• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/tile/kernel/
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17#include <linux/linkage.h>
18#include <linux/errno.h>
19#include <linux/init.h>
20#include <linux/unistd.h>
21#include <asm/ptrace.h>
22#include <asm/thread_info.h>
23#include <asm/irqflags.h>
24#include <asm/atomic.h>
25#include <asm/asm-offsets.h>
26#include <hv/hypervisor.h>
27#include <arch/abi.h>
28#include <arch/interrupts.h>
29#include <arch/spr_def.h>
30
31#ifdef CONFIG_PREEMPT
32# error "No support for kernel preemption currently"
33#endif
34
35#if INT_INTCTRL_1 < 32 || INT_INTCTRL_1 >= 48
36# error INT_INTCTRL_1 coded to set high interrupt mask
37#endif
38
39#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
40
41#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
42
43#if !CHIP_HAS_WH64()
44	/* By making this an empty macro, we can use wh64 in the code. */
45	.macro  wh64 reg
46	.endm
47#endif
48
49	.macro  push_reg reg, ptr=sp, delta=-4
50	{
51	 sw     \ptr, \reg
52	 addli  \ptr, \ptr, \delta
53	}
54	.endm
55
56	.macro  pop_reg reg, ptr=sp, delta=4
57	{
58	 lw     \reg, \ptr
59	 addli  \ptr, \ptr, \delta
60	}
61	.endm
62
63	.macro  pop_reg_zero reg, zreg, ptr=sp, delta=4
64	{
65	 move   \zreg, zero
66	 lw     \reg, \ptr
67	 addi   \ptr, \ptr, \delta
68	}
69	.endm
70
71	.macro  push_extra_callee_saves reg
72	PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
73	push_reg r51, \reg
74	push_reg r50, \reg
75	push_reg r49, \reg
76	push_reg r48, \reg
77	push_reg r47, \reg
78	push_reg r46, \reg
79	push_reg r45, \reg
80	push_reg r44, \reg
81	push_reg r43, \reg
82	push_reg r42, \reg
83	push_reg r41, \reg
84	push_reg r40, \reg
85	push_reg r39, \reg
86	push_reg r38, \reg
87	push_reg r37, \reg
88	push_reg r36, \reg
89	push_reg r35, \reg
90	push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
91	.endm
92
93	.macro  panic str
94	.pushsection .rodata, "a"
951:
96	.asciz  "\str"
97	.popsection
98	{
99	 moveli r0, lo16(1b)
100	}
101	{
102	 auli   r0, r0, ha16(1b)
103	 jal    panic
104	}
105	.endm
106
107#ifdef __COLLECT_LINKER_FEEDBACK__
108	.pushsection .text.intvec_feedback,"ax"
109intvec_feedback:
110	.popsection
111#endif
112
113	/*
114	 * Default interrupt handler.
115	 *
116	 * vecnum is where we'll put this code.
117	 * c_routine is the C routine we'll call.
118	 *
119	 * The C routine is passed two arguments:
120	 * - A pointer to the pt_regs state.
121	 * - The interrupt vector number.
122	 *
123	 * The "processing" argument specifies the code for processing
124	 * the interrupt. Defaults to "handle_interrupt".
125	 */
126	.macro  int_hand vecnum, vecname, c_routine, processing=handle_interrupt
127	.org    (\vecnum << 8)
128intvec_\vecname:
129	.ifc    \vecnum, INT_SWINT_1
130	blz     TREG_SYSCALL_NR_NAME, sys_cmpxchg
131	.endif
132
133	/* Temporarily save a register so we have somewhere to work. */
134
135	mtspr   SYSTEM_SAVE_1_1, r0
136	mfspr   r0, EX_CONTEXT_1_1
137
138	/* The cmpxchg code clears sp to force us to reset it here on fault. */
139	{
140	 bz     sp, 2f
141	 andi   r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
142	}
143
144	.ifc    \vecnum, INT_DOUBLE_FAULT
145	/*
146	 * For double-faults from user-space, fall through to the normal
147	 * register save and stack setup path.  Otherwise, it's the
148	 * hypervisor giving us one last chance to dump diagnostics, and we
149	 * branch to the kernel_double_fault routine to do so.
150	 */
151	bz      r0, 1f
152	j       _kernel_double_fault
1531:
154	.else
155	/*
156	 * If we're coming from user-space, then set sp to the top of
157	 * the kernel stack.  Otherwise, assume sp is already valid.
158	 */
159	{
160	 bnz    r0, 0f
161	 move   r0, sp
162	}
163	.endif
164
165	.ifc    \c_routine, do_page_fault
166	/*
167	 * The page_fault handler may be downcalled directly by the
168	 * hypervisor even when Linux is running and has ICS set.
169	 *
170	 * In this case the contents of EX_CONTEXT_1_1 reflect the
171	 * previous fault and can't be relied on to choose whether or
172	 * not to reinitialize the stack pointer.  So we add a test
173	 * to see whether SYSTEM_SAVE_1_2 has the high bit set,
174	 * and if so we don't reinitialize sp, since we must be coming
175	 * from Linux.  (In fact the precise case is !(val & ~1),
176	 * but any Linux PC has to have the high bit set.)
177	 *
178	 * Note that the hypervisor *always* sets SYSTEM_SAVE_1_2 for
179	 * any path that turns into a downcall to one of our TLB handlers.
180	 */
181	mfspr   r0, SYSTEM_SAVE_1_2
182	{
183	 blz    r0, 0f    /* high bit in S_S_1_2 is for a PC to use */
184	 move   r0, sp
185	}
186	.endif
187
1882:
189	/*
190	 * SYSTEM_SAVE_1_0 holds the cpu number in the low bits, and
191	 * the current stack top in the higher bits.  So we recover
192	 * our stack top by just masking off the low bits, then
193	 * point sp at the top aligned address on the actual stack page.
194	 */
195	mfspr   r0, SYSTEM_SAVE_1_0
196	mm      r0, r0, zero, LOG2_THREAD_SIZE, 31
197
1980:
199	/*
200	 * Align the stack mod 64 so we can properly predict what
201	 * cache lines we need to write-hint to reduce memory fetch
202	 * latency as we enter the kernel.  The layout of memory is
203	 * as follows, with cache line 0 at the lowest VA, and cache
204	 * line 4 just below the r0 value this "andi" computes.
205	 * Note that we never write to cache line 4, and we skip
206	 * cache line 1 for syscalls.
207	 *
208	 *    cache line 4: ptregs padding (two words)
209	 *    cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
210	 *    cache line 2: r30...r45
211	 *    cache line 1: r14...r29
212	 *    cache line 0: 2 x frame, r0..r13
213	 */
214	andi    r0, r0, -64
215
216	/*
217	 * Push the first four registers on the stack, so that we can set
218	 * them to vector-unique values before we jump to the common code.
219	 *
220	 * Registers are pushed on the stack as a struct pt_regs,
221	 * with the sp initially just above the struct, and when we're
222	 * done, sp points to the base of the struct, minus
223	 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
224	 *
225	 * This routine saves just the first four registers, plus the
226	 * stack context so we can do proper backtracing right away,
227	 * and defers to handle_interrupt to save the rest.
228	 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
229	 */
230	addli   r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
231	wh64    r0    /* cache line 3 */
232	{
233	 sw     r0, lr
234	 addli  r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
235	}
236	{
237	 sw     r0, sp
238	 addli  sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
239	}
240	{
241	 sw     sp, r52
242	 addli  sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
243	}
244	wh64    sp    /* cache line 0 */
245	{
246	 sw     sp, r1
247	 addli  sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
248	}
249	{
250	 sw     sp, r2
251	 addli  sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
252	}
253	{
254	 sw     sp, r3
255	 addli  sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
256	}
257	mfspr   r0, EX_CONTEXT_1_0
258	.ifc \processing,handle_syscall
259	/*
260	 * Bump the saved PC by one bundle so that when we return, we won't
261	 * execute the same swint instruction again.  We need to do this while
262	 * we're in the critical section.
263	 */
264	addi    r0, r0, 8
265	.endif
266	{
267	 sw     sp, r0
268	 addli  sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
269	}
270	mfspr   r0, EX_CONTEXT_1_1
271	{
272	 sw     sp, r0
273	 addi   sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
274	/*
275	 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
276	 * so that it gets passed through unchanged to the handler routine.
277	 * Note that the .if conditional confusingly spans bundles.
