing->active;
192	Tkr	= timing->recover;
193	dma_ackh = timing->dmack_hold;
194
195	dma_tim.u64 = 0;
196	/* dma_tim.s.tim_mult = 0 --> 4x */
197	tim_mult = 4;
198
199	/* not spec'ed, value in eclocks, not affected by tim_mult */
200	dma_arq = 8;
201	pause = 25 - dma_arq * 1000 /
202		(octeon_get_clock_rate() / 1000000); /* Tz */
203
204	oe_a = Td;
205	/* Tkr from cf spec, lengthened to meet T0 */
206	oe_n = max(T0 - oe_a, Tkr);
207
208	dma_tim.s.dmack_pi = 1;
209
210	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
211	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
212
213	/*
214	 * This is tI, C.F. spec. says 0, but Sony CF card requires
215	 * more, we use 20 nS.
216	 */
217	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
218	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
219
220	dma_tim.s.dmarq = dma_arq;
221	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
222
223	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
224
225	/*  writes only */
226	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
227	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
228
229	pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
230		 ns_to_tim_reg(tim_mult, 60));
231	pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
232		 "%d, dmarq: %d, pause: %d\n",
233		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
234		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
235
236	cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
237		       dma_tim.u64);
238
239}
240
241/**
242 * Handle an 8 bit I/O request.
243 *
244 * @dev:        Device to access
245 * @buffer:     Data buffer
246 * @buflen:     Length of the buffer.
247 * @rw:         True to write.
248 */
249static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
250					 unsigned char *buffer,
251					 unsigned int buflen,
252					 int rw)
253{
254	struct ata_port *ap		= dev->link->ap;
255	void __iomem *data_addr		= ap->ioaddr.data_addr;
256	unsigned long words;
257	int count;
258
259	words = buflen;
260	if (rw) {
261		count = 16;
262		while (words--) {
263			iowrite8(*buffer, data_addr);
264			buffer++;
265			/*
266			 * Every 16 writes do a read so the bootbus
267			 * FIFO doesn't fill up.
268			 */
269			if (--count == 0) {
270				ioread8(ap->ioaddr.altstatus_addr);
271				count = 16;
272			}
273		}
274	} else {
275		ioread8_rep(data_addr, buffer, words);
276	}
277	return buflen;
278}
279
280/**
281 * Handle a 16 bit I/O request.
282 *
283 * @dev:        Device to access
284 * @buffer:     Data buffer
285 * @buflen:     Length of the buffer.
286 * @rw:         True to write.
287 */
288static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
289					  unsigned char *buffer,
290					  unsigned int buflen,
291					  int rw)
292{
293	struct ata_port *ap		= dev->link->ap;
294	void __iomem *data_addr		= ap->ioaddr.data_addr;
295	unsigned long words;
296	int count;
297
298	words = buflen / 2;
299	if (rw) {
300		count = 16;
301		while (words--) {
302			iowrite16(*(uint16_t *)buffer, data_addr);
303			buffer += sizeof(uint16_t);
304			/*
305			 * Every 16 writes do a read so the bootbus
306			 * FIFO doesn't fill up.
307			 */
308			if (--count == 0) {
309				ioread8(ap->ioaddr.altstatus_addr);
310				count = 16;
311			}
312		}
313	} else {
314		while (words--) {
315			*(uint16_t *)buffer = ioread16(data_addr);
316			buffer += sizeof(uint16_t);
317		}
318	}
319	/* Transfer trailing 1 byte, if any. */
320	if (unlikely(buflen & 0x01)) {
321		__le16 align_buf[1] = { 0 };
322
323		if (rw == READ) {
324			align_buf[0] = cpu_to_le16(ioread16(data_addr));
325			memcpy(buffer, align_buf, 1);
326		} else {
327			memcpy(align_buf, buffer, 1);
328			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
329		}
330		words++;
331	}
332	return buflen;
333}
334
335/**
336 * Read the taskfile for 16bit non-True IDE only.
