• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/mips/pci/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/pci.h>
11#include <linux/interrupt.h>
12#include <linux/time.h>
13#include <linux/delay.h>
14
15#include <asm/time.h>
16
17#include <asm/octeon/octeon.h>
18#include <asm/octeon/cvmx-npi-defs.h>
19#include <asm/octeon/cvmx-pci-defs.h>
20#include <asm/octeon/pci-octeon.h>
21
22#define USE_OCTEON_INTERNAL_ARBITER
23
24/*
25 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
26 * addresses. Use PCI endian swapping 1 so no address swapping is
27 * necessary. The Linux io routines will endian swap the data.
28 */
29#define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
30#define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
31
32/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
33#define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
34
35/**
36 * This is the bit decoding used for the Octeon PCI controller addresses
37 */
38union octeon_pci_address {
39	uint64_t u64;
40	struct {
41		uint64_t upper:2;
42		uint64_t reserved:13;
43		uint64_t io:1;
44		uint64_t did:5;
45		uint64_t subdid:3;
46		uint64_t reserved2:4;
47		uint64_t endian_swap:2;
48		uint64_t reserved3:10;
49		uint64_t bus:8;
50		uint64_t dev:5;
51		uint64_t func:3;
52		uint64_t reg:8;
53	} s;
54};
55
56int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
57					 u8 slot, u8 pin);
58enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
59
60/**
61 * Map a PCI device to the appropriate interrupt line
62 *
63 * @dev:    The Linux PCI device structure for the device to map
64 * @slot:   The slot number for this device on __BUS 0__. Linux
65 *               enumerates through all the bridges and figures out the
66 *               slot on Bus 0 where this device eventually hooks to.
67 * @pin:    The PCI interrupt pin read from the device, then swizzled
68 *               as it goes through each bridge.
69 * Returns Interrupt number for the device
70 */
71int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
72{
73	if (octeon_pcibios_map_irq)
74		return octeon_pcibios_map_irq(dev, slot, pin);
75	else
76		panic("octeon_pcibios_map_irq not set.");
77}
78
79
80/*
81 * Called to perform platform specific PCI setup
82 */
83int pcibios_plat_dev_init(struct pci_dev *dev)
84{
85	uint16_t config;
86	uint32_t dconfig;
87	int pos;
88	/*
89	 * Force the Cache line setting to 64 bytes. The standard
90	 * Linux bus scan doesn't seem to set it. Octeon really has
91	 * 128 byte lines, but Intel bridges get really upset if you
92	 * try and set values above 64 bytes. Value is specified in
93	 * 32bit words.
94	 */
95	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
96	/* Set latency timers for all devices */
97	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
98
99	/* Enable reporting System errors and parity errors on all devices */
100	/* Enable parity checking and error reporting */
101	pci_read_config_word(dev, PCI_COMMAND, &config);
102	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
103	pci_write_config_word(dev, PCI_COMMAND, config);
104
105	if (dev->subordinate) {
106		/* Set latency timers on sub bridges */
107		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
108		/* More bridge error detection */
109		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
110		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
111		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
112	}
113
114	/* Enable the PCIe normal error reporting */
115	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
116	if (pos) {
117		/* Update Device Control */
118		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
119		/* Correctable Error Reporting */
120		config |= PCI_EXP_DEVCTL_CERE;
121		/* Non-Fatal Error Reporting */
122		config |= PCI_EXP_DEVCTL_NFERE;
123		/* Fatal Error Reporting */
124		config |= PCI_EXP_DEVCTL_FERE;
125		/* Unsupported Request */
126		config |= PCI_EXP_DEVCTL_URRE;
127		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
128	}
129
130	/* Find the Advanced Error Reporting capability */
131	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
132	if (pos) {
133		/* Clear Uncorrectable Error Status */
134		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
135				      &dconfig);
136		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
137				       dconfig);
138		/* Enable reporting of all uncorrectable errors */
139		/* Uncorrectable Error Mask - turned on bits disable errors */
140		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
141		/*
142		 * Leave severity at HW default. This only controls if
143		 * errors are reported as uncorrectable or
144		 * correctable, not if the error is reported.
