• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/powerpc/include/asm/
1#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
3#ifdef __KERNEL__
4
5/*
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12/* Check of existence of legacy devices */
13extern int check_legacy_ioport(unsigned long base_port);
14#define I8042_DATA_REG	0x60
15#define FDC_BASE	0x3f0
16/* only relevant for PReP */
17#define _PIDXR		0x279
18#define _PNPWRP		0xa79
19#define PNPBIOS_BASE	0xf000
20
21#include <linux/device.h>
22#include <linux/io.h>
23
24#include <linux/compiler.h>
25#include <asm/page.h>
26#include <asm/byteorder.h>
27#include <asm/synch.h>
28#include <asm/delay.h>
29#include <asm/mmu.h>
30
31#include <asm-generic/iomap.h>
32
33#ifdef CONFIG_PPC64
34#include <asm/paca.h>
35#endif
36
37#define SIO_CONFIG_RA	0x398
38#define SIO_CONFIG_RD	0x399
39
40#define SLOW_DOWN_IO
41
42/* 32 bits uses slightly different variables for the various IO
43 * bases. Most of this file only uses _IO_BASE though which we
44 * define properly based on the platform
45 */
46#ifndef CONFIG_PCI
47#define _IO_BASE	0
48#define _ISA_MEM_BASE	0
49#define PCI_DRAM_OFFSET 0
50#elif defined(CONFIG_PPC32)
51#define _IO_BASE	isa_io_base
52#define _ISA_MEM_BASE	isa_mem_base
53#define PCI_DRAM_OFFSET	pci_dram_offset
54#else
55#define _IO_BASE	pci_io_base
56#define _ISA_MEM_BASE	isa_mem_base
57#define PCI_DRAM_OFFSET	0
58#endif
59
60extern unsigned long isa_io_base;
61extern unsigned long pci_io_base;
62extern unsigned long pci_dram_offset;
63
64extern resource_size_t isa_mem_base;
65
66#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
67#error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
68#endif
69
70/*
71 *
72 * Low level MMIO accessors
73 *
74 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
75 * specific and thus shouldn't be used in generic code. The accessors
76 * provided here are:
77 *
78 *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
79 *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
80 *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
81 *
82 * Those operate directly on a kernel virtual address. Note that the prototype
83 * for the out_* accessors has the arguments in opposite order from the usual
84 * linux PCI accessors. Unlike those, they take the address first and the value
85 * next.
86 *
87 * Note: I might drop the _ns suffix on the stream operations soon as it is
88 * simply normal for stream operations to not swap in the first place.
89 *
90 */
91
92#ifdef CONFIG_PPC64
93#define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
94#else
95#define IO_SET_SYNC_FLAG()
96#endif
97
98/* gcc 4.0 and older doesn't have 'Z' constraint */
99#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
100#define DEF_MMIO_IN_LE(name, size, insn)				\
101static inline u##size name(const volatile u##size __iomem *addr)	\
102{									\
103	u##size ret;							\
104	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
105		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
106	return ret;							\
107}
108
109#define DEF_MMIO_OUT_LE(name, size, insn) 				\
110static inline void name(volatile u##size __iomem *addr, u##size val)	\
111{									\
112	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
113		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
114	IO_SET_SYNC_FLAG();						\
115}
116#else /* newer gcc */
117#define DEF_MMIO_IN_LE(name, size, insn)				\
118static inline u##size name(const volatile u##size __iomem *addr)	\
119{									\
120	u##size ret;							\
121	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
122		: "=r" (ret) : "Z" (*addr) : "memory");			\
123	return ret;							\
124}
125
126#define DEF_MMIO_OUT_LE(name, size, insn) 				\
127static inline void name(volatile u##size __iomem *addr, u##size val)	\
128{									\
129	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
130		: "=Z" (*addr) : "r" (val) : "memory");			\
131	IO_SET_SYNC_FLAG();						\
132}
133#endif
134
135#define DEF_MMIO_IN_BE(name, size, insn)				\
136static inline u##size name(const volatile u##size __iomem *addr)	\
137{									\
