• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/sparc/kernel/
1/*  arch/sparc64/kernel/process.c
2 *
3 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/errno.h>
15#include <linux/module.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/ptrace.h>
23#include <linux/slab.h>
24#include <linux/user.h>
25#include <linux/delay.h>
26#include <linux/compat.h>
27#include <linux/tick.h>
28#include <linux/init.h>
29#include <linux/cpu.h>
30#include <linux/elfcore.h>
31#include <linux/sysrq.h>
32#include <linux/nmi.h>
33
34#include <asm/uaccess.h>
35#include <asm/system.h>
36#include <asm/page.h>
37#include <asm/pgalloc.h>
38#include <asm/pgtable.h>
39#include <asm/processor.h>
40#include <asm/pstate.h>
41#include <asm/elf.h>
42#include <asm/fpumacro.h>
43#include <asm/head.h>
44#include <asm/cpudata.h>
45#include <asm/mmu_context.h>
46#include <asm/unistd.h>
47#include <asm/hypervisor.h>
48#include <asm/syscalls.h>
49#include <asm/irq_regs.h>
50#include <asm/smp.h>
51
52#include "kstack.h"
53
54static void sparc64_yield(int cpu)
55{
56	if (tlb_type != hypervisor) {
57		touch_nmi_watchdog();
58		return;
59	}
60
61	clear_thread_flag(TIF_POLLING_NRFLAG);
62	smp_mb__after_clear_bit();
63
64	while (!need_resched() && !cpu_is_offline(cpu)) {
65		unsigned long pstate;
66
67		/* Disable interrupts. */
68		__asm__ __volatile__(
69			"rdpr %%pstate, %0\n\t"
70			"andn %0, %1, %0\n\t"
71			"wrpr %0, %%g0, %%pstate"
72			: "=&r" (pstate)
73			: "i" (PSTATE_IE));
74
75		if (!need_resched() && !cpu_is_offline(cpu))
76			sun4v_cpu_yield();
77
78		/* Re-enable interrupts. */
79		__asm__ __volatile__(
80			"rdpr %%pstate, %0\n\t"
81			"or %0, %1, %0\n\t"
82			"wrpr %0, %%g0, %%pstate"
83			: "=&r" (pstate)
84			: "i" (PSTATE_IE));
85	}
86
87	set_thread_flag(TIF_POLLING_NRFLAG);
88}
89
90/* The idle loop on sparc64. */
91void cpu_idle(void)
92{
93	int cpu = smp_processor_id();
94
95	set_thread_flag(TIF_POLLING_NRFLAG);
96
97	while(1) {
98		tick_nohz_stop_sched_tick(1);
99
100		while (!need_resched() && !cpu_is_offline(cpu))
101			sparc64_yield(cpu);
102
103		tick_nohz_restart_sched_tick();
104
105		preempt_enable_no_resched();
106
107#ifdef CONFIG_HOTPLUG_CPU
108		if (cpu_is_offline(cpu))
109			cpu_play_dead();
110#endif
111
112		schedule();
113		preempt_disable();
114	}
115}
116
117#ifdef CONFIG_COMPAT
118static void show_regwindow32(struct pt_regs *regs)
119{
120	struct reg_window32 __user *rw;
121	struct reg_window32 r_w;
122	mm_segment_t old_fs;
123
124	__asm__ __volatile__ ("flushw");
125	rw = compat_ptr((unsigned)regs->u_regs[14]);
126	old_fs = get_fs();
127	set_fs (USER_DS);
128	if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129		set_fs (old_fs);
130		return;
131	}
132
133	set_fs (old_fs);
134	printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135	       "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136	       r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137	       r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138	printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139	       "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140	       r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141	       r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142}
143#else
144#define show_regwindow32(regs)	do { } while (0)
145#endif
146
147static void show_regwindow(struct pt_regs *regs)
148{
149	struct reg_window __user *rw;
150	struct reg_window *rwk;
151	struct reg_window r_w;
152	mm_segment_t old_fs;
153