145		 */
146		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
147		/* Clear Correctable Error Status */
148		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
149		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
150		/* Enable reporting of all correctable errors */
151		/* Correctable Error Mask - turned on bits disable errors */
152		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
153		/* Advanced Error Capabilities */
154		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
155		/* ECRC Generation Enable */
156		if (config & PCI_ERR_CAP_ECRC_GENC)
157			config |= PCI_ERR_CAP_ECRC_GENE;
158		/* ECRC Check Enable */
159		if (config & PCI_ERR_CAP_ECRC_CHKC)
160			config |= PCI_ERR_CAP_ECRC_CHKE;
161		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
162		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
163		/* Report all errors to the root complex */
164		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
165				       PCI_ERR_ROOT_CMD_COR_EN |
166				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
167				       PCI_ERR_ROOT_CMD_FATAL_EN);
168		/* Clear the Root status register */
169		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
170		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
171	}
172
173	return 0;
174}
175
176/**
177 * Return the mapping of PCI device number to IRQ line. Each
178 * character in the return string represents the interrupt
179 * line for the device at that position. Device 1 maps to the
180 * first character, etc. The characters A-D are used for PCI
181 * interrupts.
182 *
183 * Returns PCI interrupt mapping
184 */
185const char *octeon_get_pci_interrupts(void)
186{
187	/*
188	 * Returning an empty string causes the interrupts to be
189	 * routed based on the PCI specification. From the PCI spec:
190	 *
191	 * INTA# of Device Number 0 is connected to IRQW on the system
192	 * board.  (Device Number has no significance regarding being
193	 * located on the system board or in a connector.) INTA# of
194	 * Device Number 1 is connected to IRQX on the system
195	 * board. INTA# of Device Number 2 is connected to IRQY on the
196	 * system board. INTA# of Device Number 3 is connected to IRQZ
197	 * on the system board. The table below describes how each
198	 * agent's INTx# lines are connected to the system board
199	 * interrupt lines. The following equation can be used to
200	 * determine to which INTx# signal on the system board a given
201	 * device's INTx# line(s) is connected.
202	 *
203	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
204	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
205	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
206	 * INTD# = 3)
207	 */
208	switch (octeon_bootinfo->board_type) {
209	case CVMX_BOARD_TYPE_NAO38:
210		/* This is really the NAC38 */
211		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
212	case CVMX_BOARD_TYPE_EBH3100:
213	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
214	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
215		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
216	case CVMX_BOARD_TYPE_BBGW_REF:
217		return "AABCD";
218	case CVMX_BOARD_TYPE_THUNDER:
219	case CVMX_BOARD_TYPE_EBH3000:
220	default:
221		return "";
222	}
223}
224
225/**
226 * Map a PCI device to the appropriate interrupt line
227 *
228 * @dev:    The Linux PCI device structure for the device to map
229 * @slot:   The slot number for this device on __BUS 0__. Linux
230 *               enumerates through all the bridges and figures out the
231 *               slot on Bus 0 where this device eventually hooks to.
232 * @pin:    The PCI interrupt pin read from the device, then swizzled
233 *               as it goes through each bridge.