138	u##size ret;							\
139	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
140		: "=r" (ret) : "m" (*addr) : "memory");			\
141	return ret;							\
142}
143
144#define DEF_MMIO_OUT_BE(name, size, insn)				\
145static inline void name(volatile u##size __iomem *addr, u##size val)	\
146{									\
147	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
148		: "=m" (*addr) : "r" (val) : "memory");			\
149	IO_SET_SYNC_FLAG();						\
150}
151
152
153DEF_MMIO_IN_BE(in_8,     8, lbz);
154DEF_MMIO_IN_BE(in_be16, 16, lhz);
155DEF_MMIO_IN_BE(in_be32, 32, lwz);
156DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
157DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
158
159DEF_MMIO_OUT_BE(out_8,     8, stb);
160DEF_MMIO_OUT_BE(out_be16, 16, sth);
161DEF_MMIO_OUT_BE(out_be32, 32, stw);
162DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
163DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
164
165#ifdef __powerpc64__
166DEF_MMIO_OUT_BE(out_be64, 64, std);
167DEF_MMIO_IN_BE(in_be64, 64, ld);
168
169/* There is no asm instructions for 64 bits reverse loads and stores */
170static inline u64 in_le64(const volatile u64 __iomem *addr)
171{
172	return swab64(in_be64(addr));
173}
174
175static inline void out_le64(volatile u64 __iomem *addr, u64 val)
176{
177	out_be64(addr, swab64(val));
178}
179#endif /* __powerpc64__ */
180
181/*
182 * Low level IO stream instructions are defined out of line for now
183 */
184extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
185extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
186extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
187extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
188extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
189extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
190
191/* The _ns naming is historical and will be removed. For now, just #define
192 * the non _ns equivalent names
193 */
194#define _insw	_insw_ns
195#define _insl	_insl_ns
196#define _outsw	_outsw_ns
197#define _outsl	_outsl_ns
198
199
200/*
201 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
202 */
203
204extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
205extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
206			   unsigned long n);
207extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
208			 unsigned long n);
209
210/*
211 *
212 * PCI and standard ISA accessors
213 *
214 * Those are globally defined linux accessors for devices on PCI or ISA
215 * busses. They follow the Linux defined semantics. The current implementation
216 * for PowerPC is as close as possible to the x86 version of these, and thus
217 * provides fairly heavy weight barriers for the non-raw versions
218 *
219 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
220 * allowing the platform to provide its own implementation of some or all
221 * of the accessors.
222 */
223
224/*
225 * Include the EEH definitions when EEH is enabled only so they don't get
226 * in the way when building for 32 bits
227 */
228#ifdef CONFIG_EEH
229#include <asm/eeh.h>
230#endif
231
232/* Shortcut to the MMIO argument pointer */
233#define PCI_IO_ADDR	volatile void __iomem *
234
235/* Indirect IO address tokens:
236 *
237 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
238 * on all IOs. (Note that this is all 64 bits only for now)
239 *
240 * To help platforms who may need to differenciate MMIO addresses in
241 * their hooks, a bitfield is reserved for use by the platform near the
242 * top of MMIO addresses (not PIO, those have to cope the hard way).
243 *
244 * This bit field is 12 bits and is at the top of the IO virtual
245 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
246 *
247 * The kernel virtual space is thus:
248 *
249 *  0xD000000000000000		: vmalloc
250 *  0xD000080000000000		: PCI PHB IO space
251 *  0xD000080080000000		: ioremap
252 *  0xD0000fffffffffff		: end of ioremap region
253 *
254 * Since the top 4 bits are reserved as the region ID, we use thus
255 * the next 12 bits and keep 4 bits available for the future if the
256 * virtual address space is ever to be extended.