337 */
338static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
339{
340	u16 blob;
341	/* The base of the registers is at ioaddr.data_addr. */
342	void __iomem *base = ap->ioaddr.data_addr;
343
344	blob = __raw_readw(base + 0xc);
345	tf->feature = blob >> 8;
346
347	blob = __raw_readw(base + 2);
348	tf->nsect = blob & 0xff;
349	tf->lbal = blob >> 8;
350
351	blob = __raw_readw(base + 4);
352	tf->lbam = blob & 0xff;
353	tf->lbah = blob >> 8;
354
355	blob = __raw_readw(base + 6);
356	tf->device = blob & 0xff;
357	tf->command = blob >> 8;
358
359	if (tf->flags & ATA_TFLAG_LBA48) {
360		if (likely(ap->ioaddr.ctl_addr)) {
361			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
362
363			blob = __raw_readw(base + 0xc);
364			tf->hob_feature = blob >> 8;
365
366			blob = __raw_readw(base + 2);
367			tf->hob_nsect = blob & 0xff;
368			tf->hob_lbal = blob >> 8;
369
370			blob = __raw_readw(base + 4);
371			tf->hob_lbam = blob & 0xff;
372			tf->hob_lbah = blob >> 8;
373
374			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
375			ap->last_ctl = tf->ctl;
376		} else {
377			WARN_ON(1);
378		}
379	}
380}
381
382static u8 octeon_cf_check_status16(struct ata_port *ap)
383{
384	u16 blob;
385	void __iomem *base = ap->ioaddr.data_addr;
386
387	blob = __raw_readw(base + 6);
388	return blob >> 8;
389}
390
391static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
392				 unsigned long deadline)
393{
394	struct ata_port *ap = link->ap;
395	void __iomem *base = ap->ioaddr.data_addr;
396	int rc;
397	u8 err;
398
399	DPRINTK("about to softreset\n");
400	__raw_writew(ap->ctl, base + 0xe);
401	udelay(20);
402	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
403	udelay(20);
404	__raw_writew(ap->ctl, base + 0xe);
405
406	rc = ata_sff_wait_after_reset(link, 1, deadline);
407	if (rc) {
408		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
409		return rc;
410	}
411
412	/* determine by signature whether we have ATA or ATAPI devices */
413	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
414	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
415	return 0;
416}
417
418/**
419 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
420 * not loaded, we do this as part of octeon_cf_exec_command16.
421 */
422static void octeon_cf_tf_load16(struct ata_port *ap,
423				const struct ata_taskfile *tf)
424{
425	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
426	/* The base of the registers is at ioaddr.data_addr. */
427	void __iomem *base = ap->ioaddr.data_addr;
428
429	if (tf->ctl != ap->last_ctl) {
430		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
431		ap->last_ctl = tf->ctl;
432		ata_wait_idle(ap);
433	}
434	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
435		__raw_writew(tf->hob_feature << 8, base + 0xc);
436		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
437		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
438		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
439			tf->hob_feature,
440			tf->hob_nsect,
441			tf->hob_lbal,
442			tf->hob_lbam,
443			tf->hob_lbah);
444	}
445	if (is_addr) {
446		__raw_writew(tf->feature << 8, base + 0xc);
447		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
448		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
449		VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
450			tf->feature,
451			tf->nsect,
452			tf->lbal,
453			tf->lbam,
454			tf->lbah);
455	}
456	ata_wait_idle(ap);
457}
458
459
460static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
461{
462/*  There is only one device, do nothing. */
463	return;
464}
465
466/*
467 * Issue ATA command to host controller.  The device_addr is also sent
468 * as it must be written in a combined write with the command.
469 */
470static void octeon_cf_exec_command16(struct ata_port *ap,
471				const struct ata_taskfile *tf)
472{
473	/* The base of the registers is at ioaddr.data_addr. */
474	void __iomem *base = ap->ioaddr.data_addr;
475	u16 blob;
476
477	if (tf->flags & ATA_TFLAG_DEVICE) {
478		VPRINTK("device 0x%X\n", tf->device);
479		blob = tf->device;
480	} else {
481		blob = 0;
482	}
483
484	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
485	blob |= (tf->command << 8);
486	__raw_writew(blob, base + 6);
487
488
489	ata_wait_idle(ap);
490}
491
492static void octeon_cf_irq_on(struct ata_port *ap)
493{
494}
495
496static void octeon_cf_irq_clear(struct ata_port *ap)
497{
498	return;
499}
500
501static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
502{
503	struct ata_port *ap = qc->ap;
504	struct octeon_cf_port *cf_port;
505
506	cf_port = ap->private_data;
507	DPRINTK("ENTER\n");
508	/* issue r/w command */
509	qc->cursg = qc->sg;
510	cf_port->dma_finished = 0;
511	ap->ops->sff_exec_command(ap, &qc->tf);
512	DPRINTK("EXIT\n");
513}
514
515/**
516 * Start a DMA transfer that was already setup
517 *
518 * @qc:     Information about the DMA
519 */
520static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
521{
522	struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
523	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
524	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
525	struct scatterlist *sg;
526
527	VPRINTK("%d scatterlists\n", qc->n_elem);
528
529	/* Get the scatter list entry we need to DMA into */
530	sg = qc->cursg;
531	BUG_ON(!sg);
532
533	/*
534	 * Clear the DMA complete status.