234 * Returns Interrupt number for the device
235 */
236int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
237				      u8 slot, u8 pin)
238{
239	int irq_num;
240	const char *interrupts;
241	int dev_num;
242
243	/* Get the board specific interrupt mapping */
244	interrupts = octeon_get_pci_interrupts();
245
246	dev_num = dev->devfn >> 3;
247	if (dev_num < strlen(interrupts))
248		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
249			OCTEON_IRQ_PCI_INT0;
250	else
251		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
252	return irq_num;
253}
254
255
256/*
257 * Read a value from configuration space
258 */
259static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
260			      int reg, int size, u32 *val)
261{
262	union octeon_pci_address pci_addr;
263
264	pci_addr.u64 = 0;
265	pci_addr.s.upper = 2;
266	pci_addr.s.io = 1;
267	pci_addr.s.did = 3;
268	pci_addr.s.subdid = 1;
269	pci_addr.s.endian_swap = 1;
270	pci_addr.s.bus = bus->number;
271	pci_addr.s.dev = devfn >> 3;
272	pci_addr.s.func = devfn & 0x7;
273	pci_addr.s.reg = reg;
274
275#if PCI_CONFIG_SPACE_DELAY
276	udelay(PCI_CONFIG_SPACE_DELAY);
277#endif
278	switch (size) {
279	case 4:
280		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
281		return PCIBIOS_SUCCESSFUL;
282	case 2:
283		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
284		return PCIBIOS_SUCCESSFUL;
285	case 1:
286		*val = cvmx_read64_uint8(pci_addr.u64);
287		return PCIBIOS_SUCCESSFUL;
288	}
289	return PCIBIOS_FUNC_NOT_SUPPORTED;
290}
291
292
293/*
294 * Write a value to PCI configuration space
295 */
296static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
297			       int reg, int size, u32 val)
298{
299	union octeon_pci_address pci_addr;
300
301	pci_addr.u64 = 0;
302	pci_addr.s.upper = 2;
303	pci_addr.s.io = 1;
304	pci_addr.s.did = 3;
305	pci_addr.s.subdid = 1;
306	pci_addr.s.endian_swap = 1;
307	pci_addr.s.bus = bus->number;
308	pci_addr.s.dev = devfn >> 3;
309	pci_addr.s.func = devfn & 0x7;
310	pci_addr.s.reg = reg;
311
312#if PCI_CONFIG_SPACE_DELAY
313	udelay(PCI_CONFIG_SPACE_DELAY);
314#endif
315	switch (size) {
316	case 4:
317		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
318		return PCIBIOS_SUCCESSFUL;
319	case 2:
320		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
321		return PCIBIOS_SUCCESSFUL;
322	case 1:
323		cvmx_write64_uint8(pci_addr.u64, val);
324		return PCIBIOS_SUCCESSFUL;
325	}
326	return PCIBIOS_FUNC_NOT_SUPPORTED;
327}
328
329
330static struct pci_ops octeon_pci_ops = {
331	octeon_read_config,
332	octeon_write_config,
333};
334
335static struct resource octeon_pci_mem_resource = {
336	.start = 0,
337	.end = 0,
338	.name = "Octeon PCI MEM",
339	.flags = IORESOURCE_MEM,
340};
341
342/*
343 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
344 * bridge
345 */
346static struct resource octeon_pci_io_resource = {
347	.start = 0x4000,
348	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
349	.name = "Octeon PCI IO",
350	.flags = IORESOURCE_IO,
351};
352
353static struct pci_controller octeon_pci_controller = {
354	.pci_ops = &octeon_pci_ops,
355	.mem_resource = &octeon_pci_mem_resource,
356	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
357	.io_resource = &octeon_pci_io_resource,
358	.io_offset = 0,
359	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
360};
361
362
363/*
364 * Low level initialize the Octeon PCI controller
365 */
366static void octeon_pci_initialize(void)
367{
368	union cvmx_pci_cfg01 cfg01;
369	union cvmx_npi_ctl_status ctl_status;
370	union cvmx_pci_ctl_status_2 ctl_status_2;
371	union cvmx_pci_cfg19 cfg19;
372	union cvmx_pci_cfg16 cfg16;
373	union cvmx_pci_cfg22 cfg22;
374	union cvmx_pci_cfg56 cfg56;
375
376	/* Reset the PCI Bus */
377	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
378	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
379
380	udelay(2000);		/* Hold PCI reset for 2 ms */
381
382	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
383	ctl_status.s.max_word = 1;
384	ctl_status.s.timer = 1;
385	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
386
387	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
388	   (64b) */
389	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
390	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
391
392	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
393
394	ctl_status_2.u32 = 0;
395	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
396					   before any PCI reads. */
397	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
398	ctl_status_2.s.bar2_enb = 1;
399	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
400	ctl_status_2.s.bar2_esx = 1;
401	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
402	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
403		/* BAR1 hole */
404		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
405		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
406		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
407		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
408		ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
409		ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
410	}
411
412	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
413	udelay(2000);		/* Wait 2 ms before doing PCI reads */
414
415	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
416	pr_notice("PCI Status: %s %s-bit\n",
417		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
418		  ctl_status_2.s.ap_64ad ? "64" : "32");
419
420	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
421		union cvmx_pci_cnt_reg cnt_reg_start;
422		union cvmx_pci_cnt_reg cnt_reg_end;
423		unsigned long cycles, pci_clock;
424
425		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
426		cycles = read_c0_cvmcount();
427		udelay(1000);
428		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
429		cycles = read_c0_cvmcount() - cycles;
430		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
431			    (cycles / (mips_hpt_frequency / 1000000));
432		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
433	}
434
435	/*
436	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
437	 * in PCI-X mode to allow four oustanding splits. Otherwise,
438	 * should not change from its reset value. Don't write PCI_CFG19
439	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
440	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
441	 * MRBCM -> must be one.
