• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/parisc/kernel/
1/*
2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
3 *
4 *	PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 *    This program is free software; you can redistribute it and/or modify
17 *    it under the terms of the GNU General Public License as published by
18 *    the Free Software Foundation; either version 2 of the License, or
19 *    (at your option) any later version.
20 *
21 */
22
23/*	I think it would be in everyone's best interest to follow this
24 *	guidelines when writing PDC wrappers:
25 *
26 *	 - the name of the pdc wrapper should match one of the macros
27 *	   used for the first two arguments
28 *	 - don't use caps for random parts of the name
29 *	 - use the static PDC result buffers and "copyout" to structs
30 *	   supplied by the caller to encapsulate alignment restrictions
31 *	 - hold pdc_lock while in PDC or using static result buffers
32 *	 - use __pa() to convert virtual (kernel) pointers to physical
33 *	   ones.
34 *	 - the name of the struct used for pdc return values should equal
35 *	   one of the macros used for the first two arguments to the
36 *	   corresponding PDC call
37 *	 - keep the order of arguments
38 *	 - don't be smart (setting trailing NUL bytes for strings, return
39 *	   something useful even if the call failed) unless you are sure
40 *	   it's not going to affect functionality or performance
41 *
42 *	Example:
43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44 *	{
45 *		int retval;
46 *
47 *		spin_lock_irq(&pdc_lock);
48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 *		convert_to_wide(pdc_result);
50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 *		spin_unlock_irq(&pdc_lock);
52 *
53 *		return retval;
54 *	}
55 *					prumpf	991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/system.h>
71#include <asm/processor.h>	/* for boot_cpu_data */
72
73static DEFINE_SPINLOCK(pdc_lock);
74extern unsigned long pdc_result[NUM_PDC_RESULT];
75extern unsigned long pdc_result2[NUM_PDC_RESULT];
76
77#ifdef CONFIG_64BIT
78#define WIDE_FIRMWARE 0x1
79#define NARROW_FIRMWARE 0x2
80
81/* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83int parisc_narrow_firmware __read_mostly = 1;
84#endif
85
86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97#ifdef CONFIG_64BIT
98long real64_call(unsigned long function, ...);
99#endif
100long real32_call(unsigned long function, ...);
101
102#ifdef CONFIG_64BIT
103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105#else
106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108#endif
109
110
111/**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118static unsigned long f_extend(unsigned long address)
119{
120#ifdef CONFIG_64BIT
121	if(unlikely(parisc_narrow_firmware)) {
122		if((address & 0xff000000) == 0xf0000000)
123			return 0xf0f0f0f000000000UL | (u32)address;
124
125		if((address & 0xf0000000) == 0xf0000000)
126			return 0xffffffff00000000UL | (u32)address;
127	}
128#endif
129	return address;
130}
131
132/**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140static void convert_to_wide(unsigned long *addr)
141{
142#ifdef CONFIG_64BIT
143	int i;
144	unsigned int *p = (unsigned int *)addr;
145
146	if(unlikely(parisc_narrow_firmware)) {
147		for(i = 31; i >= 0; --i)
148			addr[i] = p[i];
149	}
150#endif
151}
152
153#ifdef CONFIG_64BIT
154void __cpuinit set_firmware_width_unlocked(void)
155{
156	int ret;
157
158	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159		__pa(pdc_result), 0);
160	convert_to_wide(pdc_result);
161	if (pdc_result[0] != NARROW_FIRMWARE)
162		parisc_narrow_firmware = 0;
163}
164
165/**
166 * set_firmware_width - Determine if the firmware is wide or narrow.
167 *
168 * This function must be called before any pdc_* function that uses the
169 * convert_to_wide function.
170 */
171void __cpuinit set_firmware_width(void)
172{
173	unsigned long flags;
174	spin_lock_irqsave(&pdc_lock, flags);
175	set_firmware_width_unlocked();
176	spin_unlock_irqrestore(&pdc_lock, flags);
177}
178#else
179void __cpuinit set_firmware_width_unlocked(void) {
180	return;
181}
182
183void __cpuinit set_firmware_width(void) {
184	return;
185}
186#endif /*CONFIG_64BIT*/
187
188/**
189 * pdc_emergency_unlock - Unlock the linux pdc lock
190 *
191 * This call unlocks the linux pdc lock in case we need some PDC functions
192 * (like pdc_add_valid) during kernel stack dump.
193 */
194void pdc_emergency_unlock(void)
195{
196 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
197        if (spin_is_locked(&pdc_lock))
198		spin_unlock(&pdc_lock);
199}
200
201
202/**
203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
204 * @address: Address to be verified.
205 *
206 * This PDC call attempts to read from the specified address and verifies
207 * if the address is valid.
208 *
209 * The return value is PDC_OK (0) in case accessing this address is valid.
210 */
211int pdc_add_valid(unsigned long address)
212{
213        int retval;
214	unsigned long flags;
215
216        spin_lock_irqsave(&pdc_lock, flags);
217        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218        spin_unlock_irqrestore(&pdc_lock, flags);
219
220        return retval;
221}
222EXPORT_SYMBOL(pdc_add_valid);
223
224/**
225 * pdc_chassis_info - Return chassis information.