535	 */
536	mio_boot_dma_int.u64 = 0;
537	mio_boot_dma_int.s.done = 1;
538	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
539		       mio_boot_dma_int.u64);
540
541	/* Enable the interrupt.  */
542	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
543		       mio_boot_dma_int.u64);
544
545	/* Set the direction of the DMA */
546	mio_boot_dma_cfg.u64 = 0;
547	mio_boot_dma_cfg.s.en = 1;
548	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
549
550	/*
551	 * Don't stop the DMA if the device deasserts DMARQ. Many
552	 * compact flashes deassert DMARQ for a short time between
553	 * sectors. Instead of stopping and restarting the DMA, we'll
554	 * let the hardware do it. If the DMA is really stopped early
555	 * due to an error condition, a later timeout will force us to
556	 * stop.
557	 */
558	mio_boot_dma_cfg.s.clr = 0;
559
560	/* Size is specified in 16bit words and minus one notation */
561	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
562
563	/* We need to swap the high and low bytes of every 16 bits */
564	mio_boot_dma_cfg.s.swap8 = 1;
565
566	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
567
568	VPRINTK("%s %d bytes address=%p\n",
569		(mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
570		(void *)(unsigned long)mio_boot_dma_cfg.s.adr);
571
572	cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
573		       mio_boot_dma_cfg.u64);
574}
575
576/**
577 *
578 *	LOCKING:
579 *	spin_lock_irqsave(host lock)
580 *
581 */
582static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
583					struct ata_queued_cmd *qc)
584{
585	struct ata_eh_info *ehi = &ap->link.eh_info;
586	struct octeon_cf_data *ocd = ap->dev->platform_data;
587	union cvmx_mio_boot_dma_cfgx dma_cfg;
588	union cvmx_mio_boot_dma_intx dma_int;
589	struct octeon_cf_port *cf_port;
590	u8 status;
591
592	VPRINTK("ata%u: protocol %d task_state %d\n",
593		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
594
595
596	if (ap->hsm_task_state != HSM_ST_LAST)
597		return 0;
598
599	cf_port = ap->private_data;
600
601	dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
602	if (dma_cfg.s.size != 0xfffff) {
603		/* Error, the transfer was not complete.  */
604		qc->err_mask |= AC_ERR_HOST_BUS;
605		ap->hsm_task_state = HSM_ST_ERR;
606	}
607
608	/* Stop and clear the dma engine.  */
609	dma_cfg.u64 = 0;
610	dma_cfg.s.size = -1;
611	cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
612
613	/* Disable the interrupt.  */
614	dma_int.u64 = 0;
615	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
616
617	/* Clear the DMA complete status */
618	dma_int.s.done = 1;
619	cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
620
621	status = ap->ops->sff_check_status(ap);
622
623	ata_sff_hsm_move(ap, qc, status, 0);
624
625	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
626		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
627
628	return 1;
629}
630
631/*
632 * Check if any queued commands have more DMAs, if so start the next
633 * transfer, else do end of transfer handling.