442	 */
443	if (ctl_status_2.s.ap_pcix) {
444		cfg19.u32 = 0;
445		/*
446		 * Target Delayed/Split request outstanding maximum
447		 * count. [1..31] and 0=32.  NOTE: If the user
448		 * programs these bits beyond the Designed Maximum
449		 * outstanding count, then the designed maximum table
450		 * depth will be used instead.  No additional
451		 * Deferred/Split transactions will be accepted if
452		 * this outstanding maximum count is
453		 * reached. Furthermore, no additional deferred/split
454		 * transactions will be accepted if the I/O delay/ I/O
455		 * Split Request outstanding maximum is reached.
456		 */
457		cfg19.s.tdomc = 4;
458		/*
459		 * Master Deferred Read Request Outstanding Max Count
460		 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
461		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
462		 * 5 2 110 6 3 111 7 3 For example, if these bits are
463		 * programmed to 100, the core can support 2 DAC
464		 * cycles, 4 SAC cycles or a combination of 1 DAC and
465		 * 2 SAC cycles. NOTE: For the PCI-X maximum
466		 * outstanding split transactions, refer to
467		 * CRE0[22:20].
468		 */
469		cfg19.s.mdrrmc = 2;
470		/*
471		 * Master Request (Memory Read) Byte Count/Byte Enable
472		 * select. 0 = Byte Enables valid. In PCI mode, a
473		 * burst transaction cannot be performed using Memory
474		 * Read command=4?h6. 1 = DWORD Byte Count valid
475		 * (default). In PCI Mode, the memory read byte
476		 * enables are automatically generated by the
477		 * core. Note: N3 Master Request transaction sizes are
478		 * always determined through the
479		 * am_attr[<35:32>|<7:0>] field.
480		 */
481		cfg19.s.mrbcm = 1;
482		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
483	}
484
485
486	cfg01.u32 = 0;
487	cfg01.s.msae = 1;	/* Memory Space Access Enable */
488	cfg01.s.me = 1;		/* Master Enable */
489	cfg01.s.pee = 1;	/* PERR# Enable */
490	cfg01.s.see = 1;	/* System Error Enable */
491	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
492
493	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
494
495#ifdef USE_OCTEON_INTERNAL_ARBITER
496	/*
497	 * When OCTEON is a PCI host, most systems will use OCTEON's
498	 * internal arbiter, so must enable it before any PCI/PCI-X
499	 * traffic can occur.
500	 */
501	{
502		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
503
504		pci_int_arb_cfg.u64 = 0;
505		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
506		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
507	}
508#endif	/* USE_OCTEON_INTERNAL_ARBITER */
509
510	/*
511	 * Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
512	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
513	 * 1..7.
514	 */
515	cfg16.u32 = 0;
516	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
517	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
518
519	/*
520	 * Should be written to 0x4ff00. MTTV -> must be zero.
521	 * FLUSH -> must be 1. MRV -> should be 0xFF.