154	if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155		__asm__ __volatile__ ("flushw");
156		rw = (struct reg_window __user *)
157			(regs->u_regs[14] + STACK_BIAS);
158		rwk = (struct reg_window *)
159			(regs->u_regs[14] + STACK_BIAS);
160		if (!(regs->tstate & TSTATE_PRIV)) {
161			old_fs = get_fs();
162			set_fs (USER_DS);
163			if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164				set_fs (old_fs);
165				return;
166			}
167			rwk = &r_w;
168			set_fs (old_fs);
169		}
170	} else {
171		show_regwindow32(regs);
172		return;
173	}
174	printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175	       rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176	printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177	       rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178	printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179	       rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180	printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181	       rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182	if (regs->tstate & TSTATE_PRIV)
183		printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184}
185
186void show_regs(struct pt_regs *regs)
187{
188	printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
189	       regs->tpc, regs->tnpc, regs->y, print_tainted());
190	printk("TPC: <%pS>\n", (void *) regs->tpc);
191	printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193	       regs->u_regs[3]);
194	printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196	       regs->u_regs[7]);
197	printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199	       regs->u_regs[11]);
200	printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202	       regs->u_regs[15]);
203	printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204	show_regwindow(regs);
205	show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
206}
207
208struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
209static DEFINE_SPINLOCK(global_reg_snapshot_lock);
210
211static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
212			      int this_cpu)
213{
214	flushw_all();
215
216	global_reg_snapshot[this_cpu].tstate = regs->tstate;
217	global_reg_snapshot[this_cpu].tpc = regs->tpc;
218	global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
219	global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
220
221	if (regs->tstate & TSTATE_PRIV) {
222		struct reg_window *rw;
223
224		rw = (struct reg_window *)
225			(regs->u_regs[UREG_FP] + STACK_BIAS);
226		if (kstack_valid(tp, (unsigned long) rw)) {
227			global_reg_snapshot[this_cpu].i7 = rw->ins[7];
228			rw = (struct reg_window *)
229				(rw->ins[6] + STACK_BIAS);
230			if (kstack_valid(tp, (unsigned long) rw))
231				global_reg_snapshot[this_cpu].rpc = rw->ins[7];
232		}
233	} else {
234		global_reg_snapshot[this_cpu].i7 = 0;
235		global_reg_snapshot[this_cpu].rpc = 0;
236	}
237	global_reg_snapshot[this_cpu].thread = tp;
238}
239
240/* In order to avoid hangs we do not try to synchronize with the
241 * global register dump client cpus.  The last store they make is to
242 * the thread pointer, so do a short poll waiting for that to become
243 * non-NULL.
244 */
245static void __global_reg_poll(struct global_reg_snapshot *gp)
246{
247	int limit = 0;
248
249	while (!gp->thread && ++limit < 100) {
250		barrier();
251		udelay(1);
252	}
253}
254
255void arch_trigger_all_cpu_backtrace(void)
256{
257	struct thread_info *tp = current_thread_info();