634 */
635static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
636{
637	struct ata_host *host = dev_instance;
638	struct octeon_cf_port *cf_port;
639	int i;
640	unsigned int handled = 0;
641	unsigned long flags;
642
643	spin_lock_irqsave(&host->lock, flags);
644
645	DPRINTK("ENTER\n");
646	for (i = 0; i < host->n_ports; i++) {
647		u8 status;
648		struct ata_port *ap;
649		struct ata_queued_cmd *qc;
650		union cvmx_mio_boot_dma_intx dma_int;
651		union cvmx_mio_boot_dma_cfgx dma_cfg;
652		struct octeon_cf_data *ocd;
653
654		ap = host->ports[i];
655		ocd = ap->dev->platform_data;
656
657		ocd = ap->dev->platform_data;
658		cf_port = ap->private_data;
659		dma_int.u64 =
660			cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
661		dma_cfg.u64 =
662			cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
663
664		qc = ata_qc_from_tag(ap, ap->link.active_tag);
665
666		if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) {
667			if (dma_int.s.done && !dma_cfg.s.en) {
668				if (!sg_is_last(qc->cursg)) {
669					qc->cursg = sg_next(qc->cursg);
670					handled = 1;
671					octeon_cf_dma_start(qc);
672					continue;
673				} else {
674					cf_port->dma_finished = 1;
675				}
676			}
677			if (!cf_port->dma_finished)
678				continue;
679			status = ioread8(ap->ioaddr.altstatus_addr);
680			if (status & (ATA_BUSY | ATA_DRQ)) {
681				/*
682				 * We are busy, try to handle it
683				 * later.  This is the DMA finished
684				 * interrupt, and it could take a
685				 * little while for the card to be
686				 * ready for more commands.
687				 */
688				/* Clear DMA irq. */
689				dma_int.u64 = 0;
690				dma_int.s.done = 1;
691				cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
692					       dma_int.u64);
693
694				queue_delayed_work(cf_port->wq,
695						   &cf_port->delayed_finish, 1);
696				handled = 1;
697			} else {
698				handled |= octeon_cf_dma_finished(ap, qc);
699			}
700		}
701	}
702	spin_unlock_irqrestore(&host->lock, flags);
703	DPRINTK("EXIT\n");
704	return IRQ_RETVAL(handled);
705}
706
707static void octeon_cf_delayed_finish(struct work_struct *work)
708{
709	struct octeon_cf_port *cf_port = container_of(work,
710						      struct octeon_cf_port,
711						      delayed_finish.work);
712	struct ata_port *ap = cf_port->ap;
713	struct ata_host *host = ap->host;
714	struct ata_queued_cmd *qc;
715	unsigned long flags;
716	u8 status;
717
718	spin_lock_irqsave(&host->lock, flags);
719
720	/*
721	 * If the port is not waiting for completion, it must have
722	 * handled it previously.  The hsm_task_state is
723	 * protected by host->lock.
724	 */
725	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
726		goto out;
727
728	status = ioread8(ap->ioaddr.altstatus_addr);
729	if (status & (ATA_BUSY | ATA_DRQ)) {
730		/* Still busy, try again. */
731		queue_delayed_work(cf_port->wq,
732				   &cf_port->delayed_finish, 1);
733		goto out;
734	}
735	qc = ata_qc_from_tag(ap, ap->link.active_tag);
736	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
737		octeon_cf_dma_finished(ap, qc);
738out:
739	spin_unlock_irqrestore(&host->lock, flags);
740}
741
742static void octeon_cf_dev_config(struct ata_device *dev)
743{
744	/*
745	 * A maximum of 2^20 - 1 16 bit transfers are possible with
746	 * the bootbus DMA.  So we need to throttle max_sectors to
747	 * (2^12 - 1 == 4095) to assure that this can never happen.
748	 */
749	dev->max_sectors = min(dev->max_sectors, 4095U);
750}
751
752/*
753 * We don't do ATAPI DMA so return 0.
