• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/x86/include/asm/uv/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
13
14#ifdef CONFIG_X86_64
15#include <linux/numa.h>
16#include <linux/percpu.h>
17#include <linux/timer.h>
18#include <linux/io.h>
19#include <asm/types.h>
20#include <asm/percpu.h>
21#include <asm/uv/uv_mmrs.h>
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
24
25
26/*
27 * Addressing Terminology
28 *
29 *	M       - The low M bits of a physical address represent the offset
30 *		  into the blade local memory. RAM memory on a blade is physically
31 *		  contiguous (although various IO spaces may punch holes in
32 *		  it)..
33 *
34 *	N	- Number of bits in the node portion of a socket physical
35 *		  address.
36 *
37 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
38 *		  routers always have low bit of 1, C/MBricks have low bit
39 *		  equal to 0. Most addressing macros that target UV hub chips
40 *		  right shift the NASID by 1 to exclude the always-zero bit.
41 *		  NASIDs contain up to 15 bits.
42 *
43 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 *		  of nasids.
45 *
46 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
47 *		  of the nasid for socket usage.
48 *
49 *
50 *  NumaLink Global Physical Address Format:
51 *  +--------------------------------+---------------------+
52 *  |00..000|      GNODE             |      NodeOffset     |
53 *  +--------------------------------+---------------------+
54 *          |<-------53 - M bits --->|<--------M bits ----->
55 *
56 *	M - number of node offset bits (35 .. 40)
57 *
58 *
59 *  Memory/UV-HUB Processor Socket Address Format:
60 *  +----------------+---------------+---------------------+
61 *  |00..000000000000|   PNODE       |      NodeOffset     |
62 *  +----------------+---------------+---------------------+
63 *                   <--- N bits --->|<--------M bits ----->
64 *
65 *	M - number of node offset bits (35 .. 40)
66 *	N - number of PNODE bits (0 .. 10)
67 *
68 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 *		The actual values are configuration dependent and are set at
70 *		boot time. M & N values are set by the hardware/BIOS at boot.
71 *
72 *
73 * APICID format
74 *	NOTE!!!!!! This is the current format of the APICID. However, code
75 *	should assume that this will change in the future. Use functions
76 *	in this file for all APICID bit manipulations and conversion.
77 *
78 *		1111110000000000
79 *		5432109876543210
80 *		pppppppppplc0cch
81 *		sssssssssss
82 *
83 *			p  = pnode bits
84 *			l =  socket number on board
85 *			c  = core
86 *			h  = hyperthread
87 *			s  = bits that are in the SOCKET_ID CSR
88 *
89 *	Note: Processor only supports 12 bits in the APICID register. The ACPI
90 *	      tables hold all 16 bits. Software needs to be aware of this.
91 *
92 *	      Unless otherwise specified, all references to APICID refer to
93 *	      the FULL value contained in ACPI tables, not the subset in the
94 *	      processor APICID register.
95 */
96
97
98/*
99 * Maximum number of bricks in all partitions and in all coherency domains.
100 * This is the total number of bricks accessible in the numalink fabric. It
101 * includes all C & M bricks. Routers are NOT included.
102 *
103 * This value is also the value of the maximum number of non-router NASIDs
104 * in the numalink fabric.
105 *
106 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
107 */
108#define UV_MAX_NUMALINK_BLADES	16384
109
110/*
111 * Maximum number of C/Mbricks within a software SSI (hardware may support
112 * more).
113 */
114#define UV_MAX_SSI_BLADES	256
115
116/*
117 * The largest possible NASID of a C or M brick (+ 2)
118 */
119#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
120
121struct uv_scir_s {
122	struct timer_list timer;
123	unsigned long	offset;
124	unsigned long	last;
125	unsigned long	idle_on;
126	unsigned long	idle_off;
127	unsigned char	state;
128	unsigned char	enabled;
129};
130
131/*
132 * The following defines attributes of the HUB chip. These attributes are
133 * frequently referenced and are kept in the per-cpu data areas of each cpu.
134 * They are kept together in a struct to minimize cache misses.
135 */
136struct uv_hub_info_s {
137	unsigned long		global_mmr_base;
138	unsigned long		gpa_mask;
139	unsigned int		gnode_extra;
140	unsigned long		gnode_upper;
141	unsigned long		lowmem_remap_top;
142	unsigned long		lowmem_remap_base;
143	unsigned short		pnode;
144	unsigned short		pnode_mask;
145	unsigned short		coherency_domain_number;
146	unsigned short		numa_blade_id;
147	unsigned char		blade_processor_id;
148	unsigned char		m_val;
149	unsigned char		n_val;
150	struct uv_scir_s	scir;
151};
152
153DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
154#define uv_hub_info		(&__get_cpu_var(__uv_hub_info))
155#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
156
157/*
158 * Local & Global MMR space macros.