278	 */
279	 .ifc \processing,handle_syscall
280	 movei  r0, \vecnum
281	}
282	{
283	 sw     sp, r0
284	 .else
285	 movei  r1, \vecnum
286	}
287	{
288	 sw     sp, r1
289	 .endif
290	 addli  sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
291	}
292	mfspr   r0, SYSTEM_SAVE_1_1    /* Original r0 */
293	{
294	 sw     sp, r0
295	 addi   sp, sp, -PTREGS_OFFSET_REG(0) - 4
296	}
297	{
298	 sw     sp, zero        /* write zero into "Next SP" frame pointer */
299	 addi   sp, sp, -4      /* leave SP pointing at bottom of frame */
300	}
301	.ifc \processing,handle_syscall
302	j       handle_syscall
303	.else
304	/*
305	 * Capture per-interrupt SPR context to registers.
306	 * We overload the meaning of r3 on this path such that if its bit 31
307	 * is set, we have to mask all interrupts including NMIs before
308	 * clearing the interrupt critical section bit.
309	 * See discussion below at "finish_interrupt_save".
310	 */
311	.ifc \c_routine, do_page_fault
312	mfspr   r2, SYSTEM_SAVE_1_3   /* address of page fault */
313	mfspr   r3, SYSTEM_SAVE_1_2   /* info about page fault */
314	.else
315	.ifc \vecnum, INT_DOUBLE_FAULT
316	{
317	 mfspr  r2, SYSTEM_SAVE_1_2   /* double fault info from HV */
318	 movei  r3, 0
319	}
320	.else
321	.ifc \c_routine, do_trap
322	{
323	 mfspr  r2, GPV_REASON
324	 movei  r3, 0
325	}
326	.else
327	.ifc \c_routine, op_handle_perf_interrupt
328	{
329	 mfspr  r2, PERF_COUNT_STS
330	 movei  r3, -1   /* not used, but set for consistency */
331	}
332	.else
333#if CHIP_HAS_AUX_PERF_COUNTERS()
334	.ifc \c_routine, op_handle_aux_perf_interrupt
335	{
336	 mfspr  r2, AUX_PERF_COUNT_STS
337	 movei  r3, -1   /* not used, but set for consistency */
338	}
339	.else
340#endif
341	movei   r3, 0
342#if CHIP_HAS_AUX_PERF_COUNTERS()
343	.endif
344#endif
345	.endif
346	.endif
347	.endif
348	.endif
349	/* Put function pointer in r0 */
350	moveli  r0, lo16(\c_routine)
351	{
352	 auli   r0, r0, ha16(\c_routine)
353	 j       \processing
354	}
355	.endif
356	ENDPROC(intvec_\vecname)
357
358#ifdef __COLLECT_LINKER_FEEDBACK__
359	.pushsection .text.intvec_feedback,"ax"
360	.org    (\vecnum << 5)
361	FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt1, 1 << 8)
362	jrp     lr
363	.popsection
364#endif
365
366	.endm
367
368
369	/*
370	 * Save the rest of the registers that we didn't save in the actual
371	 * vector itself.  We can't use r0-r10 inclusive here.
372	 */
373	.macro  finish_interrupt_save, function
374
375	/* If it's a syscall, save a proper orig_r0, otherwise just zero. */
376	PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
377	{
378	 .ifc \function,handle_syscall
379	 sw     r52, r0
380	 .else
381	 sw     r52, zero
382	 .endif
383	 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
384	}
385
386	/*
387	 * For ordinary syscalls, we save neither caller- nor callee-
388	 * save registers, since the syscall invoker doesn't expect the
389	 * caller-saves to be saved, and the called kernel functions will
390	 * take care of saving the callee-saves for us.
391	 *
392	 * For interrupts we save just the caller-save registers.  Saving
393	 * them is required (since the "caller" can't save them).  Again,
394	 * the called kernel functions will restore the callee-save
395	 * registers for us appropriately.
396	 *
397	 * On return, we normally restore nothing special for syscalls,
398	 * and just the caller-save registers for interrupts.
399	 *
400	 * However, there are some important caveats to all this:
401	 *
402	 * - We always save a few callee-save registers to give us
403	 *   some scratchpad registers to carry across function calls.
404	 *
405	 * - fork/vfork/etc require us to save all the callee-save
406	 *   registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
407	 *
408	 * - We always save r0..r5 and r10 for syscalls, since we need
409	 *   to reload them a bit later for the actual kernel call, and
410	 *   since we might need them for -ERESTARTNOINTR, etc.
411	 *
412	 * - Before invoking a signal handler, we save the unsaved
413	 *   callee-save registers so they are visible to the
414	 *   signal handler or any ptracer.
415	 *
416	 * - If the unsaved callee-save registers are modified, we set
417	 *   a bit in pt_regs so we know to reload them from pt_regs
418	 *   and not just rely on the kernel function unwinding.
419	 *   (Done for ptrace register writes and SA_SIGINFO handler.)
420	 */
421	{
422	 sw     r52, tp
423	 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
424	}
425	wh64    r52    /* cache line 2 */
426	push_reg r33, r52
427	push_reg r32, r52
428	push_reg r31, r52
429	.ifc \function,handle_syscall
430	push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
431	push_reg TREG_SYSCALL_NR_NAME, r52, \
432	  PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
433	.else
434
435	push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
436	wh64    r52    /* cache line 1 */
437	push_reg r29, r52
438	push_reg r28, r52
439	push_reg r27, r52
440	push_reg r26, r52
441	push_reg r25, r52
442	push_reg r24, r52
443	push_reg r23, r52
444	push_reg r22, r52
445	push_reg r21, r52
446	push_reg r20, r52
447	push_reg r19, r52
448	push_reg r18, r52
449	push_reg r17, r52
450	push_reg r16, r52
451	push_reg r15, r52
452	push_reg r14, r52
453	push_reg r13, r52
454	push_reg r12, r52
455	push_reg r11, r52
456	push_reg r10, r52
457	push_reg r9, r52
458	push_reg r8, r52
459	push_reg r7, r52
460	push_reg r6, r52
461
462	.endif
463
464	push_reg r5, r52
465	sw      r52, r4
466
467	/* Load tp with our per-cpu offset. */
468#ifdef CONFIG_SMP
469	{
470	 mfspr  r20, SYSTEM_SAVE_1_0
471	 moveli r21, lo16(__per_cpu_offset)
472	}
473	{
474	 auli   r21, r21, ha16(__per_cpu_offset)
475	 mm     r20, r20, zero, 0, LOG2_THREAD_SIZE-1
476	}
477	s2a     r20, r20, r21
478	lw      tp, r20
479#else
480	move    tp, zero
481#endif
482
483	/*
484	 * If we will be returning to the kernel, we will need to
485	 * reset the interrupt masks to the state they had before.
486	 * Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
487	 * We load flags in r32 here so we can jump to .Lrestore_regs
488	 * directly after do_page_fault_ics() if necessary.
489	 */
490	mfspr   r32, EX_CONTEXT_1_1
491	{
492	 andi   r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
493	 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
494	}
495	bzt     r32, 1f       /* zero if from user space */
496	IRQS_DISABLED(r32)    /* zero if irqs enabled */
497#if PT_FLAGS_DISABLE_IRQ != 1
498# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
499#endif
5001:
501	.ifnc \function,handle_syscall
502	/* Record the fact that we saved the caller-save registers above. */
503	ori     r32, r32, PT_FLAGS_CALLER_SAVES
504	.endif
505	sw      r21, r32
506
507#ifdef __COLLECT_LINKER_FEEDBACK__
508	/*
509	 * Notify the feedback routines that we were in the
510	 * appropriate fixed interrupt vector area.  Note that we
511	 * still have ICS set at this point, so we can't invoke any
512	 * atomic operations or we will panic.  The feedback
513	 * routines internally preserve r0..r10 and r30 up.
514	 */
515	.ifnc \function,handle_syscall
516	shli    r20, r1, 5
517	.else
518	moveli  r20, INT_SWINT_1 << 5
519	.endif
520	addli   r20, r20, lo16(intvec_feedback)
521	auli    r20, r20, ha16(intvec_feedback)
522	jalr    r20
523
524	/* And now notify the feedback routines that we are here. */
525	FEEDBACK_ENTER(\function)
526#endif
527
528	/*
529	 * we've captured enough state to the stack (including in
530	 * particular our EX_CONTEXT state) that we can now release
531	 * the interrupt critical section and replace it with our
532	 * standard "interrupts disabled" mask value.  This allows
533	 * synchronous interrupts (and profile interrupts) to punch
534	 * through from this point onwards.
535	 *
536	 * If bit 31 of r3 is set during a non-NMI interrupt, we know we
537	 * are on the path where the hypervisor has punched through our
538	 * ICS with a page fault, so we call out to do_page_fault_ics()
539	 * to figure out what to do with it.  If the fault was in
540	 * an atomic op, we unlock the atomic lock, adjust the
541	 * saved register state a little, and return "zero" in r4,
542	 * falling through into the normal page-fault interrupt code.