226 * @result: The return buffer.
227 * @chassis_info: The memory buffer address.
228 * @len: The size of the memory buffer address.
229 *
230 * An HVERSION dependent call for returning the chassis information.
231 */
232int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233{
234        int retval;
235	unsigned long flags;
236
237        spin_lock_irqsave(&pdc_lock, flags);
238        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239        memcpy(&pdc_result2, led_info, len);
240        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241                              __pa(pdc_result), __pa(pdc_result2), len);
242        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243        memcpy(led_info, pdc_result2, len);
244        spin_unlock_irqrestore(&pdc_lock, flags);
245
246        return retval;
247}
248
249/**
250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251 * @retval: -1 on error, 0 on success. Other value are PDC errors
252 *
253 * Must be correctly formatted or expect system crash
254 */
255#ifdef CONFIG_64BIT
256int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257{
258	int retval = 0;
259	unsigned long flags;
260
261	if (!is_pdc_pat())
262		return -1;
263
264	spin_lock_irqsave(&pdc_lock, flags);
265	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266	spin_unlock_irqrestore(&pdc_lock, flags);
267
268	return retval;
269}
270#endif
271
272/**
273 * pdc_chassis_disp - Updates chassis code
274 * @retval: -1 on error, 0 on success
275 */
276int pdc_chassis_disp(unsigned long disp)
277{
278	int retval = 0;
279	unsigned long flags;
280
281	spin_lock_irqsave(&pdc_lock, flags);
282	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283	spin_unlock_irqrestore(&pdc_lock, flags);
284
285	return retval;
286}
287
288/**
289 * pdc_chassis_warn - Fetches chassis warnings
290 * @retval: -1 on error, 0 on success
291 */
292int pdc_chassis_warn(unsigned long *warn)
293{
294	int retval = 0;
295	unsigned long flags;
296
297	spin_lock_irqsave(&pdc_lock, flags);
298	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299	*warn = pdc_result[0];
300	spin_unlock_irqrestore(&pdc_lock, flags);
301
302	return retval;
303}
304
305int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306{
307	int ret;
308
309	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310	convert_to_wide(pdc_result);
311	pdc_coproc_info->ccr_functional = pdc_result[0];
312	pdc_coproc_info->ccr_present = pdc_result[1];
313	pdc_coproc_info->revision = pdc_result[17];
314	pdc_coproc_info->model = pdc_result[18];
315
316	return ret;
317}
318
319/**
320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
321 * @pdc_coproc_info: Return buffer address.
322 *
323 * This PDC call returns the presence and status of all the coprocessors
324 * attached to the processor.
325 */
326int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327{
328	int ret;
329	unsigned long flags;
330
331	spin_lock_irqsave(&pdc_lock, flags);
332	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333	spin_unlock_irqrestore(&pdc_lock, flags);
334
335	return ret;
336}
337
338/**
339 * pdc_iodc_read - Read data from the modules IODC.
340 * @actcnt: The actual number of bytes.
341 * @hpa: The HPA of the module for the iodc read.
342 * @index: The iodc entry point.
343 * @iodc_data: A buffer memory for the iodc options.
344 * @iodc_data_size: Size of the memory buffer.
345 *
346 * This PDC call reads from the IODC of the module specified by the hpa
347 * argument.
348 */
349int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350		  void *iodc_data, unsigned int iodc_data_size)
351{
352	int retval;
353	unsigned long flags;
354
355	spin_lock_irqsave(&pdc_lock, flags);
356	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357			      index, __pa(pdc_result2), iodc_data_size);
358	convert_to_wide(pdc_result);
359	*actcnt = pdc_result[0];
360	memcpy(iodc_data, pdc_result2, iodc_data_size);
361	spin_unlock_irqrestore(&pdc_lock, flags);
362
363	return retval;
364}
365EXPORT_SYMBOL(pdc_iodc_read);
366
367/**
368 * pdc_system_map_find_mods - Locate unarchitected modules.
369 * @pdc_mod_info: Return buffer address.
370 * @mod_path: pointer to dev path structure.
371 * @mod_index: fixed address module index.
372 *
373 * To locate and identify modules which reside at fixed I/O addresses, which
374 * do not self-identify via architected bus walks.
375 */
376int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377			     struct pdc_module_path *mod_path, long mod_index)
378{
379	int retval;
380	unsigned long flags;
381
382	spin_lock_irqsave(&pdc_lock, flags);
383	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384			      __pa(pdc_result2), mod_index);
385	convert_to_wide(pdc_result);
386	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388	spin_unlock_irqrestore(&pdc_lock, flags);
389
390	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391	return retval;
392}
393
394/**
395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
396 * @pdc_addr_info: Return buffer address.
397 * @mod_index: Fixed address module index.
398 * @addr_index: Address range index.
399 *
400 * Retrieve additional information about subsequent address ranges for modules
401 * with multiple address ranges.