159 *	Note: macros are intended to be used ONLY by inline functions
160 *	in this file - not by other kernel code.
161 *		n -  NASID (full 15-bit global nasid)
162 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
163 *		p -  PNODE (local part of nsids, right shifted 1)
164 */
165#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
166#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
167#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
168
169#define UV_LOCAL_MMR_BASE		0xf4000000UL
170#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
171#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
172#define UV_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
173#define UV_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
174
175#define UV_GLOBAL_GRU_MMR_BASE		0x4000000
176
177#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
178#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
179
180#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
181
182#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
183	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
184
185#define UV_APIC_PNODE_SHIFT	6
186
187/* Local Bus from cpu's perspective */
188#define LOCAL_BUS_BASE		0x1c00000
189#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
190
191/*
192 * System Controller Interface Reg
193 *
194 * Note there are NO leds on a UV system.  This register is only
195 * used by the system controller to monitor system-wide operation.
196 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
197 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
198 * a node.
199 *
200 * The window is located at top of ACPI MMR space
201 */
202#define SCIR_WINDOW_COUNT	64
203#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
204				 LOCAL_BUS_SIZE - \
205				 SCIR_WINDOW_COUNT)
206
207#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
208#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
209#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
210
211/* Loop through all installed blades */
212#define for_each_possible_blade(bid)		\
213	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
214
215/*
216 * Macros for converting between kernel virtual addresses, socket local physical
217 * addresses, and UV global physical addresses.
218 *	Note: use the standard __pa() & __va() macros for converting
219 *	      between socket virtual and socket physical addresses.
220 */
221
222/* socket phys RAM --> UV global physical address */
223static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
224{
225	if (paddr < uv_hub_info->lowmem_remap_top)
226		paddr |= uv_hub_info->lowmem_remap_base;
227	return paddr | uv_hub_info->gnode_upper;
228}
229
230
231/* socket virtual --> UV global physical address */
232static inline unsigned long uv_gpa(void *v)
233{
234	return uv_soc_phys_ram_to_gpa(__pa(v));
235}
236
237/* Top two bits indicate the requested address is in MMR space.  */
238static inline int
239uv_gpa_in_mmr_space(unsigned long gpa)
240{
241	return (gpa >> 62) == 0x3UL;
242}
243
244/* UV global physical address --> socket phys RAM */
245static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
246{
247	unsigned long paddr = gpa & uv_hub_info->gpa_mask;
248	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
249	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
250
251	if (paddr >= remap_base && paddr < remap_base + remap_top)
252		paddr -= remap_base;
253	return paddr;
254}
255
256
257/* gnode -> pnode */
258static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
259{
260	return gpa >> uv_hub_info->m_val;
261}
262
263/* gpa -> pnode */
264static inline int uv_gpa_to_pnode(unsigned long gpa)
265{
266	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
267
268	return uv_gpa_to_gnode(gpa) & n_mask;
269}
270
271/* pnode, offset --> socket virtual */
272static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
273{
274	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
275}
276
277
278/*
279 * Extract a PNODE from an APICID (full apicid, not processor subset)
280 */
281static inline int uv_apicid_to_pnode(int apicid)
282{
283	return (apicid >> UV_APIC_PNODE_SHIFT);
284}
285
286/*
287 * Access global MMRs using the low memory MMR32 space. This region supports
288 * faster MMR access but not all MMRs are accessible in this space.
289 */
290static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
291{
292	return __va(UV_GLOBAL_MMR32_BASE |
293		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
294}
295
296static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
297{
298	writeq(val, uv_global_mmr32_address(pnode, offset));
299}
300
301static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
302{
303	return readq(uv_global_mmr32_address(pnode, offset));
304}
305
306/*
307 * Access Global MMR space using the MMR space located at the top of physical
308 * memory.
309 */
310static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
311{
312	return __va(UV_GLOBAL_MMR64_BASE |
313		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
314}
315
316static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
317{
318	writeq(val, uv_global_mmr64_address(pnode, offset));
319}
320
321static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
322{
323	return readq(uv_global_mmr64_address(pnode, offset));
324}
325
326/*
327 * Global MMR space addresses when referenced by the GRU. (GRU does
328 * NOT use socket addressing).
329 */
330static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
331{
332	return UV_GLOBAL_GRU_MMR_BASE | offset |
333		((unsigned long)pnode << uv_hub_info->m_val);
334}
335
336static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
337{
338	writeb(val, uv_global_mmr64_address(pnode, offset));
339}
340
341static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
342{
343	return readb(uv_global_mmr64_address(pnode, offset));
344}
345
346/*
347 * Access hub local MMRs. Faster than using global space but only local MMRs
348 * are accessible.