543	 * If the fault was in a kernel-space atomic operation, then
544	 * do_page_fault_ics() resolves it itself, returns "one" in r4,
545	 * and as a result goes directly to restoring registers and iret,
546	 * without trying to adjust the interrupt masks at all.
547	 * The do_page_fault_ics() API involves passing and returning
548	 * a five-word struct (in registers) to avoid writing the
549	 * save and restore code here.
550	 */
551	.ifc \function,handle_nmi
552	IRQ_DISABLE_ALL(r20)
553	.else
554	.ifnc \function,handle_syscall
555	bgezt   r3, 1f
556	{
557	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
558	 jal    do_page_fault_ics
559	}
560	FEEDBACK_REENTER(\function)
561	bzt     r4, 1f
562	j       .Lrestore_regs
5631:
564	.endif
565	IRQ_DISABLE(r20, r21)
566	.endif
567	mtspr   INTERRUPT_CRITICAL_SECTION, zero
568
569#if CHIP_HAS_WH64()
570	/*
571	 * Prepare the first 256 stack bytes to be rapidly accessible
572	 * without having to fetch the background data.  We don't really
573	 * know how far to write-hint, but kernel stacks generally
574	 * aren't that big, and write-hinting here does take some time.
575	 */
576	addi    r52, sp, -64
577	{
578	 wh64   r52
579	 addi   r52, r52, -64
580	}
581	{
582	 wh64   r52
583	 addi   r52, r52, -64
584	}
585	{
586	 wh64   r52
587	 addi   r52, r52, -64
588	}
589	wh64    r52
590#endif
591
592#ifdef CONFIG_TRACE_IRQFLAGS
593	.ifnc \function,handle_nmi
594	/*
595	 * We finally have enough state set up to notify the irq
596	 * tracing code that irqs were disabled on entry to the handler.
597	 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
598	 * For syscalls, we already have the register state saved away
599	 * on the stack, so we don't bother to do any register saves here,
600	 * and later we pop the registers back off the kernel stack.
601	 * For interrupt handlers, save r0-r3 in callee-saved registers.
602	 */
603	.ifnc \function,handle_syscall
604	{ move r30, r0; move r31, r1 }
605	{ move r32, r2; move r33, r3 }
606	.endif
607	TRACE_IRQS_OFF
608	.ifnc \function,handle_syscall
609	{ move r0, r30; move r1, r31 }
610	{ move r2, r32; move r3, r33 }
611	.endif
612	.endif
613#endif
614
615	.endm
616
617	.macro  check_single_stepping, kind, not_single_stepping
618	/*
619	 * Check for single stepping in user-level priv
620	 *   kind can be "normal", "ill", or "syscall"
621	 * At end, if fall-thru
622	 *   r29: thread_info->step_state
623	 *   r28: &pt_regs->pc
624	 *   r27: pt_regs->pc
625	 *   r26: thread_info->step_state->buffer
626	 */
627
628	/* Check for single stepping */
629	GET_THREAD_INFO(r29)
630	{
631	 /* Get pointer to field holding step state */
632	 addi   r29, r29, THREAD_INFO_STEP_STATE_OFFSET
633
634	 /* Get pointer to EX1 in register state */
635	 PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
636	}
637	{
638	 /* Get pointer to field holding PC */
639	 PTREGS_PTR(r28, PTREGS_OFFSET_PC)
640
641	 /* Load the pointer to the step state */
642	 lw     r29, r29
643	}
644	/* Load EX1 */
645	lw      r27, r27
646	{
647	 /* Points to flags */
648	 addi   r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
649
650	 /* No single stepping if there is no step state structure */
651	 bzt    r29, \not_single_stepping
652	}
653	{
654	 /* mask off ICS and any other high bits */
655	 andi   r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
656
657	 /* Load pointer to single step instruction buffer */
658	 lw     r26, r29
659	}
660	/* Check priv state */
661	bnz     r27, \not_single_stepping
662
663	/* Get flags */
664	lw      r22, r23
665	{
666	 /* Branch if single-step mode not enabled */
667	 bbnst  r22, \not_single_stepping
668
669	 /* Clear enabled flag */
670	 andi   r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
671	}
672	.ifc \kind,normal
673	{
674	 /* Load PC */
675	 lw     r27, r28
676
677	 /* Point to the entry containing the original PC */
678	 addi   r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
679	}
680	{
681	 /* Disable single stepping flag */
682	 sw     r23, r22
683	}
684	{
685	 /* Get the original pc */
686	 lw     r24, r24
687
688	 /* See if the PC is at the start of the single step buffer */
689	 seq    r25, r26, r27
690	}
691	/*
692	 * NOTE: it is really expected that the PC be in the single step buffer
693	 *       at this point
694	 */
695	bzt     r25, \not_single_stepping
696
697	/* Restore the original PC */
698	sw      r28, r24
699	.else
700	.ifc \kind,syscall
701	{
702	 /* Load PC */
703	 lw     r27, r28
704
705	 /* Point to the entry containing the next PC */
706	 addi   r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
707	}
708	{
709	 /* Increment the stopped PC by the bundle size */
710	 addi   r26, r26, 8
711
712	 /* Disable single stepping flag */
713	 sw     r23, r22
714	}
715	{
716	 /* Get the next pc */
717	 lw     r24, r24
718
719	 /*
720	  * See if the PC is one bundle past the start of the
721	  * single step buffer
722	  */
723	 seq    r25, r26, r27
724	}
725	{
726	 /*
727	  * NOTE: it is really expected that the PC be in the
728	  * single step buffer at this point
729	  */
730	 bzt    r25, \not_single_stepping
731	}
732	/* Set to the next PC */
733	sw      r28, r24
734	.else
735	{
736	 /* Point to 3rd bundle in buffer */
737	 addi   r25, r26, 16
738
739	 /* Load PC */
740	 lw      r27, r28
741	}
742	{
743	 /* Disable single stepping flag */
744	 sw      r23, r22
745
746	 /* See if the PC is in the single step buffer */
747	 slte_u  r24, r26, r27
748	}
749	{
750	 slte_u r25, r27, r25
751
752	 /*
753	  * NOTE: it is really expected that the PC be in the
754	  * single step buffer at this point
755	  */
756	 bzt    r24, \not_single_stepping
757	}
758	bzt     r25, \not_single_stepping
759	.endif
760	.endif
761	.endm
762
763	/*
764	 * Redispatch a downcall.
765	 */
766	.macro  dc_dispatch vecnum, vecname
767	.org    (\vecnum << 8)
768intvec_\vecname:
769	j       hv_downcall_dispatch
770	ENDPROC(intvec_\vecname)
771	.endm
772
773	/*
774	 * Common code for most interrupts.  The C function we're eventually
775	 * going to is in r0, and the faultnum is in r1; the original
776	 * values for those registers are on the stack.
777	 */
778	.pushsection .text.handle_interrupt,"ax"
779handle_interrupt:
780	finish_interrupt_save handle_interrupt
781
782	/*
783	 * Check for if we are single stepping in user level. If so, then
784	 * we need to restore the PC.
785	 */
786
787	check_single_stepping normal, .Ldispatch_interrupt
788.Ldispatch_interrupt:
789
790	/* Jump to the C routine; it should enable irqs as soon as possible. */
791	{
792	 jalr   r0
793	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
794	}
795	FEEDBACK_REENTER(handle_interrupt)
796	{
797	 movei  r30, 0   /* not an NMI */
798	 j      interrupt_return
799	}
800	STD_ENDPROC(handle_interrupt)
801
802/*
803 * This routine takes a boolean in r30 indicating if this is an NMI.
804 * If so, we also expect a boolean in r31 indicating whether to
805 * re-enable the oprofile interrupts.
806 */
807STD_ENTRY(interrupt_return)
808	/* If we're resuming to kernel space, don't check thread flags. */
809	{
810	 bnz    r30, .Lrestore_all  /* NMIs don't special-case user-space */
811	 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
812	}
813	lw      r29, r29
814	andi    r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
815	{
816	 bzt    r29, .Lresume_userspace
817	 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
818	}
819
820	/* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
821	{
822	 lw     r28, r29
823	 moveli r27, lo16(_cpu_idle_nap)
824	}
825	{
826	 auli   r27, r27, ha16(_cpu_idle_nap)
827	}
828	{
829	 seq    r27, r27, r28
830	}
831	{
832	 bbns   r27, .Lrestore_all
833	 addi   r28, r28, 8
834	}
835	sw      r29, r28
836	j       .Lrestore_all
837
838.Lresume_userspace:
839	FEEDBACK_REENTER(interrupt_return)
840
841	/*
842	 * Disable interrupts so as to make sure we don't
843	 * miss an interrupt that sets any of the thread flags (like
844	 * need_resched or sigpending) between sampling and the iret.