258	struct pt_regs *regs = get_irq_regs();
259	unsigned long flags;
260	int this_cpu, cpu;
261
262	if (!regs)
263		regs = tp->kregs;
264
265	spin_lock_irqsave(&global_reg_snapshot_lock, flags);
266
267	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
268
269	this_cpu = raw_smp_processor_id();
270
271	__global_reg_self(tp, regs, this_cpu);
272
273	smp_fetch_global_regs();
274
275	for_each_online_cpu(cpu) {
276		struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
277
278		__global_reg_poll(gp);
279
280		tp = gp->thread;
281		printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
282		       (cpu == this_cpu ? '*' : ' '), cpu,
283		       gp->tstate, gp->tpc, gp->tnpc,
284		       ((tp && tp->task) ? tp->task->comm : "NULL"),
285		       ((tp && tp->task) ? tp->task->pid : -1));
286
287		if (gp->tstate & TSTATE_PRIV) {
288			printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
289			       (void *) gp->tpc,
290			       (void *) gp->o7,
291			       (void *) gp->i7,
292			       (void *) gp->rpc);
293		} else {
294			printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
295			       gp->tpc, gp->o7, gp->i7, gp->rpc);
296		}
297	}
298
299	memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
300
301	spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
302}
303
304#ifdef CONFIG_MAGIC_SYSRQ
305
306static void sysrq_handle_globreg(int key)
307{
308	arch_trigger_all_cpu_backtrace();
309}
310
311static struct sysrq_key_op sparc_globalreg_op = {
312	.handler	= sysrq_handle_globreg,
313	.help_msg	= "Globalregs",
314	.action_msg	= "Show Global CPU Regs",
315};
316
317static int __init sparc_globreg_init(void)
318{
319	return register_sysrq_key('y', &sparc_globalreg_op);
320}
321
322core_initcall(sparc_globreg_init);
323
324#endif
325
326unsigned long thread_saved_pc(struct task_struct *tsk)
327{
328	struct thread_info *ti = task_thread_info(tsk);
329	unsigned long ret = 0xdeadbeefUL;
330
331	if (ti && ti->ksp) {
332		unsigned long *sp;
333		sp = (unsigned long *)(ti->ksp + STACK_BIAS);
334		if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
335		    sp[14]) {
336			unsigned long *fp;
337			fp = (unsigned long *)(sp[14] + STACK_BIAS);
338			if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
339				ret = fp[15];
340		}
341	}
342	return ret;
343}
344
345/* Free current thread data structures etc.. */
346void exit_thread(void)
347{
348	struct thread_info *t = current_thread_info();
349
350	if (t->utraps) {
351		if (t->utraps[0] < 2)
352			kfree (t->utraps);
353		else
354			t->utraps[0]--;
355	}
356}
357
358void flush_thread(void)
359{
360	struct thread_info *t = current_thread_info();
361	struct mm_struct *mm;
362
363	mm = t->task->mm;
364	if (mm)
365		tsb_context_switch(mm);
366
367	set_thread_wsaved(0);
368
369	/* Clear FPU register state. */
370	t->fpsaved[0] = 0;
371
372	if (get_thread_current_ds() != ASI_AIUS)
373		set_fs(USER_DS);
374}
375
376/* It's a bit more tricky when 64-bit tasks are involved... */
377static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
378{
379	unsigned long fp, distance, rval;
380
381	if (!(test_thread_flag(TIF_32BIT))) {
382		csp += STACK_BIAS;
383		psp += STACK_BIAS;
384		__get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
385		fp += STACK_BIAS;
386	} else
387		__get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
388
389	/* Now align the stack as this is mandatory in the Sparc ABI
390	 * due to how register windows work.  This hides the
391	 * restriction from thread libraries etc.