402 */
403int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404			      long mod_index, long addr_index)
405{
406	int retval;
407	unsigned long flags;
408
409	spin_lock_irqsave(&pdc_lock, flags);
410	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411			      mod_index, addr_index);
412	convert_to_wide(pdc_result);
413	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414	spin_unlock_irqrestore(&pdc_lock, flags);
415
416	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417	return retval;
418}
419
420/**
421 * pdc_model_info - Return model information about the processor.
422 * @model: The return buffer.
423 *
424 * Returns the version numbers, identifiers, and capabilities from the processor module.
425 */
426int pdc_model_info(struct pdc_model *model)
427{
428	int retval;
429	unsigned long flags;
430
431	spin_lock_irqsave(&pdc_lock, flags);
432	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433	convert_to_wide(pdc_result);
434	memcpy(model, pdc_result, sizeof(*model));
435	spin_unlock_irqrestore(&pdc_lock, flags);
436
437	return retval;
438}
439
440/**
441 * pdc_model_sysmodel - Get the system model name.
442 * @name: A char array of at least 81 characters.
443 *
444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446 * on HP/UX.
447 */
448int pdc_model_sysmodel(char *name)
449{
450        int retval;
451	unsigned long flags;
452
453        spin_lock_irqsave(&pdc_lock, flags);
454        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455                              OS_ID_HPUX, __pa(name));
456        convert_to_wide(pdc_result);
457
458        if (retval == PDC_OK) {
459                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460        } else {
461                name[0] = 0;
462        }
463        spin_unlock_irqrestore(&pdc_lock, flags);
464
465        return retval;
466}
467
468/**
469 * pdc_model_versions - Identify the version number of each processor.
470 * @cpu_id: The return buffer.
471 * @id: The id of the processor to check.
472 *
473 * Returns the version number for each processor component.
474 *
475 * This comment was here before, but I do not know what it means :( -RB
476 * id: 0 = cpu revision, 1 = boot-rom-version
477 */
478int pdc_model_versions(unsigned long *versions, int id)
479{
480        int retval;
481	unsigned long flags;
482
483        spin_lock_irqsave(&pdc_lock, flags);
484        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485        convert_to_wide(pdc_result);
486        *versions = pdc_result[0];
487        spin_unlock_irqrestore(&pdc_lock, flags);
488
489        return retval;
490}
491
492/**
493 * pdc_model_cpuid - Returns the CPU_ID.
494 * @cpu_id: The return buffer.
495 *
496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
497 * the processor module.
498 */
499int pdc_model_cpuid(unsigned long *cpu_id)
500{
501        int retval;
502	unsigned long flags;
503
504        spin_lock_irqsave(&pdc_lock, flags);
505        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507        convert_to_wide(pdc_result);
508        *cpu_id = pdc_result[0];
509        spin_unlock_irqrestore(&pdc_lock, flags);
510
511        return retval;
512}
513
514/**
515 * pdc_model_capabilities - Returns the platform capabilities.
516 * @capabilities: The return buffer.
517 *
518 * Returns information about platform support for 32- and/or 64-bit
519 * OSes, IO-PDIR coherency, and virtual aliasing.
520 */
521int pdc_model_capabilities(unsigned long *capabilities)
522{
523        int retval;
524	unsigned long flags;
525
526        spin_lock_irqsave(&pdc_lock, flags);
527        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529        convert_to_wide(pdc_result);
530        if (retval == PDC_OK) {
531                *capabilities = pdc_result[0];
532        } else {
533                *capabilities = PDC_MODEL_OS32;
534        }
535        spin_unlock_irqrestore(&pdc_lock, flags);
536
537        return retval;
538}
539
540/**
541 * pdc_cache_info - Return cache and TLB information.
542 * @cache_info: The return buffer.
543 *
544 * Returns information about the processor's cache and TLB.
545 */
546int pdc_cache_info(struct pdc_cache_info *cache_info)
547{
548        int retval;
549	unsigned long flags;
550
551        spin_lock_irqsave(&pdc_lock, flags);
552        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
553        convert_to_wide(pdc_result);
554        memcpy(cache_info, pdc_result, sizeof(*cache_info));
555        spin_unlock_irqrestore(&pdc_lock, flags);
556
557        return retval;
558}
559
560/**
561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
562 * @space_bits: Should be 0, if not, bad mojo!
563 *
564 * Returns information about Space ID hashing.
565 */
566int pdc_spaceid_bits(unsigned long *space_bits)
567{
568	int retval;
569	unsigned long flags;
570
571	spin_lock_irqsave(&pdc_lock, flags);
572	pdc_result[0] = 0;
573	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
574	convert_to_wide(pdc_result);
575	*space_bits = pdc_result[0];
576	spin_unlock_irqrestore(&pdc_lock, flags);
577
578	return retval;
579}
580
581#ifndef CONFIG_PA20
582/**
583 * pdc_btlb_info - Return block TLB information.
584 * @btlb: The return buffer.
585 *
586 * Returns information about the hardware Block TLB.