845	 * Routines like schedule() or do_signal() may re-enable
846	 * interrupts before returning.
847	 */
848	IRQ_DISABLE(r20, r21)
849	TRACE_IRQS_OFF  /* Note: clobbers registers r0-r29 */
850
851	/* Get base of stack in r32; note r30/31 are used as arguments here. */
852	GET_THREAD_INFO(r32)
853
854
855	/* Check to see if there is any work to do before returning to user. */
856	{
857	 addi   r29, r32, THREAD_INFO_FLAGS_OFFSET
858	 moveli r28, lo16(_TIF_ALLWORK_MASK)
859	}
860	{
861	 lw     r29, r29
862	 auli   r28, r28, ha16(_TIF_ALLWORK_MASK)
863	}
864	and     r28, r29, r28
865	bnz     r28, .Lwork_pending
866
867	/*
868	 * In the NMI case we
869	 * omit the call to single_process_check_nohz, which normally checks
870	 * to see if we should start or stop the scheduler tick, because
871	 * we can't call arbitrary Linux code from an NMI context.
872	 * We always call the homecache TLB deferral code to re-trigger
873	 * the deferral mechanism.
874	 *
875	 * The other chunk of responsibility this code has is to reset the
876	 * interrupt masks appropriately to reset irqs and NMIs.  We have
877	 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
878	 * lockdep-type stuff, but we can't set ICS until afterwards, since
879	 * ICS can only be used in very tight chunks of code to avoid
880	 * tripping over various assertions that it is off.
881	 *
882	 * (There is what looks like a window of vulnerability here since
883	 * we might take a profile interrupt between the two SPR writes
884	 * that set the mask, but since we write the low SPR word first,
885	 * and our interrupt entry code checks the low SPR word, any
886	 * profile interrupt will actually disable interrupts in both SPRs
887	 * before returning, which is OK.)
888	 */
889.Lrestore_all:
890	PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
891	{
892	 lw     r0, r0
893	 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
894	}
895	{
896	 andi   r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
897	 lw     r32, r32
898	}
899	bnz    r0, 1f
900	j       2f
901#if PT_FLAGS_DISABLE_IRQ != 1
902# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
903#endif
9041:	bbnst   r32, 2f
905	IRQ_DISABLE(r20,r21)
906	TRACE_IRQS_OFF
907	movei   r0, 1
908	mtspr   INTERRUPT_CRITICAL_SECTION, r0
909	bzt     r30, .Lrestore_regs
910	j       3f
9112:	TRACE_IRQS_ON
912	movei   r0, 1
913	mtspr   INTERRUPT_CRITICAL_SECTION, r0
914	IRQ_ENABLE(r20, r21)
915	bzt     r30, .Lrestore_regs
9163:
917
918
919	/*
920	 * We now commit to returning from this interrupt, since we will be
921	 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
922	 * frame.  No calls should be made to any other code after this point.
923	 * This code should only be entered with ICS set.
924	 * r32 must still be set to ptregs.flags.
925	 * We launch loads to each cache line separately first, so we can
926	 * get some parallelism out of the memory subsystem.
927	 * We start zeroing caller-saved registers throughout, since
928	 * that will save some cycles if this turns out to be a syscall.
929	 */
930.Lrestore_regs:
931	FEEDBACK_REENTER(interrupt_return)   /* called from elsewhere */
932
933	/*
934	 * Rotate so we have one high bit and one low bit to test.
935	 * - low bit says whether to restore all the callee-saved registers,
936	 *   or just r30-r33, and r52 up.
937	 * - high bit (i.e. sign bit) says whether to restore all the
938	 *   caller-saved registers, or just r0.
939	 */
940#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
941# error Rotate trick does not work :-)
942#endif
943	{
944	 rli    r20, r32, 30
945	 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
946	}
947
948	/*
949	 * Load cache lines 0, 2, and 3 in that order, then use
950	 * the last loaded value, which makes it likely that the other
951	 * cache lines have also loaded, at which point we should be
952	 * able to safely read all the remaining words on those cache
953	 * lines without waiting for the memory subsystem.
954	 */
955	pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
956	pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
957	pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
958	pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
959	{
960	 mtspr  EX_CONTEXT_1_0, r21
961	 move   r5, zero
962	}
963	{
964	 mtspr  EX_CONTEXT_1_1, lr
965	 andi   lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
966	}
967
968	/* Restore callee-saveds that we actually use. */
969	pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
970	pop_reg_zero r31, r7
971	pop_reg_zero r32, r8
972	pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
973
974	/*
975	 * If we modified other callee-saveds, restore them now.
976	 * This is rare, but could be via ptrace or signal handler.
977	 */
978	{
979	 move   r10, zero
980	 bbs    r20, .Lrestore_callees
981	}
982.Lcontinue_restore_regs:
983
984	/* Check if we're returning from a syscall. */
985	{
986	 move   r11, zero
987	 blzt   r20, 1f  /* no, so go restore callee-save registers */
988	}
989
990	/*
991	 * Check if we're returning to userspace.
992	 * Note that if we're not, we don't worry about zeroing everything.
993	 */
994	{
995	 addli  sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
996	 bnz    lr, .Lkernel_return
997	}
998
999	/*
1000	 * On return from syscall, we've restored r0 from pt_regs, but we
1001	 * clear the remainder of the caller-saved registers.  We could
1002	 * restore the syscall arguments, but there's not much point,
1003	 * and it ensures user programs aren't trying to use the
1004	 * caller-saves if we clear them, as well as avoiding leaking
1005	 * kernel pointers into userspace.
1006	 */
1007	pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1008	pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1009	{
1010	 lw     sp, sp
1011	 move   r14, zero
1012	 move   r15, zero
1013	}
1014	{ move r16, zero; move r17, zero }
1015	{ move r18, zero; move r19, zero }
1016	{ move r20, zero; move r21, zero }
1017	{ move r22, zero; move r23, zero }
1018	{ move r24, zero; move r25, zero }
1019	{ move r26, zero; move r27, zero }
1020
1021	/* Set r1 to errno if we are returning an error, otherwise zero. */
1022	{
1023	 moveli r29, 1024
1024	 sub    r1, zero, r0
1025	}
1026	slt_u   r29, r1, r29
1027	{
1028	 mnz    r1, r29, r1
1029	 move   r29, zero
1030	}
1031	iret
1032
1033	/*
1034	 * Not a syscall, so restore caller-saved registers.
1035	 * First kick off a load for cache line 1, which we're touching
1036	 * for the first time here.
1037	 */
1038	.align 64
10391:	pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1040	pop_reg r1
1041	pop_reg r2
1042	pop_reg r3
1043	pop_reg r4
1044	pop_reg r5
1045	pop_reg r6
1046	pop_reg r7
1047	pop_reg r8
1048	pop_reg r9
1049	pop_reg r10
1050	pop_reg r11
1051	pop_reg r12
1052	pop_reg r13
1053	pop_reg r14
1054	pop_reg r15
1055	pop_reg r16
1056	pop_reg r17
1057	pop_reg r18
1058	pop_reg r19
1059	pop_reg r20
1060	pop_reg r21
1061	pop_reg r22
1062	pop_reg r23
1063	pop_reg r24
1064	pop_reg r25
1065	pop_reg r26
1066	pop_reg r27
1067	pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1068	/* r29 already restored above */
1069	bnz     lr, .Lkernel_return
1070	pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1071	pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1072	lw      sp, sp
1073	iret
1074
1075	/*
1076	 * We can't restore tp when in kernel mode, since a thread might
1077	 * have migrated from another cpu and brought a stale tp value.
1078	 */
1079.Lkernel_return:
1080	pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1081	lw      sp, sp
1082	iret
1083
1084	/* Restore callee-saved registers from r34 to r51. */
1085.Lrestore_callees:
1086	addli  sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1087	pop_reg r34
1088	pop_reg r35
1089	pop_reg r36
1090	pop_reg r37
1091	pop_reg r38
1092	pop_reg r39
1093	pop_reg r40
1094	pop_reg r41
1095	pop_reg r42
1096	pop_reg r43
1097	pop_reg r44
1098	pop_reg r45
1099	pop_reg r46
1100	pop_reg r47
1101	pop_reg r48
1102	pop_reg r49
1103	pop_reg r50
1104	pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1105	j .Lcontinue_restore_regs
1106
1107.Lwork_pending:
1108	/* Mask the reschedule flag */
1109	andi    r28, r29, _TIF_NEED_RESCHED
1110
1111	{
1112	 /*
1113	  * If the NEED_RESCHED flag is called, we call schedule(), which
1114	  * may drop this context right here and go do something else.