522	 */
523	cfg22.u32 = 0;
524	/* Master Retry Value [1..255] and 0=infinite */
525	cfg22.s.mrv = 0xff;
526	/*
527	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
528	 * N3K operation.
529	 */
530	cfg22.s.flush = 1;
531	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
532
533	/*
534	 * MOST Indicates the maximum number of outstanding splits (in -1
535	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
536	 * affected by the MOST selection.  Should generally be written
537	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
538	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
539	 */
540	cfg56.u32 = 0;
541	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
542	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
543	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
544	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
545	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
546				   [0=512B,1=1024B,2=2048B,3=4096B] */
547	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
548				   .. 7=32] */
549
550	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
551
552	/*
553	 * Affects PCI performance when OCTEON services reads to its
554	 * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
555	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
556	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
557	 * these values need to be changed so they won't possibly prefetch off
558	 * of the end of memory if PCI is DMAing a buffer at the end of
559	 * memory. Note that these values differ from their reset values.
560	 */
561	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
562	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
563	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
564}
565
566
567/*
568 * Initialize the Octeon PCI controller
569 */
570static int __init octeon_pci_setup(void)
571{
572	union cvmx_npi_mem_access_subidx mem_access;
573	int index;
574
575	/* Only these chips have PCI */
576	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
577		return 0;
578
579	/* Point pcibios_map_irq() to the PCI version of it */
580	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
581
582	/* Only use the big bars on chips that support it */
583	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
584	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
585	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
586		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
587	else
588		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
589
590	/* PCI I/O and PCI MEM values */
591	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
592	ioport_resource.start = 0;
593	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
594	if (!octeon_is_pci_host()) {
595		pr_notice("Not in host mode, PCI Controller not initialized\n");
596		return 0;
597	}
598
599	pr_notice("%s Octeon big bar support\n",
600		  (octeon_dma_bar_type ==
601		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
602
603	octeon_pci_initialize();
604
605	mem_access.u64 = 0;
606	mem_access.s.esr = 1;	/* Endian-Swap on read. */
607	mem_access.s.esw = 1;	/* Endian-Swap on write. */
608	mem_access.s.nsr = 0;	/* No-Snoop on read. */
609	mem_access.s.nsw = 0;	/* No-Snoop on write. */
610	mem_access.s.ror = 0;	/* Relax Read on read. */
611	mem_access.s.row = 0;	/* Relax Order on write. */
612	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
613	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
614
615	/*
616	 * Remap the Octeon BAR 2 above all 32 bit devices
617	 * (0x8000000000ul).  This is done here so it is remapped
618	 * before the readl()'s below. We don't want BAR2 overlapping
619	 * with BAR0/BAR1 during these reads.
620	 */
621	octeon_npi_write32(CVMX_NPI_PCI_CFG08, 0);
622	octeon_npi_write32(CVMX_NPI_PCI_CFG09, 0x80);
623
624	/* Disable the BAR1 movable mappings */
625	for (index = 0; index < 32; index++)
626		octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0);
627
628	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
629		/* Remap the Octeon BAR 0 to 0-2GB */
630		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
631		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
632
633		/*
634		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
635		 * BAR 1 hole).
636		 */
637		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
638		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
639
640		/* Devices go after BAR1 */
641		octeon_pci_mem_resource.start =
642			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
643			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
644		octeon_pci_mem_resource.end =
645			octeon_pci_mem_resource.start + (1ul << 30);
646	} else {
647		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
648		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
649		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
650
651		/* Remap the Octeon BAR 1 to map 0-128MB */
652		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
653		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
654
655		/* Devices go after BAR0 */
656		octeon_pci_mem_resource.start =
657			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
658			(4ul << 10);
659		octeon_pci_mem_resource.end =
660			octeon_pci_mem_resource.start + (1ul << 30);
661	}
662
663	register_pci_controller(&octeon_pci_controller);
664
665	/*
666	 * Clear any errors that might be pending from before the bus
667	 * was setup properly.
668	 */
669	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
670	return 0;
671}
672
673arch_initcall(octeon_pci_setup);
674