587 */
588int pdc_btlb_info(struct pdc_btlb_info *btlb)
589{
590        int retval;
591	unsigned long flags;
592
593        spin_lock_irqsave(&pdc_lock, flags);
594        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
595        memcpy(btlb, pdc_result, sizeof(*btlb));
596        spin_unlock_irqrestore(&pdc_lock, flags);
597
598        if(retval < 0) {
599                btlb->max_size = 0;
600        }
601        return retval;
602}
603
604/**
605 * pdc_mem_map_hpa - Find fixed module information.
606 * @address: The return buffer
607 * @mod_path: pointer to dev path structure.
608 *
609 * This call was developed for S700 workstations to allow the kernel to find
610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
612 * call.
613 *
614 * This call is supported by all existing S700 workstations (up to  Gecko).
615 */
616int pdc_mem_map_hpa(struct pdc_memory_map *address,
617		struct pdc_module_path *mod_path)
618{
619        int retval;
620	unsigned long flags;
621
622        spin_lock_irqsave(&pdc_lock, flags);
623        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
624        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
625				__pa(pdc_result2));
626        memcpy(address, pdc_result, sizeof(*address));
627        spin_unlock_irqrestore(&pdc_lock, flags);
628
629        return retval;
630}
631#endif	/* !CONFIG_PA20 */
632
633/**
634 * pdc_lan_station_id - Get the LAN address.
635 * @lan_addr: The return buffer.
636 * @hpa: The network device HPA.
637 *
638 * Get the LAN station address when it is not directly available from the LAN hardware.
639 */
640int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
641{
642	int retval;
643	unsigned long flags;
644
645	spin_lock_irqsave(&pdc_lock, flags);
646	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
647			__pa(pdc_result), hpa);
648	if (retval < 0) {
649		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
650	} else {
651		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
652	}
653	spin_unlock_irqrestore(&pdc_lock, flags);
654
655	return retval;
656}
657EXPORT_SYMBOL(pdc_lan_station_id);
658
659/**
660 * pdc_stable_read - Read data from Stable Storage.
661 * @staddr: Stable Storage address to access.
662 * @memaddr: The memory address where Stable Storage data shall be copied.
663 * @count: number of bytes to transfer. count is multiple of 4.
664 *
665 * This PDC call reads from the Stable Storage address supplied in staddr
666 * and copies count bytes to the memory address memaddr.
667 * The call will fail if staddr+count > PDC_STABLE size.
668 */
669int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
670{
671       int retval;
672	unsigned long flags;
673
674       spin_lock_irqsave(&pdc_lock, flags);
675       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
676               __pa(pdc_result), count);
677       convert_to_wide(pdc_result);
678       memcpy(memaddr, pdc_result, count);
679       spin_unlock_irqrestore(&pdc_lock, flags);
680
681       return retval;
682}
683EXPORT_SYMBOL(pdc_stable_read);
684
685/**
686 * pdc_stable_write - Write data to Stable Storage.
687 * @staddr: Stable Storage address to access.
688 * @memaddr: The memory address where Stable Storage data shall be read from.
689 * @count: number of bytes to transfer. count is multiple of 4.
690 *
691 * This PDC call reads count bytes from the supplied memaddr address,
692 * and copies count bytes to the Stable Storage address staddr.
693 * The call will fail if staddr+count > PDC_STABLE size.
694 */
695int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
696{
697       int retval;
698	unsigned long flags;
699
700       spin_lock_irqsave(&pdc_lock, flags);
701       memcpy(pdc_result, memaddr, count);
702       convert_to_wide(pdc_result);
703       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
704               __pa(pdc_result), count);
705       spin_unlock_irqrestore(&pdc_lock, flags);
706
707       return retval;
708}
709EXPORT_SYMBOL(pdc_stable_write);
710
711/**
712 * pdc_stable_get_size - Get Stable Storage size in bytes.
713 * @size: pointer where the size will be stored.
714 *
715 * This PDC call returns the number of bytes in the processor's Stable
716 * Storage, which is the number of contiguous bytes implemented in Stable
717 * Storage starting from staddr=0. size in an unsigned 64-bit integer
718 * which is a multiple of four.
719 */
720int pdc_stable_get_size(unsigned long *size)
721{
722       int retval;
723	unsigned long flags;
724
725       spin_lock_irqsave(&pdc_lock, flags);
726       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
727       *size = pdc_result[0];
728       spin_unlock_irqrestore(&pdc_lock, flags);
729
730       return retval;
731}
732EXPORT_SYMBOL(pdc_stable_get_size);
733
734/**
735 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
736 *
737 * This PDC call is meant to be used to check the integrity of the current
738 * contents of Stable Storage.
739 */
740int pdc_stable_verify_contents(void)
741{
742       int retval;
743	unsigned long flags;
744
745       spin_lock_irqsave(&pdc_lock, flags);
746       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
747       spin_unlock_irqrestore(&pdc_lock, flags);
748
749       return retval;
750}
751EXPORT_SYMBOL(pdc_stable_verify_contents);
752
753/**
754 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
755 * the validity indicator.
756 *
757 * This PDC call will erase all contents of Stable Storage. Use with care!