257 *
258 * The direct IO mapping operations will then mask off those bits
259 * before doing the actual access, though that only happen when
260 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
261 * mechanism
262 */
263
264#ifdef CONFIG_PPC_INDIRECT_IO
265#define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
266#define PCI_IO_IND_TOKEN_SHIFT	48
267#define PCI_FIX_ADDR(addr)						\
268	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
269#define PCI_GET_ADDR_TOKEN(addr)					\
270	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
271		PCI_IO_IND_TOKEN_SHIFT)
272#define PCI_SET_ADDR_TOKEN(addr, token) 				\
273do {									\
274	unsigned long __a = (unsigned long)(addr);			\
275	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
276	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
277	(addr) = (void __iomem *)__a;					\
278} while(0)
279#else
280#define PCI_FIX_ADDR(addr) (addr)
281#endif
282
283
284/*
285 * Non ordered and non-swapping "raw" accessors
286 */
287
288static inline unsigned char __raw_readb(const volatile void __iomem *addr)
289{
290	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
291}
292static inline unsigned short __raw_readw(const volatile void __iomem *addr)
293{
294	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
295}
296static inline unsigned int __raw_readl(const volatile void __iomem *addr)
297{
298	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
299}
300static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
301{
302	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
303}
304static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
305{
306	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
307}
308static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
309{
310	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
311}
312
313#ifdef __powerpc64__
314static inline unsigned long __raw_readq(const volatile void __iomem *addr)
315{
316	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
317}
318static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
319{
320	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
321}
322#endif /* __powerpc64__ */
323
324/*
325 *
326 * PCI PIO and MMIO accessors.
327 *
328 *
329 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
330 * machine checks (which they occasionally do when probing non existing
331 * IO ports on some platforms, like PowerMac and 8xx).
332 * I always found it to be of dubious reliability and I am tempted to get
333 * rid of it one of these days. So if you think it's important to keep it,
334 * please voice up asap. We never had it for 64 bits and I do not intend
335 * to port it over
336 */
337
338#ifdef CONFIG_PPC32
339
340#define __do_in_asm(name, op)				\
341static inline unsigned int name(unsigned int port)	\
342{							\
343	unsigned int x;					\
344	__asm__ __volatile__(				\
345		"sync\n"				\
346		"0:"	op "	%0,0,%1\n"		\
347		"1:	twi	0,%0,0\n"		\
348		"2:	isync\n"			\
349		"3:	nop\n"				\
350		"4:\n"					\
351		".section .fixup,\"ax\"\n"		\
352		"5:	li	%0,-1\n"		\
353		"	b	4b\n"			\
354		".previous\n"				\
355		".section __ex_table,\"a\"\n"		\
356		"	.align	2\n"			\
357		"	.long	0b,5b\n"		\
358		"	.long	1b,5b\n"		\
359		"	.long	2b,5b\n"		\
360		"	.long	3b,5b\n"		\
361		".previous"				\
362		: "=&r" (x)				\
363		: "r" (port + _IO_BASE)			\
364		: "memory");  				\
365	return x;					\
366}
367
368#define __do_out_asm(name, op)				\
369static inline void name(unsigned int val, unsigned int port) \
370{							\
371	__asm__ __volatile__(				\
372		"sync\n"				\
373		"0:" op " %0,0,%1\n"			\
374		"1:	sync\n"				\
375		"2:\n"					\
376		".section __ex_table,\"a\"\n"		\
377		"	.align	2\n"			\
378		"	.long	0b,2b\n"		\
379		"	.long	1b,2b\n"		\
380		".previous"				\
381		: : "r" (val), "r" (port + _IO_BASE)	\
382		: "memory");   	   	   		\
383}
384
385__do_in_asm(_rec_inb, "lbzx")
386__do_in_asm(_rec_inw, "lhbrx")
387__do_in_asm(_rec_inl, "lwbrx")
388__do_out_asm(_rec_outb, "stbx")
389__do_out_asm(_rec_outw, "sthbrx")
390__do_out_asm(_rec_outl, "stwbrx")
391
392#endif /* CONFIG_PPC32 */
393
394/* The "__do_*" operations below provide the actual "base" implementation
395 * for each of the defined acccessor. Some of them use the out_* functions
396 * directly, some of them still use EEH, though we might change that in the
397 * future. Those macros below provide the necessary argument swapping and
398 * handling of the IO base for PIO.