1115	  * On return, jump back to .Lresume_userspace and recheck.
1116	  */
1117	 bz     r28, .Lasync_tlb
1118
1119	 /* Mask the async-tlb flag */
1120	 andi   r28, r29, _TIF_ASYNC_TLB
1121	}
1122
1123	jal     schedule
1124	FEEDBACK_REENTER(interrupt_return)
1125
1126	/* Reload the flags and check again */
1127	j       .Lresume_userspace
1128
1129.Lasync_tlb:
1130	{
1131	 bz     r28, .Lneed_sigpending
1132
1133	 /* Mask the sigpending flag */
1134	 andi   r28, r29, _TIF_SIGPENDING
1135	}
1136
1137	PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1138	jal     do_async_page_fault
1139	FEEDBACK_REENTER(interrupt_return)
1140
1141	/*
1142	 * Go restart the "resume userspace" process.  We may have
1143	 * fired a signal, and we need to disable interrupts again.
1144	 */
1145	j       .Lresume_userspace
1146
1147.Lneed_sigpending:
1148	/*
1149	 * At this point we are either doing signal handling or single-step,
1150	 * so either way make sure we have all the registers saved.
1151	 */
1152	push_extra_callee_saves r0
1153
1154	{
1155	 /* If no signal pending, skip to singlestep check */
1156	 bz     r28, .Lneed_singlestep
1157
1158	 /* Mask the singlestep flag */
1159	 andi   r28, r29, _TIF_SINGLESTEP
1160	}
1161
1162	jal     do_signal
1163	FEEDBACK_REENTER(interrupt_return)
1164
1165	/* Reload the flags and check again */
1166	j       .Lresume_userspace
1167
1168.Lneed_singlestep:
1169	{
1170	 /* Get a pointer to the EX1 field */
1171	 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
1172
1173	 /* If we get here, our bit must be set. */
1174	 bz     r28, .Lwork_confusion
1175	}
1176	/* If we are in priv mode, don't single step */
1177	lw      r28, r29
1178	andi    r28, r28, SPR_EX_CONTEXT_1_1__PL_MASK  /* mask off ICS */
1179	bnz     r28, .Lrestore_all
1180
1181	/* Allow interrupts within the single step code */
1182	TRACE_IRQS_ON  /* Note: clobbers registers r0-r29 */
1183	IRQ_ENABLE(r20, r21)
1184
1185	/* try to single-step the current instruction */
1186	PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1187	jal     single_step_once
1188	FEEDBACK_REENTER(interrupt_return)
1189
1190	/* Re-disable interrupts.  TRACE_IRQS_OFF in .Lrestore_all. */
1191	IRQ_DISABLE(r20,r21)
1192
1193	j       .Lrestore_all
1194
1195.Lwork_confusion:
1196	move    r0, r28
1197	panic   "thread_info allwork flags unhandled on userspace resume: %#x"
1198
1199	STD_ENDPROC(interrupt_return)
1200
1201	/*
1202	 * This interrupt variant clears the INT_INTCTRL_1 interrupt mask bit
1203	 * before returning, so we can properly get more downcalls.
1204	 */
1205	.pushsection .text.handle_interrupt_downcall,"ax"
1206handle_interrupt_downcall:
1207	finish_interrupt_save handle_interrupt_downcall
1208	check_single_stepping normal, .Ldispatch_downcall
1209.Ldispatch_downcall:
1210
1211	/* Clear INTCTRL_1 from the set of interrupts we ever enable. */
1212	GET_INTERRUPTS_ENABLED_MASK_PTR(r30)
1213	{
1214	 addi   r30, r30, 4
1215	 movei  r31, INT_MASK(INT_INTCTRL_1)
1216	}
1217	{
1218	 lw     r20, r30
1219	 nor    r21, r31, zero
1220	}
1221	and     r20, r20, r21
1222	sw      r30, r20
1223
1224	{
1225	 jalr   r0
1226	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1227	}
1228	FEEDBACK_REENTER(handle_interrupt_downcall)
1229
1230	/* Allow INTCTRL_1 to be enabled next time we enable interrupts. */
1231	lw      r20, r30
1232	or      r20, r20, r31
1233	sw      r30, r20
1234
1235	{
1236	 movei  r30, 0   /* not an NMI */
1237	 j      interrupt_return
1238	}
1239	STD_ENDPROC(handle_interrupt_downcall)
1240
1241	/*
1242	 * Some interrupts don't check for single stepping
1243	 */
1244	.pushsection .text.handle_interrupt_no_single_step,"ax"
1245handle_interrupt_no_single_step:
1246	finish_interrupt_save handle_interrupt_no_single_step
1247	{
1248	 jalr   r0
1249	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1250	}
1251	FEEDBACK_REENTER(handle_interrupt_no_single_step)
1252	{
1253	 movei  r30, 0   /* not an NMI */
1254	 j      interrupt_return
1255	}
1256	STD_ENDPROC(handle_interrupt_no_single_step)
1257
1258	/*
1259	 * "NMI" interrupts mask ALL interrupts before calling the
1260	 * handler, and don't check thread flags, etc., on the way
1261	 * back out.  In general, the only things we do here for NMIs
1262	 * are the register save/restore, fixing the PC if we were
1263	 * doing single step, and the dataplane kernel-TLB management.
1264	 * We don't (for example) deal with start/stop of the sched tick.
1265	 */
1266	.pushsection .text.handle_nmi,"ax"
1267handle_nmi:
1268	finish_interrupt_save handle_nmi
1269	check_single_stepping normal, .Ldispatch_nmi
1270.Ldispatch_nmi:
1271	{
1272	 jalr   r0
1273	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1274	}
1275	FEEDBACK_REENTER(handle_nmi)
1276	j       interrupt_return
1277	STD_ENDPROC(handle_nmi)
1278
1279	/*
1280	 * Parallel code for syscalls to handle_interrupt.
1281	 */
1282	.pushsection .text.handle_syscall,"ax"
1283handle_syscall:
1284	finish_interrupt_save handle_syscall
1285
1286	/*
1287	 * Check for if we are single stepping in user level. If so, then
1288	 * we need to restore the PC.
1289	 */
1290	check_single_stepping syscall, .Ldispatch_syscall
1291.Ldispatch_syscall:
1292
1293	/* Enable irqs. */
1294	TRACE_IRQS_ON
1295	IRQ_ENABLE(r20, r21)
1296
1297	/* Bump the counter for syscalls made on this tile. */
1298	moveli  r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1299	auli    r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1300	add     r20, r20, tp
1301	lw      r21, r20
1302	addi    r21, r21, 1
1303	sw      r20, r21
1304
1305	/* Trace syscalls, if requested. */
1306	GET_THREAD_INFO(r31)
1307	addi	r31, r31, THREAD_INFO_FLAGS_OFFSET
1308	lw	r30, r31
1309	andi    r30, r30, _TIF_SYSCALL_TRACE
1310	bzt	r30, .Lrestore_syscall_regs
1311	jal	do_syscall_trace
1312	FEEDBACK_REENTER(handle_syscall)
1313
1314	/*
1315	 * We always reload our registers from the stack at this
1316	 * point.  They might be valid, if we didn't build with
1317	 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1318	 * doing syscall tracing, but there are enough cases now that it
1319	 * seems simplest just to do the reload unconditionally.
1320	 */
1321.Lrestore_syscall_regs:
1322	PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1323	pop_reg r0, r11
1324	pop_reg r1, r11
1325	pop_reg r2, r11
1326	pop_reg r3, r11
1327	pop_reg r4, r11
1328	pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1329	pop_reg TREG_SYSCALL_NR_NAME, r11
1330
1331	/* Ensure that the syscall number is within the legal range. */
1332	moveli  r21, __NR_syscalls
1333	{
1334	 slt_u  r21, TREG_SYSCALL_NR_NAME, r21
1335	 moveli r20, lo16(sys_call_table)
1336	}
1337	{
1338	 bbns   r21, .Linvalid_syscall
1339	 auli   r20, r20, ha16(sys_call_table)
1340	}
1341	s2a     r20, TREG_SYSCALL_NR_NAME, r20
1342	lw      r20, r20
1343
1344	/* Jump to syscall handler. */
1345	jalr    r20; .Lhandle_syscall_link:
1346	FEEDBACK_REENTER(handle_syscall)
1347
1348	/*
1349	 * Write our r0 onto the stack so it gets restored instead
1350	 * of whatever the user had there before.