392	 */
393	csp &= ~15UL;
394
395	distance = fp - psp;
396	rval = (csp - distance);
397	if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
398		rval = 0;
399	else if (test_thread_flag(TIF_32BIT)) {
400		if (put_user(((u32)csp),
401			     &(((struct reg_window32 __user *)rval)->ins[6])))
402			rval = 0;
403	} else {
404		if (put_user(((u64)csp - STACK_BIAS),
405			     &(((struct reg_window __user *)rval)->ins[6])))
406			rval = 0;
407		else
408			rval = rval - STACK_BIAS;
409	}
410
411	return rval;
412}
413
414/* Standard stuff. */
415static inline void shift_window_buffer(int first_win, int last_win,
416				       struct thread_info *t)
417{
418	int i;
419
420	for (i = first_win; i < last_win; i++) {
421		t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
422		memcpy(&t->reg_window[i], &t->reg_window[i+1],
423		       sizeof(struct reg_window));
424	}
425}
426
427void synchronize_user_stack(void)
428{
429	struct thread_info *t = current_thread_info();
430	unsigned long window;
431
432	flush_user_windows();
433	if ((window = get_thread_wsaved()) != 0) {
434		int winsize = sizeof(struct reg_window);
435		int bias = 0;
436
437		if (test_thread_flag(TIF_32BIT))
438			winsize = sizeof(struct reg_window32);
439		else
440			bias = STACK_BIAS;
441
442		window -= 1;
443		do {
444			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
445			struct reg_window *rwin = &t->reg_window[window];
446
447			if (!copy_to_user((char __user *)sp, rwin, winsize)) {
448				shift_window_buffer(window, get_thread_wsaved() - 1, t);
449				set_thread_wsaved(get_thread_wsaved() - 1);
450			}
451		} while (window--);
452	}
453}
454
455static void stack_unaligned(unsigned long sp)
456{
457	siginfo_t info;
458
459	info.si_signo = SIGBUS;
460	info.si_errno = 0;
461	info.si_code = BUS_ADRALN;
462	info.si_addr = (void __user *) sp;
463	info.si_trapno = 0;
464	force_sig_info(SIGBUS, &info, current);
465}
466
467void fault_in_user_windows(void)
468{
469	struct thread_info *t = current_thread_info();
470	unsigned long window;
471	int winsize = sizeof(struct reg_window);
472	int bias = 0;
473
474	if (test_thread_flag(TIF_32BIT))
475		winsize = sizeof(struct reg_window32);
476	else
477		bias = STACK_BIAS;
478
479	flush_user_windows();
480	window = get_thread_wsaved();
481
482	if (likely(window != 0)) {
483		window -= 1;
484		do {
485			unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
486			struct reg_window *rwin = &t->reg_window[window];
487
488			if (unlikely(sp & 0x7UL))
489				stack_unaligned(sp);
490
491			if (unlikely(copy_to_user((char __user *)sp,
492						  rwin, winsize)))
493				goto barf;
494		} while (window--);
495	}
496	set_thread_wsaved(0);
497	return;
498
499barf:
500	set_thread_wsaved(window + 1);
501	do_exit(SIGILL);
502}
503
504asmlinkage long sparc_do_fork(unsigned long clone_flags,
505			      unsigned long stack_start,
506			      struct pt_regs *regs,
507			      unsigned long stack_size)
508{
509	int __user *parent_tid_ptr, *child_tid_ptr;
510	unsigned long orig_i1 = regs->u_regs[UREG_I1];
511	long ret;
512
513#ifdef CONFIG_COMPAT
514	if (test_thread_flag(TIF_32BIT)) {
515		parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
516		child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
517	} else
518#endif
519	{
520		parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
521		child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
522	}
523
524	ret = do_fork(clone_flags, stack_start,
525		      regs, stack_size,
526		      parent_tid_ptr, child_tid_ptr);
527
528	/* If we get an error and potentially restart the system
529	 * call, we're screwed because copy_thread() clobbered
530	 * the parent's %o1.  So detect that case and restore it
531	 * here.