399 *
400 * They are themselves used by the macros that define the actual accessors
401 * and can be used by the hooks if any.
402 *
403 * Note that PIO operations are always defined in terms of their corresonding
404 * MMIO operations. That allows platforms like iSeries who want to modify the
405 * behaviour of both to only hook on the MMIO version and get both. It's also
406 * possible to hook directly at the toplevel PIO operation if they have to
407 * be handled differently
408 */
409#define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
410#define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
411#define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
412#define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
413#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
414#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
415#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
416
417#ifdef CONFIG_EEH
418#define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
419#define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
420#define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
421#define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
422#define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
423#define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
424#define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
425#else /* CONFIG_EEH */
426#define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
427#define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
428#define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
429#define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
430#define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
431#define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
432#define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
433#endif /* !defined(CONFIG_EEH) */
434
435#ifdef CONFIG_PPC32
436#define __do_outb(val, port)	_rec_outb(val, port)
437#define __do_outw(val, port)	_rec_outw(val, port)
438#define __do_outl(val, port)	_rec_outl(val, port)
439#define __do_inb(port)		_rec_inb(port)
440#define __do_inw(port)		_rec_inw(port)
441#define __do_inl(port)		_rec_inl(port)
442#else /* CONFIG_PPC32 */
443#define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
444#define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
445#define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
446#define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
447#define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
448#define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
449#endif /* !CONFIG_PPC32 */
450
451#ifdef CONFIG_EEH
452#define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
453#define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
454#define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
455#else /* CONFIG_EEH */
456#define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
457#define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
458#define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
459#endif /* !CONFIG_EEH */
460#define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
461#define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
462#define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
463
464#define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
465#define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
466#define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
467#define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
468#define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
469#define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
470
471#define __do_memset_io(addr, c, n)	\
472				_memset_io(PCI_FIX_ADDR(addr), c, n)
473#define __do_memcpy_toio(dst, src, n)	\
474				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
475
476#ifdef CONFIG_EEH
477#define __do_memcpy_fromio(dst, src, n)	\
478				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
479#else /* CONFIG_EEH */
480#define __do_memcpy_fromio(dst, src, n)	\
481				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
482#endif /* !CONFIG_EEH */
483
484#ifdef CONFIG_PPC_INDIRECT_IO
485#define DEF_PCI_HOOK(x)		x
486#else
487#define DEF_PCI_HOOK(x)		NULL
488#endif
489
490/* Structure containing all the hooks */
491extern struct ppc_pci_io {
492
493#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
494#define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
495
496#include <asm/io-defs.h>
497
498#undef DEF_PCI_AC_RET
499#undef DEF_PCI_AC_NORET
500
501} ppc_pci_io;
502
503/* The inline wrappers */
504#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
505static inline ret name at					\
506{								\
507	if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)		\
508		return ppc_pci_io.name al;			\
509	return __do_##name al;					\
510}
511
512#define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
513static inline void name at					\
514{								\
515	if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL)		\
516		ppc_pci_io.name al;				\
517	else							\
518		__do_##name al;					\
519}
520
521#include <asm/io-defs.h>
522
523#undef DEF_PCI_AC_RET
524#undef DEF_PCI_AC_NORET
525
526/* Some drivers check for the presence of readq & writeq with
527 * a #ifdef, so we make them happy here.