758 */
759int pdc_stable_initialize(void)
760{
761       int retval;
762	unsigned long flags;
763
764       spin_lock_irqsave(&pdc_lock, flags);
765       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
766       spin_unlock_irqrestore(&pdc_lock, flags);
767
768       return retval;
769}
770EXPORT_SYMBOL(pdc_stable_initialize);
771
772/**
773 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
774 * @hwpath: fully bc.mod style path to the device.
775 * @initiator: the array to return the result into
776 *
777 * Get the SCSI operational parameters from PDC.
778 * Needed since HPUX never used BIOS or symbios card NVRAM.
779 * Most ncr/sym cards won't have an entry and just use whatever
780 * capabilities of the card are (eg Ultra, LVD). But there are
781 * several cases where it's useful:
782 *    o set SCSI id for Multi-initiator clusters,
783 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
784 *    o bus width exported is less than what the interface chip supports.
785 */
786int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
787{
788	int retval;
789	unsigned long flags;
790
791	spin_lock_irqsave(&pdc_lock, flags);
792
793#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
794	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
795
796	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
797			      __pa(pdc_result), __pa(hwpath));
798	if (retval < PDC_OK)
799		goto out;
800
801	if (pdc_result[0] < 16) {
802		initiator->host_id = pdc_result[0];
803	} else {
804		initiator->host_id = -1;
805	}
806
807	/*
808	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
809	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
810	 */
811	switch (pdc_result[1]) {
812		case  1: initiator->factor = 50; break;
813		case  2: initiator->factor = 25; break;
814		case  5: initiator->factor = 12; break;
815		case 25: initiator->factor = 10; break;
816		case 20: initiator->factor = 12; break;
817		case 40: initiator->factor = 10; break;
818		default: initiator->factor = -1; break;
819	}
820
821	if (IS_SPROCKETS()) {
822		initiator->width = pdc_result[4];
823		initiator->mode = pdc_result[5];
824	} else {
825		initiator->width = -1;
826		initiator->mode = -1;
827	}
828
829 out:
830	spin_unlock_irqrestore(&pdc_lock, flags);
831
832	return (retval >= PDC_OK);
833}
834EXPORT_SYMBOL(pdc_get_initiator);
835
836
837/**
838 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
839 * @num_entries: The return value.
840 * @hpa: The HPA for the device.
841 *
842 * This PDC function returns the number of entries in the specified cell's
843 * interrupt table.
844 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
845 */
846int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
847{
848	int retval;
849	unsigned long flags;
850
851	spin_lock_irqsave(&pdc_lock, flags);
852	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
853			      __pa(pdc_result), hpa);
854	convert_to_wide(pdc_result);
855	*num_entries = pdc_result[0];
856	spin_unlock_irqrestore(&pdc_lock, flags);
857
858	return retval;
859}
860
861/**
862 * pdc_pci_irt - Get the PCI interrupt routing table.
863 * @num_entries: The number of entries in the table.
864 * @hpa: The Hard Physical Address of the device.
865 * @tbl:
866 *
867 * Get the PCI interrupt routing table for the device at the given HPA.
868 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
869 */
870int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
871{
872	int retval;
873	unsigned long flags;
874
875	BUG_ON((unsigned long)tbl & 0x7);
876
877	spin_lock_irqsave(&pdc_lock, flags);
878	pdc_result[0] = num_entries;
879	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
880			      __pa(pdc_result), hpa, __pa(tbl));
881	spin_unlock_irqrestore(&pdc_lock, flags);
882
883	return retval;
884}
885
886
887
888/**
889 * pdc_tod_read - Read the Time-Of-Day clock.
890 * @tod: The return buffer:
891 *
892 * Read the Time-Of-Day clock
893 */
894int pdc_tod_read(struct pdc_tod *tod)
895{
896        int retval;
897	unsigned long flags;
898
899        spin_lock_irqsave(&pdc_lock, flags);
900        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
901        convert_to_wide(pdc_result);
902        memcpy(tod, pdc_result, sizeof(*tod));
903        spin_unlock_irqrestore(&pdc_lock, flags);
904
905        return retval;
906}
907EXPORT_SYMBOL(pdc_tod_read);
908
909/**
910 * pdc_tod_set - Set the Time-Of-Day clock.
911 * @sec: The number of seconds since epoch.
912 * @usec: The number of micro seconds.
913 *
914 * Set the Time-Of-Day clock.
915 */
916int pdc_tod_set(unsigned long sec, unsigned long usec)
917{
918        int retval;
919	unsigned long flags;
920
921        spin_lock_irqsave(&pdc_lock, flags);
922        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
923        spin_unlock_irqrestore(&pdc_lock, flags);
924
925        return retval;
926}
927EXPORT_SYMBOL(pdc_tod_set);
928
929#ifdef CONFIG_64BIT
930int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
931		struct pdc_memory_table *tbl, unsigned long entries)
932{
933	int retval;
934	unsigned long flags;
935
936	spin_lock_irqsave(&pdc_lock, flags);
937	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
938	convert_to_wide(pdc_result);
939	memcpy(r_addr, pdc_result, sizeof(*r_addr));
940	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
941	spin_unlock_irqrestore(&pdc_lock, flags);
942
943	return retval;
944}
945#endif /* CONFIG_64BIT */
946
947int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
948{
949        int retval;
950	unsigned long flags;
951
952        spin_lock_irqsave(&pdc_lock, flags);
953        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
954                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
955        spin_unlock_irqrestore(&pdc_lock, flags);
956
957        return retval;
958}
959
960/*
961 * pdc_do_reset - Reset the system.