532	 */
533	if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
534		regs->u_regs[UREG_I1] = orig_i1;
535
536	return ret;
537}
538
539/* Copy a Sparc thread.  The fork() return value conventions
540 * under SunOS are nothing short of bletcherous:
541 * Parent -->  %o0 == childs  pid, %o1 == 0
542 * Child  -->  %o0 == parents pid, %o1 == 1
543 */
544int copy_thread(unsigned long clone_flags, unsigned long sp,
545		unsigned long unused,
546		struct task_struct *p, struct pt_regs *regs)
547{
548	struct thread_info *t = task_thread_info(p);
549	struct sparc_stackf *parent_sf;
550	unsigned long child_stack_sz;
551	char *child_trap_frame;
552	int kernel_thread;
553
554	kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
555	parent_sf = ((struct sparc_stackf *) regs) - 1;
556
557	/* Calculate offset to stack_frame & pt_regs */
558	child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
559			  (kernel_thread ? STACKFRAME_SZ : 0));
560	child_trap_frame = (task_stack_page(p) +
561			    (THREAD_SIZE - child_stack_sz));
562	memcpy(child_trap_frame, parent_sf, child_stack_sz);
563
564	t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
565				 (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
566		(((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
567	t->new_child = 1;
568	t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
569	t->kregs = (struct pt_regs *) (child_trap_frame +
570				       sizeof(struct sparc_stackf));
571	t->fpsaved[0] = 0;
572
573	if (kernel_thread) {
574		struct sparc_stackf *child_sf = (struct sparc_stackf *)
575			(child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
576
577		/* Zero terminate the stack backtrace.  */
578		child_sf->fp = NULL;
579		t->kregs->u_regs[UREG_FP] =
580		  ((unsigned long) child_sf) - STACK_BIAS;
581
582		t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
583		t->kregs->u_regs[UREG_G6] = (unsigned long) t;
584		t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
585	} else {
586		if (t->flags & _TIF_32BIT) {
587			sp &= 0x00000000ffffffffUL;
588			regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
589		}
590		t->kregs->u_regs[UREG_FP] = sp;
591		t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
592		if (sp != regs->u_regs[UREG_FP]) {
593			unsigned long csp;
594
595			csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
596			if (!csp)
597				return -EFAULT;
598			t->kregs->u_regs[UREG_FP] = csp;
599		}
600		if (t->utraps)
601			t->utraps[0]++;
602	}
603
604	/* Set the return value for the child. */
605	t->kregs->u_regs[UREG_I0] = current->pid;
606	t->kregs->u_regs[UREG_I1] = 1;
607
608	/* Set the second return value for the parent. */
609	regs->u_regs[UREG_I1] = 0;
610
611	if (clone_flags & CLONE_SETTLS)
612		t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
613
614	return 0;
615}
616
617/*
618 * This is the mechanism for creating a new kernel thread.
619 *
620 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
621 * who haven't done an "execve()") should use this: it will work within
622 * a system call from a "real" process, but the process memory space will
623 * not be freed until both the parent and the child have exited.
624 */
625pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
626{
627	long retval;
628
629	/* If the parent runs before fn(arg) is called by the child,
630	 * the input registers of this function can be clobbered.
631	 * So we stash 'fn' and 'arg' into global registers which
632	 * will not be modified by the parent.
633	 */
634	__asm__ __volatile__("mov %4, %%g2\n\t"	   /* Save FN into global */
635			     "mov %5, %%g3\n\t"	   /* Save ARG into global */
636			     "mov %1, %%g1\n\t"	   /* Clone syscall nr. */
637			     "mov %2, %%o0\n\t"	   /* Clone flags. */
638			     "mov 0, %%o1\n\t"	   /* usp arg == 0 */
639			     "t 0x6d\n\t"	   /* Linux/Sparc clone(). */
640			     "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
641			     " mov %%o0, %0\n\t"
642			     "jmpl %%g2, %%o7\n\t"   /* Call the function. */
643			     " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
644			     "mov %3, %%g1\n\t"
645			     "t 0x6d\n\t"	   /* Linux/Sparc exit(). */
646			     /* Notreached by child. */
647			     "1:" :
648			     "=r" (retval) :
649			     "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
650			     "i" (__NR_exit),  "r" (fn), "r" (arg) :
651			     "g1", "g2", "g3", "o0", "o1", "memory", "cc");
652	return retval;
653}
654EXPORT_SYMBOL(kernel_thread);
655
656typedef struct {
657	union {
658		unsigned int	pr_regs[32];
659		unsigned long	pr_dregs[16];
660	} pr_fr;
661	unsigned int __unused;
662	unsigned int	pr_fsr;
663	unsigned char	pr_qcnt;
664	unsigned char	pr_q_entrysize;
665	unsigned char	pr_en;
666	unsigned int	pr_q[64];
667} elf_fpregset_t32;
668
669/*
670 * fill in the fpu structure for a core dump.