528 */
529#ifdef __powerpc64__
530#define readq	readq
531#define writeq	writeq
532#endif
533
534/*
535 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
536 * access
537 */
538#define xlate_dev_mem_ptr(p)	__va(p)
539
540/*
541 * Convert a virtual cached pointer to an uncached pointer
542 */
543#define xlate_dev_kmem_ptr(p)	p
544
545/*
546 * We don't do relaxed operations yet, at least not with this semantic
547 */
548#define readb_relaxed(addr) readb(addr)
549#define readw_relaxed(addr) readw(addr)
550#define readl_relaxed(addr) readl(addr)
551#define readq_relaxed(addr) readq(addr)
552
553#ifdef CONFIG_PPC32
554#define mmiowb()
555#else
556/*
557 * Enforce synchronisation of stores vs. spin_unlock
558 * (this does it explicitly, though our implementation of spin_unlock
559 * does it implicitely too)
560 */
561static inline void mmiowb(void)
562{
563	unsigned long tmp;
564
565	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
566	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
567	: "memory");
568}
569#endif /* !CONFIG_PPC32 */
570
571static inline void iosync(void)
572{
573        __asm__ __volatile__ ("sync" : : : "memory");
574}
575
576/* Enforce in-order execution of data I/O.
577 * No distinction between read/write on PPC; use eieio for all three.
578 * Those are fairly week though. They don't provide a barrier between
579 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
580 * they only provide barriers between 2 __raw MMIO operations and
581 * possibly break write combining.
582 */
583#define iobarrier_rw() eieio()
584#define iobarrier_r()  eieio()
585#define iobarrier_w()  eieio()
586
587
588/*
589 * output pause versions need a delay at least for the
590 * w83c105 ide controller in a p610.
591 */
592#define inb_p(port)             inb(port)
593#define outb_p(val, port)       (udelay(1), outb((val), (port)))
594#define inw_p(port)             inw(port)
595#define outw_p(val, port)       (udelay(1), outw((val), (port)))
596#define inl_p(port)             inl(port)
597#define outl_p(val, port)       (udelay(1), outl((val), (port)))
598
599
600#define IO_SPACE_LIMIT ~(0UL)
601
602
603/**
604 * ioremap     -   map bus memory into CPU space
605 * @address:   bus address of the memory
606 * @size:      size of the resource to map
607 *
608 * ioremap performs a platform specific sequence of operations to
609 * make bus memory CPU accessible via the readb/readw/readl/writeb/
610 * writew/writel functions and the other mmio helpers. The returned
611 * address is not guaranteed to be usable directly as a virtual
612 * address.
613 *
614 * We provide a few variations of it:
615 *
616 * * ioremap is the standard one and provides non-cacheable guarded mappings
617 *   and can be hooked by the platform via ppc_md
618 *
619 * * ioremap_flags allows to specify the page flags as an argument and can
620 *   also be hooked by the platform via ppc_md. ioremap_prot is the exact
621 *   same thing as ioremap_flags.
622 *
623 * * ioremap_nocache is identical to ioremap
624 *
625 * * iounmap undoes such a mapping and can be hooked
626 *
627 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
628 *   create hand-made mappings for use only by the PCI code and cannot
629 *   currently be hooked. Must be page aligned.