1351	 */
1352	PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1353	sw      r29, r0
1354
1355	/* Do syscall trace again, if requested. */
1356	lw	r30, r31
1357	andi    r30, r30, _TIF_SYSCALL_TRACE
1358	bzt     r30, 1f
1359	jal	do_syscall_trace
1360	FEEDBACK_REENTER(handle_syscall)
13611:	j       .Lresume_userspace   /* jump into middle of interrupt_return */
1362
1363.Linvalid_syscall:
1364	/* Report an invalid syscall back to the user program */
1365	{
1366	 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1367	 movei  r28, -ENOSYS
1368	}
1369	sw      r29, r28
1370	j       .Lresume_userspace   /* jump into middle of interrupt_return */
1371	STD_ENDPROC(handle_syscall)
1372
1373	/* Return the address for oprofile to suppress in backtraces. */
1374STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1375	lnk     r0
1376	{
1377	 addli  r0, r0, .Lhandle_syscall_link - .
1378	 jrp    lr
1379	}
1380	STD_ENDPROC(handle_syscall_link_address)
1381
1382STD_ENTRY(ret_from_fork)
1383	jal     sim_notify_fork
1384	jal     schedule_tail
1385	FEEDBACK_REENTER(ret_from_fork)
1386	j       .Lresume_userspace   /* jump into middle of interrupt_return */
1387	STD_ENDPROC(ret_from_fork)
1388
1389	/*
1390	 * Code for ill interrupt.
1391	 */
1392	.pushsection .text.handle_ill,"ax"
1393handle_ill:
1394	finish_interrupt_save handle_ill
1395
1396	/*
1397	 * Check for if we are single stepping in user level. If so, then
1398	 * we need to restore the PC.
1399	 */
1400	check_single_stepping ill, .Ldispatch_normal_ill
1401
1402	{
1403	 /* See if the PC is the 1st bundle in the buffer */
1404	 seq    r25, r27, r26
1405
1406	 /* Point to the 2nd bundle in the buffer */
1407	 addi   r26, r26, 8
1408	}
1409	{
1410	 /* Point to the original pc */
1411	 addi   r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1412
1413	 /* Branch if the PC is the 1st bundle in the buffer */
1414	 bnz    r25, 3f
1415	}
1416	{
1417	 /* See if the PC is the 2nd bundle of the buffer */
1418	 seq    r25, r27, r26
1419
1420	 /* Set PC to next instruction */
1421	 addi   r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1422	}
1423	{
1424	 /* Point to flags */
1425	 addi   r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1426
1427	 /* Branch if PC is in the second bundle */
1428	 bz     r25, 2f
1429	}
1430	/* Load flags */
1431	lw      r25, r25
1432	{
1433	 /*
1434	  * Get the offset for the register to restore
1435	  * Note: the lower bound is 2, so we have implicit scaling by 4.
1436	  *  No multiplication of the register number by the size of a register
1437	  *  is needed.
1438	  */
1439	 mm     r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1440		SINGLESTEP_STATE_TARGET_UB
1441
1442	 /* Mask Rewrite_LR */
1443	 andi   r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1444	}
1445	{
1446	 addi   r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1447
1448	 /* Don't rewrite temp register */
1449	 bz     r25, 3f
1450	}
1451	{
1452	 /* Get the temp value */
1453	 lw     r29, r29
1454
1455	 /* Point to where the register is stored */
1456	 add    r27, r27, sp
1457	}
1458
1459	/* Add in the C ABI save area size to the register offset */
1460	addi    r27, r27, C_ABI_SAVE_AREA_SIZE
1461
1462	/* Restore the user's register with the temp value */
1463	sw      r27, r29
1464	j       3f
1465
14662:
1467	/* Must be in the third bundle */
1468	addi    r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1469
14703:
1471	/* set PC and continue */
1472	lw      r26, r24
1473	sw      r28, r26
1474
1475	/* Clear TIF_SINGLESTEP */
1476	GET_THREAD_INFO(r0)
1477
1478	addi    r1, r0, THREAD_INFO_FLAGS_OFFSET
1479	{
1480	 lw     r2, r1
1481	 addi   r0, r0, THREAD_INFO_TASK_OFFSET  /* currently a no-op */
1482	}
1483	andi    r2, r2, ~_TIF_SINGLESTEP
1484	sw      r1, r2
1485
1486	/* Issue a sigtrap */
1487	{
1488	 lw     r0, r0          /* indirect thru thread_info to get task_info*/
1489	 addi   r1, sp, C_ABI_SAVE_AREA_SIZE  /* put ptregs pointer into r1 */
1490	 move   r2, zero        /* load error code into r2 */
1491	}
1492
1493	jal     send_sigtrap    /* issue a SIGTRAP */
1494	FEEDBACK_REENTER(handle_ill)
1495	j       .Lresume_userspace   /* jump into middle of interrupt_return */
1496
1497.Ldispatch_normal_ill:
1498	{
1499	 jalr   r0
1500	 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1501	}
1502	FEEDBACK_REENTER(handle_ill)
1503	{
1504	 movei  r30, 0   /* not an NMI */
1505	 j      interrupt_return
1506	}
1507	STD_ENDPROC(handle_ill)
1508
1509/* Various stub interrupt handlers and syscall handlers */
1510
1511STD_ENTRY_LOCAL(_kernel_double_fault)
1512	mfspr   r1, EX_CONTEXT_1_0
1513	move    r2, lr
1514	move    r3, sp
1515	move    r4, r52
1516	addi    sp, sp, -C_ABI_SAVE_AREA_SIZE
1517	j       kernel_double_fault
1518	STD_ENDPROC(_kernel_double_fault)
1519
1520STD_ENTRY_LOCAL(bad_intr)
1521	mfspr   r2, EX_CONTEXT_1_0
1522	panic   "Unhandled interrupt %#x: PC %#lx"
1523	STD_ENDPROC(bad_intr)
1524
1525/* Put address of pt_regs in reg and jump. */
1526#define PTREGS_SYSCALL(x, reg)                          \
1527	STD_ENTRY(x);                                   \
1528	{                                               \
1529	 PTREGS_PTR(reg, PTREGS_OFFSET_BASE);           \
1530	 j      _##x                                    \
1531	};                                              \
1532	STD_ENDPROC(x)
1533
1534PTREGS_SYSCALL(sys_execve, r3)
1535PTREGS_SYSCALL(sys_sigaltstack, r2)
1536PTREGS_SYSCALL(sys_rt_sigreturn, r0)
1537
1538/* Save additional callee-saves to pt_regs, put address in reg and jump. */
1539#define PTREGS_SYSCALL_ALL_REGS(x, reg)                 \
1540	STD_ENTRY(x);                                   \
1541	push_extra_callee_saves reg;                    \
1542	j       _##x;                                   \
1543	STD_ENDPROC(x)
1544
1545PTREGS_SYSCALL_ALL_REGS(sys_fork, r0)
1546PTREGS_SYSCALL_ALL_REGS(sys_vfork, r0)
1547PTREGS_SYSCALL_ALL_REGS(sys_clone, r4)
1548PTREGS_SYSCALL_ALL_REGS(sys_cmpxchg_badaddr, r1)
1549
1550/*
1551 * This entrypoint is taken for the cmpxchg and atomic_update fast
1552 * swints.  We may wish to generalize it to other fast swints at some
1553 * point, but for now there are just two very similar ones, which
1554 * makes it faster.
1555 *
1556 * The fast swint code is designed to have a small footprint.  It does
1557 * not save or restore any GPRs, counting on the caller-save registers
1558 * to be available to it on entry.  It does not modify any callee-save
1559 * registers (including "lr").  It does not check what PL it is being
1560 * called at, so you'd better not call it other than at PL0.
1561 *
1562 * It does not use the stack, but since it might be re-interrupted by
1563 * a page fault which would assume the stack was valid, it does
1564 * save/restore the stack pointer and zero it out to make sure it gets reset.
1565 * Since we always keep interrupts disabled, the hypervisor won't
1566 * clobber our EX_CONTEXT_1_x registers, so we don't save/restore them
1567 * (other than to advance the PC on return).
1568 *
1569 * We have to manually validate the user vs kernel address range
1570 * (since at PL1 we can read/write both), and for performance reasons
1571 * we don't allow cmpxchg on the fc000000 memory region, since we only
1572 * validate that the user address is below PAGE_OFFSET.
1573 *
1574 * We place it in the __HEAD section to ensure it is relatively
1575 * near to the intvec_SWINT_1 code (reachable by a conditional branch).
1576 *
1577 * Must match register usage in do_page_fault().