962 *
963 * Reset the system.
964 */
965int pdc_do_reset(void)
966{
967        int retval;
968	unsigned long flags;
969
970        spin_lock_irqsave(&pdc_lock, flags);
971        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
972        spin_unlock_irqrestore(&pdc_lock, flags);
973
974        return retval;
975}
976
977/*
978 * pdc_soft_power_info - Enable soft power switch.
979 * @power_reg: address of soft power register
980 *
981 * Return the absolute address of the soft power switch register
982 */
983int __init pdc_soft_power_info(unsigned long *power_reg)
984{
985	int retval;
986	unsigned long flags;
987
988	*power_reg = (unsigned long) (-1);
989
990	spin_lock_irqsave(&pdc_lock, flags);
991	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
992	if (retval == PDC_OK) {
993                convert_to_wide(pdc_result);
994                *power_reg = f_extend(pdc_result[0]);
995	}
996	spin_unlock_irqrestore(&pdc_lock, flags);
997
998	return retval;
999}
1000
1001/*
1002 * pdc_soft_power_button - Control the soft power button behaviour
1003 * @sw_control: 0 for hardware control, 1 for software control
1004 *
1005 *
1006 * This PDC function places the soft power button under software or
1007 * hardware control.
1008 * Under software control the OS may control to when to allow to shut
1009 * down the system. Under hardware control pressing the power button
1010 * powers off the system immediately.
1011 */
1012int pdc_soft_power_button(int sw_control)
1013{
1014	int retval;
1015	unsigned long flags;
1016
1017	spin_lock_irqsave(&pdc_lock, flags);
1018	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1019	spin_unlock_irqrestore(&pdc_lock, flags);
1020
1021	return retval;
1022}
1023
1024/*
1025 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1026 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1027 * who knows what other platform firmware might do with this OS "hook".
1028 */
1029void pdc_io_reset(void)
1030{
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&pdc_lock, flags);
1034	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1035	spin_unlock_irqrestore(&pdc_lock, flags);
1036}
1037
1038/*
1039 * pdc_io_reset_devices - Hack to Stop USB controller
1040 *
1041 * If PDC used the usb controller, the usb controller
1042 * is still running and will crash the machines during iommu
1043 * setup, because of still running DMA. This PDC call
1044 * stops the USB controller.
1045 * Normally called after calling pdc_io_reset().
1046 */
1047void pdc_io_reset_devices(void)
1048{
1049	unsigned long flags;
1050
1051	spin_lock_irqsave(&pdc_lock, flags);
1052	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1053	spin_unlock_irqrestore(&pdc_lock, flags);
1054}
1055
1056/* locked by pdc_console_lock */
1057static int __attribute__((aligned(8)))   iodc_retbuf[32];
1058static char __attribute__((aligned(64))) iodc_dbuf[4096];
1059
1060/**
1061 * pdc_iodc_print - Console print using IODC.
1062 * @str: the string to output.
1063 * @count: length of str
1064 *
1065 * Note that only these special chars are architected for console IODC io:
1066 * BEL, BS, CR, and LF. Others are passed through.
1067 * Since the HP console requires CR+LF to perform a 'newline', we translate
1068 * "\n" to "\r\n".
1069 */
1070int pdc_iodc_print(const unsigned char *str, unsigned count)
1071{
1072	unsigned int i;
1073	unsigned long flags;
1074
1075	for (i = 0; i < count;) {
1076		switch(str[i]) {
1077		case '\n':
1078			iodc_dbuf[i+0] = '\r';
1079			iodc_dbuf[i+1] = '\n';
1080			i += 2;
1081			goto print;
1082		default:
1083			iodc_dbuf[i] = str[i];
1084			i++;
1085			break;
1086		}
1087	}
1088
1089print:
1090        spin_lock_irqsave(&pdc_lock, flags);
1091        real32_call(PAGE0->mem_cons.iodc_io,
1092                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1093                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1094                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1095        spin_unlock_irqrestore(&pdc_lock, flags);
1096
1097	return i;
1098}
1099
1100/**
1101 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1102 *
1103 * Read a character (non-blocking) from the PDC console, returns -1 if
1104 * key is not present.