349 */
350static inline unsigned long *uv_local_mmr_address(unsigned long offset)
351{
352	return __va(UV_LOCAL_MMR_BASE | offset);
353}
354
355static inline unsigned long uv_read_local_mmr(unsigned long offset)
356{
357	return readq(uv_local_mmr_address(offset));
358}
359
360static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
361{
362	writeq(val, uv_local_mmr_address(offset));
363}
364
365static inline unsigned char uv_read_local_mmr8(unsigned long offset)
366{
367	return readb(uv_local_mmr_address(offset));
368}
369
370static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
371{
372	writeb(val, uv_local_mmr_address(offset));
373}
374
375/*
376 * Structures and definitions for converting between cpu, node, pnode, and blade
377 * numbers.
378 */
379struct uv_blade_info {
380	unsigned short	nr_possible_cpus;
381	unsigned short	nr_online_cpus;
382	unsigned short	pnode;
383	short		memory_nid;
384};
385extern struct uv_blade_info *uv_blade_info;
386extern short *uv_node_to_blade;
387extern short *uv_cpu_to_blade;
388extern short uv_possible_blades;
389
390/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
391static inline int uv_blade_processor_id(void)
392{
393	return uv_hub_info->blade_processor_id;
394}
395
396/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
397static inline int uv_numa_blade_id(void)
398{
399	return uv_hub_info->numa_blade_id;
400}
401
402/* Convert a cpu number to the the UV blade number */
403static inline int uv_cpu_to_blade_id(int cpu)
404{
405	return uv_cpu_to_blade[cpu];
406}
407
408/* Convert linux node number to the UV blade number */
409static inline int uv_node_to_blade_id(int nid)
410{
411	return uv_node_to_blade[nid];
412}
413
414/* Convert a blade id to the PNODE of the blade */
415static inline int uv_blade_to_pnode(int bid)
416{
417	return uv_blade_info[bid].pnode;
418}
419
420/* Nid of memory node on blade. -1 if no blade-local memory */
421static inline int uv_blade_to_memory_nid(int bid)
422{
423	return uv_blade_info[bid].memory_nid;
424}
425
426/* Determine the number of possible cpus on a blade */
427static inline int uv_blade_nr_possible_cpus(int bid)
428{
429	return uv_blade_info[bid].nr_possible_cpus;
430}
431
432/* Determine the number of online cpus on a blade */
433static inline int uv_blade_nr_online_cpus(int bid)
434{
435	return uv_blade_info[bid].nr_online_cpus;
436}
437
438/* Convert a cpu id to the PNODE of the blade containing the cpu */
439static inline int uv_cpu_to_pnode(int cpu)
440{
441	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
442}
443
444/* Convert a linux node number to the PNODE of the blade */
445static inline int uv_node_to_pnode(int nid)
446{
447	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
448}
449
450/* Maximum possible number of blades */
451static inline int uv_num_possible_blades(void)
452{
453	return uv_possible_blades;
454}
455
456/* Update SCIR state */
457static inline void uv_set_scir_bits(unsigned char value)
458{
459	if (uv_hub_info->scir.state != value) {
460		uv_hub_info->scir.state = value;
461		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
462	}
463}
464
465static inline unsigned long uv_scir_offset(int apicid)
466{
467	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
468}
469
470static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
471{
472	if (uv_cpu_hub_info(cpu)->scir.state != value) {
473		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
474				uv_cpu_hub_info(cpu)->scir.offset, value);
475		uv_cpu_hub_info(cpu)->scir.state = value;
476	}
477}
478
479static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
480{
481	return (1UL << UVH_IPI_INT_SEND_SHFT) |
482			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
483			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
484			(vector << UVH_IPI_INT_VECTOR_SHFT);
485}
486
487static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
488{
489	unsigned long val;
490	unsigned long dmode = dest_Fixed;
491
492	if (vector == NMI_VECTOR)
493		dmode = dest_NMI;
494
495	val = uv_hub_ipi_value(apicid, vector, dmode);
496	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
497}
498
499/*
500 * Get the minimum revision number of the hub chips within the partition.
501 *     1 - initial rev 1.0 silicon
502 *     2 - rev 2.0 production silicon
503 */
504static inline int uv_get_min_hub_revision_id(void)
505{
506	extern int uv_min_hub_revision_id;
507
508	return uv_min_hub_revision_id;
509}
510
511#endif /* CONFIG_X86_64 */
512#endif /* _ASM_X86_UV_UV_HUB_H */
513