1578 */
1579	__HEAD
1580	.align 64
1581	/* Align much later jump on the start of a cache line. */
1582#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
1583	nop; nop
1584#endif
1585ENTRY(sys_cmpxchg)
1586
1587	/*
1588	 * Save "sp" and set it zero for any possible page fault.
1589	 *
1590	 * HACK: We want to both zero sp and check r0's alignment,
1591	 * so we do both at once. If "sp" becomes nonzero we
1592	 * know r0 is unaligned and branch to the error handler that
1593	 * restores sp, so this is OK.
1594	 *
1595	 * ICS is disabled right now so having a garbage but nonzero
1596	 * sp is OK, since we won't execute any faulting instructions
1597	 * when it is nonzero.
1598	 */
1599	{
1600	 move   r27, sp
1601	 andi	sp, r0, 3
1602	}
1603
1604	/*
1605	 * Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1606	 * address is less than PAGE_OFFSET, since that won't trap at PL1.
1607	 * We only use bits less than PAGE_SHIFT to avoid having to worry
1608	 * about aliasing among multiple mappings of the same physical page,
1609	 * and we ignore the low 3 bits so we have one lock that covers
1610	 * both a cmpxchg64() and a cmpxchg() on either its low or high word.
1611	 * NOTE: this code must match __atomic_hashed_lock() in lib/atomic.c.
1612	 */
1613
1614#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1615	{
1616	 /* Check for unaligned input. */
1617	 bnz    sp, .Lcmpxchg_badaddr
1618	 mm     r25, r0, zero, 3, PAGE_SHIFT-1
1619	}
1620	{
1621	 crc32_32 r25, zero, r25
1622	 moveli r21, lo16(atomic_lock_ptr)
1623	}
1624	{
1625	 auli   r21, r21, ha16(atomic_lock_ptr)
1626	 auli   r23, zero, hi16(PAGE_OFFSET)  /* hugepage-aligned */
1627	}
1628	{
1629	 shri	r20, r25, 32 - ATOMIC_HASH_L1_SHIFT
1630	 slt_u  r23, r0, r23
1631
1632	 /*
1633	  * Ensure that the TLB is loaded before we take out the lock.
1634	  * On TILEPro, this will start fetching the value all the way
1635	  * into our L1 as well (and if it gets modified before we
1636	  * grab the lock, it will be invalidated from our cache
1637	  * before we reload it).  On tile64, we'll start fetching it
1638	  * into our L1 if we're the home, and if we're not, we'll
1639	  * still at least start fetching it into the home's L2.
1640	  */
1641	 lw	r26, r0
1642	}
1643	{
1644	 s2a    r21, r20, r21
1645	 bbns   r23, .Lcmpxchg_badaddr
1646	}
1647	{
1648	 lw     r21, r21
1649	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1650	 andi	r25, r25, ATOMIC_HASH_L2_SIZE - 1
1651	}
1652	{
1653	 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1654	 bbs    r23, .Lcmpxchg64
1655	 andi   r23, r0, 7       /* Precompute alignment for cmpxchg64. */
1656	}
1657
1658	{
1659	 /*
1660	  * We very carefully align the code that actually runs with
1661	  * the lock held (nine bundles) so that we know it is all in
1662	  * the icache when we start.  This instruction (the jump) is
1663	  * at the start of the first cache line, address zero mod 64;
1664	  * we jump to somewhere in the second cache line to issue the
1665	  * tns, then jump back to finish up.
1666	  */
1667	 s2a	ATOMIC_LOCK_REG_NAME, r25, r21
1668	 j      .Lcmpxchg32_tns
1669	}
1670
1671#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1672	{
1673	 /* Check for unaligned input. */
1674	 bnz    sp, .Lcmpxchg_badaddr
1675	 auli   r23, zero, hi16(PAGE_OFFSET)  /* hugepage-aligned */
1676	}
1677	{
1678	 /*
1679	  * Slide bits into position for 'mm'. We want to ignore
1680	  * the low 3 bits of r0, and consider only the next
1681	  * ATOMIC_HASH_SHIFT bits.
1682	  * Because of C pointer arithmetic, we want to compute this:
1683	  *
1684	  * ((char*)atomic_locks +
1685	  *  (((r0 >> 3) & (1 << (ATOMIC_HASH_SIZE - 1))) << 2))
1686	  *
1687	  * Instead of two shifts we just ">> 1", and use 'mm'
1688	  * to ignore the low and high bits we don't want.
1689	  */
1690	 shri	r25, r0, 1
1691
1692	 slt_u  r23, r0, r23
1693
1694	 /*
1695	  * Ensure that the TLB is loaded before we take out the lock.
1696	  * On tilepro, this will start fetching the value all the way
1697	  * into our L1 as well (and if it gets modified before we
1698	  * grab the lock, it will be invalidated from our cache
1699	  * before we reload it).  On tile64, we'll start fetching it
1700	  * into our L1 if we're the home, and if we're not, we'll
1701	  * still at least start fetching it into the home's L2.
1702	  */
1703	 lw	r26, r0
1704	}
1705	{
1706	 /* atomic_locks is page aligned so this suffices to get its addr. */
1707	 auli	r21, zero, hi16(atomic_locks)
1708
1709	 bbns   r23, .Lcmpxchg_badaddr
1710	}
1711	{
1712	 /*
1713	  * Insert the hash bits into the page-aligned pointer.
1714	  * ATOMIC_HASH_SHIFT is so big that we don't actually hash
1715	  * the unmasked address bits, as that may cause unnecessary
1716	  * collisions.
1717	  */
1718	 mm	ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1719
1720	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1721	}
1722	{
1723	 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1724	 bbs    r23, .Lcmpxchg64
1725	 andi   r23, r0, 7       /* Precompute alignment for cmpxchg64. */
1726	}
1727	{
1728	 /*
1729	  * We very carefully align the code that actually runs with
1730	  * the lock held (nine bundles) so that we know it is all in
1731	  * the icache when we start.  This instruction (the jump) is
1732	  * at the start of the first cache line, address zero mod 64;
1733	  * we jump to somewhere in the second cache line to issue the
1734	  * tns, then jump back to finish up.
1735	  */
1736	 j      .Lcmpxchg32_tns
1737	}
1738
1739#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1740
1741	ENTRY(__sys_cmpxchg_grab_lock)
1742
1743	/*
1744	 * Perform the actual cmpxchg or atomic_update.
1745	 * Note that __futex_mark_unlocked() in uClibc relies on
1746	 * atomic_update() to always perform an "mf", so don't make
1747	 * it optional or conditional without modifying that code.
1748	 */
1749.Ldo_cmpxchg32:
1750	{
1751	 lw     r21, r0
1752	 seqi	r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1753	 move	r24, r2
1754	}
1755	{
1756	 seq    r22, r21, r1     /* See if cmpxchg matches. */
1757	 and	r25, r21, r1     /* If atomic_update, compute (*mem & mask) */
1758	}
1759	{
1760	 or	r22, r22, r23    /* Skip compare branch for atomic_update. */
1761	 add	r25, r25, r2     /* Compute (*mem & mask) + addend. */
1762	}
1763	{
1764	 mvnz	r24, r23, r25    /* Use atomic_update value if appropriate. */
1765	 bbns   r22, .Lcmpxchg32_mismatch
1766	}
1767	sw      r0, r24
1768
1769	/* Do slow mtspr here so the following "mf" waits less. */
1770	{
1771	 move   sp, r27
1772	 mtspr  EX_CONTEXT_1_0, r28
1773	}
1774	mf
1775
1776	/* The following instruction is the start of the second cache line. */
1777	{
1778	 move   r0, r21
1779	 sw     ATOMIC_LOCK_REG_NAME, zero
1780	}
1781	iret
1782
1783	/* Duplicated code here in the case where we don't overlap "mf" */
1784.Lcmpxchg32_mismatch:
1785	{
1786	 move   r0, r21
1787	 sw     ATOMIC_LOCK_REG_NAME, zero
1788	}
1789	{
1790	 move   sp, r27
1791	 mtspr  EX_CONTEXT_1_0, r28
1792	}
1793	iret
1794
1795	/*
1796	 * The locking code is the same for 32-bit cmpxchg/atomic_update,
1797	 * and for 64-bit cmpxchg.  We provide it as a macro and put
1798	 * it into both versions.  We can't share the code literally
1799	 * since it depends on having the right branch-back address.
1800	 * Note that the first few instructions should share the cache
1801	 * line with the second half of the actual locked code.