630 *
631 * * __ioremap is the low level implementation used by ioremap and
632 *   ioremap_flags and cannot be hooked (but can be used by a hook on one
633 *   of the previous ones)
634 *
635 * * __ioremap_caller is the same as above but takes an explicit caller
636 *   reference rather than using __builtin_return_address(0)
637 *
638 * * __iounmap, is the low level implementation used by iounmap and cannot
639 *   be hooked (but can be used by a hook on iounmap)
640 *
641 */
642extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
643extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
644				   unsigned long flags);
645#define ioremap_nocache(addr, size)	ioremap((addr), (size))
646#define ioremap_prot(addr, size, prot)	ioremap_flags((addr), (size), (prot))
647
648extern void iounmap(volatile void __iomem *addr);
649
650extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
651			       unsigned long flags);
652extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
653				      unsigned long flags, void *caller);
654
655extern void __iounmap(volatile void __iomem *addr);
656
657extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
658				   unsigned long size, unsigned long flags);
659extern void __iounmap_at(void *ea, unsigned long size);
660
661/*
662 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
663 * which needs some additional definitions here. They basically allow PIO
664 * space overall to be 1GB. This will work as long as we never try to use
665 * iomap to map MMIO below 1GB which should be fine on ppc64
666 */
667#define HAVE_ARCH_PIO_SIZE		1
668#define PIO_OFFSET			0x00000000UL
669#define PIO_MASK			(FULL_IO_SIZE - 1)
670#define PIO_RESERVED			(FULL_IO_SIZE)
671
672#define mmio_read16be(addr)		readw_be(addr)
673#define mmio_read32be(addr)		readl_be(addr)
674#define mmio_write16be(val, addr)	writew_be(val, addr)
675#define mmio_write32be(val, addr)	writel_be(val, addr)
676#define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
677#define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
678#define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
679#define mmio_outsb(addr, src, count)	writesb(addr, src, count)
680#define mmio_outsw(addr, src, count)	writesw(addr, src, count)
681#define mmio_outsl(addr, src, count)	writesl(addr, src, count)
682
683/**
684 *	virt_to_phys	-	map virtual addresses to physical
685 *	@address: address to remap
686 *
687 *	The returned physical address is the physical (CPU) mapping for
688 *	the memory address given. It is only valid to use this function on
689 *	addresses directly mapped or allocated via kmalloc.
690 *
691 *	This function does not give bus mappings for DMA transfers. In
692 *	almost all conceivable cases a device driver should not be using
693 *	this function
694 */
695static inline unsigned long virt_to_phys(volatile void * address)
696{
697	return __pa((unsigned long)address);
698}
699
700/**
701 *	phys_to_virt	-	map physical address to virtual
702 *	@address: address to remap
703 *
704 *	The returned virtual address is a current CPU mapping for
705 *	the memory address given. It is only valid to use this function on
706 *	addresses that have a kernel mapping
707 *
708 *	This function does not handle bus mappings for DMA transfers. In
709 *	almost all conceivable cases a device driver should not be using
710 *	this function
711 */
712static inline void * phys_to_virt(unsigned long address)
713{
714	return (void *)__va(address);
715}
716
717/*
718 * Change "struct page" to physical address.
719 */
720#define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
721
722/*
723 * 32 bits still uses virt_to_bus() for it's implementation of DMA
724 * mappings se we have to keep it defined here. We also have some old
725 * drivers (shame shame shame) that use bus_to_virt() and haven't been
726 * fixed yet so I need to define it here.
727 */
728#ifdef CONFIG_PPC32
729
730static inline unsigned long virt_to_bus(volatile void * address)
731{
732        if (address == NULL)
733		return 0;
734        return __pa(address) + PCI_DRAM_OFFSET;
735}
736
737static inline void * bus_to_virt(unsigned long address)
738{
739        if (address == 0)
740		return NULL;
741        return __va(address - PCI_DRAM_OFFSET);
742}
743
744#define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
745
746#endif /* CONFIG_PPC32 */
747
748/* access ports */
749#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
750#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
751
752#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
753#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
754
755#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
756#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
757
758/* Clear and set bits in one shot.  These macros can be used to clear and
759 * set multiple bits in a register using a single read-modify-write.  These
760 * macros can also be used to set a multiple-bit bit pattern using a mask,
761 * by specifying the mask in the 'clear' parameter and the new bit pattern
762 * in the 'set' parameter.
763 */
764
765#define clrsetbits(type, addr, clear, set) \
766	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
767
768#ifdef __powerpc64__
769#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
770#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
771#endif
772
773#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
774#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
775
776#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
777#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
778
779#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
780
781void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
782				size_t size, unsigned long flags);
783
784#endif /* __KERNEL__ */
785
786#endif /* _ASM_POWERPC_IO_H */
787