754 */
755static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
756{
757	return 0;
758}
759
760static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
761{
762	struct ata_port *ap = qc->ap;
763
764	switch (qc->tf.protocol) {
765	case ATA_PROT_DMA:
766		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
767
768		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
769		octeon_cf_dma_setup(qc);	    /* set up dma */
770		octeon_cf_dma_start(qc);	    /* initiate dma */
771		ap->hsm_task_state = HSM_ST_LAST;
772		break;
773
774	case ATAPI_PROT_DMA:
775		dev_err(ap->dev, "Error, ATAPI not supported\n");
776		BUG();
777
778	default:
779		return ata_sff_qc_issue(qc);
780	}
781
782	return 0;
783}
784
785static struct ata_port_operations octeon_cf_ops = {
786	.inherits		= &ata_sff_port_ops,
787	.check_atapi_dma	= octeon_cf_check_atapi_dma,
788	.qc_prep		= ata_noop_qc_prep,
789	.qc_issue		= octeon_cf_qc_issue,
790	.sff_dev_select		= octeon_cf_dev_select,
791	.sff_irq_on		= octeon_cf_irq_on,
792	.sff_irq_clear		= octeon_cf_irq_clear,
793	.cable_detect		= ata_cable_40wire,
794	.set_piomode		= octeon_cf_set_piomode,
795	.set_dmamode		= octeon_cf_set_dmamode,
796	.dev_config		= octeon_cf_dev_config,
797};
798
799static int __devinit octeon_cf_probe(struct platform_device *pdev)
800{
801	struct resource *res_cs0, *res_cs1;
802
803	void __iomem *cs0;
804	void __iomem *cs1 = NULL;
805	struct ata_host *host;
806	struct ata_port *ap;
807	struct octeon_cf_data *ocd;
808	int irq = 0;
809	irq_handler_t irq_handler = NULL;
810	void __iomem *base;
811	struct octeon_cf_port *cf_port;
812
813	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
814
815	if (!res_cs0)
816		return -EINVAL;
817
818	ocd = pdev->dev.platform_data;
819
820	cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
821				   resource_size(res_cs0));
822
823	if (!cs0)
824		return -ENOMEM;
825
826	/* Determine from availability of DMA if True IDE mode or not */
827	if (ocd->dma_engine >= 0) {
828		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
829		if (!res_cs1)
830			return -EINVAL;
831
832		cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
833					   resource_size(res_cs1));
834
835		if (!cs1)
836			return -ENOMEM;
837	}
838
839	cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
840	if (!cf_port)
841		return -ENOMEM;
842
843	/* allocate host */
844	host = ata_host_alloc(&pdev->dev, 1);
845	if (!host)
846		goto free_cf_port;
847
848	ap = host->ports[0];
849	ap->private_data = cf_port;
850	cf_port->ap = ap;
851	ap->ops = &octeon_cf_ops;
852	ap->pio_mask = ATA_PIO6;
853	ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
854		  | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
855
856	base = cs0 + ocd->base_region_bias;
857	if (!ocd->is16bit) {
858		ap->ioaddr.cmd_addr	= base;
859		ata_sff_std_ports(&ap->ioaddr);
860
861		ap->ioaddr.altstatus_addr = base + 0xe;
862		ap->ioaddr.ctl_addr	= base + 0xe;
863		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
864	} else if (cs1) {
865		/* Presence of cs1 indicates True IDE mode.  */
866		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
867		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
868		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
869		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
870		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
871		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
872		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
873		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
874		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
875		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
876		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
877		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
878		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
879		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
880
881		ap->mwdma_mask	= ATA_MWDMA4;
882		irq = platform_get_irq(pdev, 0);
883		irq_handler = octeon_cf_interrupt;
884
885		/* True IDE mode needs delayed work to poll for not-busy.  */
886		cf_port->wq = create_singlethread_workqueue(DRV_NAME);
887		if (!cf_port->wq)
888			goto free_cf_port;
889		INIT_DELAYED_WORK(&cf_port->delayed_finish,
890				  octeon_cf_delayed_finish);
891
892	} else {
893		/* 16 bit but not True IDE */
894		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
895		octeon_cf_ops.softreset		= octeon_cf_softreset16;
896		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
897		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
898		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
899		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
900
901		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
902		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
903		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
904		ap->ioaddr.ctl_addr	= base + 0xe;
905		ap->ioaddr.altstatus_addr = base + 0xe;
906	}
907
908	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
909
910
911	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
912		 (ocd->is16bit) ? 16 : 8,
913		 (cs1) ? ", True IDE" : "");
914
915
916	return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
917
918free_cf_port:
919	kfree(cf_port);
920	return -ENOMEM;
921}
922
923static struct platform_driver octeon_cf_driver = {
924	.probe		= octeon_cf_probe,
925	.driver		= {
926		.name	= DRV_NAME,
927		.owner	= THIS_MODULE,
928	},
929};
930
931static int __init octeon_cf_init(void)
932{
933	return platform_driver_register(&octeon_cf_driver);
934}
935
936
937MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
938MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
939MODULE_LICENSE("GPL");
940MODULE_VERSION(DRV_VERSION);
941MODULE_ALIAS("platform:" DRV_NAME);
942
943module_init(octeon_cf_init);
944