1802	 */
1803	.macro  cmpxchg_lock, bitwidth
1804
1805	/* Lock; if we succeed, jump back up to the read-modify-write. */
1806#ifdef CONFIG_SMP
1807	tns     r21, ATOMIC_LOCK_REG_NAME
1808#else
1809	/*
1810	 * Non-SMP preserves all the lock infrastructure, to keep the
1811	 * code simpler for the interesting (SMP) case.  However, we do
1812	 * one small optimization here and in atomic_asm.S, which is
1813	 * to fake out acquiring the actual lock in the atomic_lock table.
1814	 */
1815	movei	r21, 0
1816#endif
1817
1818	/* Issue the slow SPR here while the tns result is in flight. */
1819	mfspr   r28, EX_CONTEXT_1_0
1820
1821	{
1822	 addi   r28, r28, 8    /* return to the instruction after the swint1 */
1823	 bzt    r21, .Ldo_cmpxchg\bitwidth
1824	}
1825	/*
1826	 * The preceding instruction is the last thing that must be
1827	 * on the second cache line.
1828	 */
1829
1830#ifdef CONFIG_SMP
1831	/*
1832	 * We failed to acquire the tns lock on our first try.  Now use
1833	 * bounded exponential backoff to retry, like __atomic_spinlock().
1834	 */
1835	{
1836	 moveli r23, 2048       /* maximum backoff time in cycles */
1837	 moveli r25, 32         /* starting backoff time in cycles */
1838	}
18391:	mfspr   r26, CYCLE_LOW  /* get start point for this backoff */
18402:	mfspr   r22, CYCLE_LOW  /* test to see if we've backed off enough */
1841	sub     r22, r22, r26
1842	slt     r22, r22, r25
1843	bbst    r22, 2b
1844	{
1845	 shli   r25, r25, 1     /* double the backoff; retry the tns */
1846	 tns    r21, ATOMIC_LOCK_REG_NAME
1847	}
1848	slt     r26, r23, r25   /* is the proposed backoff too big? */
1849	{
1850	 mvnz   r25, r26, r23
1851	 bzt    r21, .Ldo_cmpxchg\bitwidth
1852	}
1853	j       1b
1854#endif /* CONFIG_SMP */
1855	.endm
1856
1857.Lcmpxchg32_tns:
1858	cmpxchg_lock 32
1859
1860	/*
1861	 * This code is invoked from sys_cmpxchg after most of the
1862	 * preconditions have been checked.  We still need to check
1863	 * that r0 is 8-byte aligned, since if it's not we won't
1864	 * actually be atomic.  However, ATOMIC_LOCK_REG has the atomic
1865	 * lock pointer and r27/r28 have the saved SP/PC.
1866	 * r23 is holding "r0 & 7" so we can test for alignment.
1867	 * The compare value is in r2/r3; the new value is in r4/r5.
1868	 * On return, we must put the old value in r0/r1.
1869	 */
1870	.align 64
1871.Lcmpxchg64:
1872	{
1873#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1874	 s2a	ATOMIC_LOCK_REG_NAME, r25, r21
1875#endif
1876	 bzt     r23, .Lcmpxchg64_tns
1877	}
1878	j       .Lcmpxchg_badaddr
1879
1880.Ldo_cmpxchg64:
1881	{
1882	 lw     r21, r0
1883	 addi   r25, r0, 4
1884	}
1885	{
1886	 lw     r1, r25
1887	}
1888	seq     r26, r21, r2
1889	{
1890	 bz     r26, .Lcmpxchg64_mismatch
1891	 seq    r26, r1, r3
1892	}
1893	{
1894	 bz     r26, .Lcmpxchg64_mismatch
1895	}
1896	sw      r0, r4
1897	sw      r25, r5
1898
1899	/*
1900	 * The 32-bit path provides optimized "match" and "mismatch"
1901	 * iret paths, but we don't have enough bundles in this cache line
1902	 * to do that, so we just make even the "mismatch" path do an "mf".
1903	 */
1904.Lcmpxchg64_mismatch:
1905	{
1906	 move   sp, r27
1907	 mtspr  EX_CONTEXT_1_0, r28
1908	}
1909	mf
1910	{
1911	 move   r0, r21
1912	 sw     ATOMIC_LOCK_REG_NAME, zero
1913	}
1914	iret
1915
1916.Lcmpxchg64_tns:
1917	cmpxchg_lock 64
1918
1919
1920	/*
1921	 * Reset sp and revector to sys_cmpxchg_badaddr(), which will
1922	 * just raise the appropriate signal and exit.  Doing it this
1923	 * way means we don't have to duplicate the code in intvec.S's
1924	 * int_hand macro that locates the top of the stack.
1925	 */
1926.Lcmpxchg_badaddr:
1927	{
1928	 moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1929	 move   sp, r27
1930	}
1931	j       intvec_SWINT_1
1932	ENDPROC(sys_cmpxchg)
1933	ENTRY(__sys_cmpxchg_end)
1934
1935
1936/* The single-step support may need to read all the registers. */
1937int_unalign:
1938	push_extra_callee_saves r0
1939	j       do_trap
1940
1941/* Include .intrpt1 array of interrupt vectors */
1942	.section ".intrpt1", "ax"
1943
1944#define op_handle_perf_interrupt bad_intr
1945#define op_handle_aux_perf_interrupt bad_intr
1946
1947#ifndef CONFIG_HARDWALL
1948#define do_hardwall_trap bad_intr
1949#endif
1950
1951	int_hand     INT_ITLB_MISS, ITLB_MISS, \
1952		     do_page_fault, handle_interrupt_no_single_step
1953	int_hand     INT_MEM_ERROR, MEM_ERROR, bad_intr
1954	int_hand     INT_ILL, ILL, do_trap, handle_ill
1955	int_hand     INT_GPV, GPV, do_trap
1956	int_hand     INT_SN_ACCESS, SN_ACCESS, do_trap
1957	int_hand     INT_IDN_ACCESS, IDN_ACCESS, do_trap
1958	int_hand     INT_UDN_ACCESS, UDN_ACCESS, do_trap
1959	int_hand     INT_IDN_REFILL, IDN_REFILL, bad_intr
1960	int_hand     INT_UDN_REFILL, UDN_REFILL, bad_intr
1961	int_hand     INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1962	int_hand     INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1963	int_hand     INT_SWINT_3, SWINT_3, do_trap
1964	int_hand     INT_SWINT_2, SWINT_2, do_trap
1965	int_hand     INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1966	int_hand     INT_SWINT_0, SWINT_0, do_trap
1967	int_hand     INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1968	int_hand     INT_DTLB_MISS, DTLB_MISS, do_page_fault
1969	int_hand     INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1970	int_hand     INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1971	int_hand     INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1972	int_hand     INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1973	int_hand     INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1974	int_hand     INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1975	int_hand     INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1976	int_hand     INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1977	int_hand     INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1978	int_hand     INT_IDN_TIMER, IDN_TIMER, bad_intr
1979	int_hand     INT_UDN_TIMER, UDN_TIMER, bad_intr
1980	int_hand     INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1981	int_hand     INT_IDN_CA, IDN_CA, bad_intr
1982	int_hand     INT_UDN_CA, UDN_CA, bad_intr
1983	int_hand     INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1984	int_hand     INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1985	int_hand     INT_PERF_COUNT, PERF_COUNT, \
1986		     op_handle_perf_interrupt, handle_nmi
1987	int_hand     INT_INTCTRL_3, INTCTRL_3, bad_intr
1988	int_hand     INT_INTCTRL_2, INTCTRL_2, bad_intr
1989	dc_dispatch  INT_INTCTRL_1, INTCTRL_1
1990	int_hand     INT_INTCTRL_0, INTCTRL_0, bad_intr
1991	int_hand     INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1992		     hv_message_intr, handle_interrupt_downcall
1993	int_hand     INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
1994		     tile_dev_intr, handle_interrupt_downcall
1995	int_hand     INT_I_ASID, I_ASID, bad_intr
1996	int_hand     INT_D_ASID, D_ASID, bad_intr
1997	int_hand     INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
1998		     do_page_fault, handle_interrupt_downcall
1999	int_hand     INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
2000		     do_page_fault, handle_interrupt_downcall
2001	int_hand     INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
2002		     do_page_fault, handle_interrupt_downcall
2003	int_hand     INT_SN_CPL, SN_CPL, bad_intr
2004	int_hand     INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
2005#if CHIP_HAS_AUX_PERF_COUNTERS()
2006	int_hand     INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
2007		     op_handle_aux_perf_interrupt, handle_nmi
2008#endif
2009
2010	/* Synthetic interrupt delivered only by the simulator */
2011	int_hand     INT_BREAKPOINT, BREAKPOINT, do_breakpoint
2012