671 */
672int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
673{
674	unsigned long *kfpregs = current_thread_info()->fpregs;
675	unsigned long fprs = current_thread_info()->fpsaved[0];
676
677	if (test_thread_flag(TIF_32BIT)) {
678		elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
679
680		if (fprs & FPRS_DL)
681			memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
682			       sizeof(unsigned int) * 32);
683		else
684			memset(&fpregs32->pr_fr.pr_regs[0], 0,
685			       sizeof(unsigned int) * 32);
686		fpregs32->pr_qcnt = 0;
687		fpregs32->pr_q_entrysize = 8;
688		memset(&fpregs32->pr_q[0], 0,
689		       (sizeof(unsigned int) * 64));
690		if (fprs & FPRS_FEF) {
691			fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
692			fpregs32->pr_en = 1;
693		} else {
694			fpregs32->pr_fsr = 0;
695			fpregs32->pr_en = 0;
696		}
697	} else {
698		if(fprs & FPRS_DL)
699			memcpy(&fpregs->pr_regs[0], kfpregs,
700			       sizeof(unsigned int) * 32);
701		else
702			memset(&fpregs->pr_regs[0], 0,
703			       sizeof(unsigned int) * 32);
704		if(fprs & FPRS_DU)
705			memcpy(&fpregs->pr_regs[16], kfpregs+16,
706			       sizeof(unsigned int) * 32);
707		else
708			memset(&fpregs->pr_regs[16], 0,
709			       sizeof(unsigned int) * 32);
710		if(fprs & FPRS_FEF) {
711			fpregs->pr_fsr = current_thread_info()->xfsr[0];
712			fpregs->pr_gsr = current_thread_info()->gsr[0];
713		} else {
714			fpregs->pr_fsr = fpregs->pr_gsr = 0;
715		}
716		fpregs->pr_fprs = fprs;
717	}
718	return 1;
719}
720EXPORT_SYMBOL(dump_fpu);
721
722/*
723 * sparc_execve() executes a new program after the asm stub has set
724 * things up for us.  This should basically do what I want it to.
725 */
726asmlinkage int sparc_execve(struct pt_regs *regs)
727{
728	int error, base = 0;
729	char *filename;
730
731	/* User register window flush is done by entry.S */
732
733	/* Check for indirect call. */
734	if (regs->u_regs[UREG_G1] == 0)
735		base = 1;
736
737	filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
738	error = PTR_ERR(filename);
739	if (IS_ERR(filename))
740		goto out;
741	error = do_execve(filename,
742			  (const char __user *const __user *)
743			  regs->u_regs[base + UREG_I1],
744			  (const char __user *const __user *)
745			  regs->u_regs[base + UREG_I2], regs);
746	putname(filename);
747	if (!error) {
748		fprs_write(0);
749		current_thread_info()->xfsr[0] = 0;
750		current_thread_info()->fpsaved[0] = 0;
751		regs->tstate &= ~TSTATE_PEF;
752	}
753out:
754	return error;
755}
756
757unsigned long get_wchan(struct task_struct *task)
758{
759	unsigned long pc, fp, bias = 0;
760	struct thread_info *tp;
761	struct reg_window *rw;
762        unsigned long ret = 0;
763	int count = 0;
764
765	if (!task || task == current ||
766            task->state == TASK_RUNNING)
767		goto out;
768
769	tp = task_thread_info(task);
770	bias = STACK_BIAS;
771	fp = task_thread_info(task)->ksp + bias;
772
773	do {
774		if (!kstack_valid(tp, fp))
775			break;
776		rw = (struct reg_window *) fp;
777		pc = rw->ins[7];
778		if (!in_sched_functions(pc)) {
779			ret = pc;
780			goto out;
781		}
782		fp = rw->ins[6] + bias;
783	} while (++count < 16);
784
785out:
786	return ret;
787}
788