1105 */
1106int pdc_iodc_getc(void)
1107{
1108	int ch;
1109	int status;
1110	unsigned long flags;
1111
1112	/* Bail if no console input device. */
1113	if (!PAGE0->mem_kbd.iodc_io)
1114		return 0;
1115
1116	/* wait for a keyboard (rs232)-input */
1117	spin_lock_irqsave(&pdc_lock, flags);
1118	real32_call(PAGE0->mem_kbd.iodc_io,
1119		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1120		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1121		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1122
1123	ch = *iodc_dbuf;
1124	status = *iodc_retbuf;
1125	spin_unlock_irqrestore(&pdc_lock, flags);
1126
1127	if (status == 0)
1128	    return -1;
1129
1130	return ch;
1131}
1132
1133int pdc_sti_call(unsigned long func, unsigned long flags,
1134                 unsigned long inptr, unsigned long outputr,
1135                 unsigned long glob_cfg)
1136{
1137        int retval;
1138	unsigned long irqflags;
1139
1140        spin_lock_irqsave(&pdc_lock, irqflags);
1141        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1142        spin_unlock_irqrestore(&pdc_lock, irqflags);
1143
1144        return retval;
1145}
1146EXPORT_SYMBOL(pdc_sti_call);
1147
1148#ifdef CONFIG_64BIT
1149/**
1150 * pdc_pat_cell_get_number - Returns the cell number.
1151 * @cell_info: The return buffer.
1152 *
1153 * This PDC call returns the cell number of the cell from which the call
1154 * is made.
1155 */
1156int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1157{
1158	int retval;
1159	unsigned long flags;
1160
1161	spin_lock_irqsave(&pdc_lock, flags);
1162	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1163	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1164	spin_unlock_irqrestore(&pdc_lock, flags);
1165
1166	return retval;
1167}
1168
1169/**
1170 * pdc_pat_cell_module - Retrieve the cell's module information.
1171 * @actcnt: The number of bytes written to mem_addr.
1172 * @ploc: The physical location.
1173 * @mod: The module index.
1174 * @view_type: The view of the address type.
1175 * @mem_addr: The return buffer.
1176 *
1177 * This PDC call returns information about each module attached to the cell
1178 * at the specified location.
1179 */
1180int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1181			unsigned long view_type, void *mem_addr)
1182{
1183	int retval;
1184	unsigned long flags;
1185	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1186
1187	spin_lock_irqsave(&pdc_lock, flags);
1188	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1189			      ploc, mod, view_type, __pa(&result));
1190	if(!retval) {
1191		*actcnt = pdc_result[0];
1192		memcpy(mem_addr, &result, *actcnt);
1193	}
1194	spin_unlock_irqrestore(&pdc_lock, flags);
1195
1196	return retval;
1197}
1198
1199/**
1200 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1201 * @cpu_info: The return buffer.
1202 * @hpa: The Hard Physical Address of the CPU.
1203 *
1204 * Retrieve the cpu number for the cpu at the specified HPA.
1205 */
1206int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1207{
1208	int retval;
1209	unsigned long flags;
1210
1211	spin_lock_irqsave(&pdc_lock, flags);
1212	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1213			      __pa(&pdc_result), hpa);
1214	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1215	spin_unlock_irqrestore(&pdc_lock, flags);
1216
1217	return retval;
1218}
1219
1220/**
1221 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1222 * @num_entries: The return value.
1223 * @cell_num: The target cell.
1224 *
1225 * This PDC function returns the number of entries in the specified cell's
1226 * interrupt table.
1227 */
1228int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1229{
1230	int retval;
1231	unsigned long flags;
1232
1233	spin_lock_irqsave(&pdc_lock, flags);
1234	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1235			      __pa(pdc_result), cell_num);
1236	*num_entries = pdc_result[0];
1237	spin_unlock_irqrestore(&pdc_lock, flags);
1238
1239	return retval;
1240}
1241
1242/**
1243 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1244 * @r_addr: The return buffer.
1245 * @cell_num: The target cell.
1246 *
1247 * This PDC function returns the actual interrupt table for the specified cell.
1248 */
1249int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1250{
1251	int retval;
1252	unsigned long flags;
1253
1254	spin_lock_irqsave(&pdc_lock, flags);
1255	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1256			      __pa(r_addr), cell_num);
1257	spin_unlock_irqrestore(&pdc_lock, flags);
1258
1259	return retval;
1260}
1261
1262/**
1263 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1264 * @actlen: The return buffer.
1265 * @mem_addr: Pointer to the memory buffer.
1266 * @count: The number of bytes to read from the buffer.
1267 * @offset: The offset with respect to the beginning of the buffer.
1268 *
1269 */
1270int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1271			    unsigned long count, unsigned long offset)
1272{
1273	int retval;
1274	unsigned long flags;
1275
1276	spin_lock_irqsave(&pdc_lock, flags);
1277	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1278			      __pa(pdc_result2), count, offset);
1279	*actual_len = pdc_result[0];
1280	memcpy(mem_addr, pdc_result2, *actual_len);
1281	spin_unlock_irqrestore(&pdc_lock, flags);
1282
1283	return retval;
1284}
1285
1286/**
1287 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1288 * @pci_addr: PCI configuration space address for which the read request is being made.
1289 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1290 * @mem_addr: Pointer to return memory buffer.
1291 *
1292 */
1293int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1294{
1295	int retval;
1296	unsigned long flags;
1297
1298	spin_lock_irqsave(&pdc_lock, flags);
1299	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1300					__pa(pdc_result), pci_addr, pci_size);
1301	switch(pci_size) {
1302		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1303		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1304		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1305	}
1306	spin_unlock_irqrestore(&pdc_lock, flags);
1307
1308	return retval;
1309}
1310
1311/**
1312 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1313 * @pci_addr: PCI configuration space address for which the write  request is being made.
1314 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1315 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1316 *         written to PCI Config space.
1317 *
1318 */
1319int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1320{
1321	int retval;
1322	unsigned long flags;
1323
1324	spin_lock_irqsave(&pdc_lock, flags);
1325	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1326				pci_addr, pci_size, val);
1327	spin_unlock_irqrestore(&pdc_lock, flags);
1328
1329	return retval;
1330}
1331#endif /* CONFIG_64BIT */
1332
1333
1334/***************** 32-bit real-mode calls ***********/
1335/* The struct below is used
1336 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1337 * real32_call_asm() then uses this stack in narrow real mode
1338 */
1339
1340struct narrow_stack {
1341	/* use int, not long which is 64 bits */
1342	unsigned int arg13;
1343	unsigned int arg12;
1344	unsigned int arg11;
1345	unsigned int arg10;
1346	unsigned int arg9;
1347	unsigned int arg8;
1348	unsigned int arg7;
1349	unsigned int arg6;
1350	unsigned int arg5;
1351	unsigned int arg4;
1352	unsigned int arg3;
1353	unsigned int arg2;
1354	unsigned int arg1;
1355	unsigned int arg0;
1356	unsigned int frame_marker[8];
1357	unsigned int sp;
1358	/* in reality, there's nearly 8k of stack after this */
1359};
1360
1361long real32_call(unsigned long fn, ...)
1362{
1363	va_list args;
1364	extern struct narrow_stack real_stack;
1365	extern unsigned long real32_call_asm(unsigned int *,
1366					     unsigned int *,
1367					     unsigned int);
1368
1369	va_start(args, fn);
1370	real_stack.arg0 = va_arg(args, unsigned int);
1371	real_stack.arg1 = va_arg(args, unsigned int);
1372	real_stack.arg2 = va_arg(args, unsigned int);
1373	real_stack.arg3 = va_arg(args, unsigned int);
1374	real_stack.arg4 = va_arg(args, unsigned int);
1375	real_stack.arg5 = va_arg(args, unsigned int);
1376	real_stack.arg6 = va_arg(args, unsigned int);
1377	real_stack.arg7 = va_arg(args, unsigned int);
1378	real_stack.arg8 = va_arg(args, unsigned int);
1379	real_stack.arg9 = va_arg(args, unsigned int);
1380	real_stack.arg10 = va_arg(args, unsigned int);
1381	real_stack.arg11 = va_arg(args, unsigned int);
1382	real_stack.arg12 = va_arg(args, unsigned int);
1383	real_stack.arg13 = va_arg(args, unsigned int);
1384	va_end(args);
1385
1386	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1387}
1388
1389#ifdef CONFIG_64BIT
1390/***************** 64-bit real-mode calls ***********/
1391
1392struct wide_stack {
1393	unsigned long arg0;
1394	unsigned long arg1;
1395	unsigned long arg2;
1396	unsigned long arg3;
1397	unsigned long arg4;
1398	unsigned long arg5;
1399	unsigned long arg6;
1400	unsigned long arg7;
1401	unsigned long arg8;
1402	unsigned long arg9;
1403	unsigned long arg10;
1404	unsigned long arg11;
1405	unsigned long arg12;
1406	unsigned long arg13;
1407	unsigned long frame_marker[2];	/* rp, previous sp */
1408	unsigned long sp;
1409	/* in reality, there's nearly 8k of stack after this */
1410};
1411
1412long real64_call(unsigned long fn, ...)
1413{
1414	va_list args;
1415	extern struct wide_stack real64_stack;
1416	extern unsigned long real64_call_asm(unsigned long *,
1417					     unsigned long *,
1418					     unsigned long);
1419
1420	va_start(args, fn);
1421	real64_stack.arg0 = va_arg(args, unsigned long);
1422	real64_stack.arg1 = va_arg(args, unsigned long);
1423	real64_stack.arg2 = va_arg(args, unsigned long);
1424	real64_stack.arg3 = va_arg(args, unsigned long);
1425	real64_stack.arg4 = va_arg(args, unsigned long);
1426	real64_stack.arg5 = va_arg(args, unsigned long);
1427	real64_stack.arg6 = va_arg(args, unsigned long);
1428	real64_stack.arg7 = va_arg(args, unsigned long);
1429	real64_stack.arg8 = va_arg(args, unsigned long);
1430	real64_stack.arg9 = va_arg(args, unsigned long);
1431	real64_stack.arg10 = va_arg(args, unsigned long);
1432	real64_stack.arg11 = va_arg(args, unsigned long);
1433	real64_stack.arg12 = va_arg(args, unsigned long);
1434	real64_stack.arg13 = va_arg(args, unsigned long);
1435	va_end(args);
1436
1437	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1438}
1439
1440#endif /* CONFIG_64BIT */
1441