• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/mips/mm/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
13 */
14
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/init.h>
18
19#include <asm/inst.h>
20#include <asm/elf.h>
21#include <asm/bugs.h>
22#include <asm/uasm.h>
23
24enum fields {
25	RS = 0x001,
26	RT = 0x002,
27	RD = 0x004,
28	RE = 0x008,
29	SIMM = 0x010,
30	UIMM = 0x020,
31	BIMM = 0x040,
32	JIMM = 0x080,
33	FUNC = 0x100,
34	SET = 0x200,
35	SCIMM = 0x400
36};
37
38#define OP_MASK		0x3f
39#define OP_SH		26
40#define RS_MASK		0x1f
41#define RS_SH		21
42#define RT_MASK		0x1f
43#define RT_SH		16
44#define RD_MASK		0x1f
45#define RD_SH		11
46#define RE_MASK		0x1f
47#define RE_SH		6
48#define IMM_MASK	0xffff
49#define IMM_SH		0
50#define JIMM_MASK	0x3ffffff
51#define JIMM_SH		0
52#define FUNC_MASK	0x3f
53#define FUNC_SH		0
54#define SET_MASK	0x7
55#define SET_SH		0
56#define SCIMM_MASK	0xfffff
57#define SCIMM_SH	6
58
59enum opcode {
60	insn_invalid,
61	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
62	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
63	insn_bne, insn_cache, insn_daddu, insn_daddiu, insn_dmfc0,
64	insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
65	insn_dsrl32, insn_drotr, insn_drotr32, insn_dsubu, insn_eret,
66	insn_iret, insn_ins, insn_ext,
67	insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld,
68	insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_or, insn_ori,
69	insn_pref, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
70	insn_sra, insn_srl, insn_rotr, insn_subu, insn_sw, insn_tlbp,
71	insn_tlbr, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori,
72	insn_dins, insn_dinsm, insn_syscall, insn_bbit0, insn_bbit1,
73	insn_lwx, insn_ldx
74};
75
76struct insn {
77	enum opcode opcode;
78	u32 match;
79	enum fields fields;
80};
81
82/* This macro sets the non-variable bits of an instruction. */
83#define M(a, b, c, d, e, f)					\
84	((a) << OP_SH						\
85	 | (b) << RS_SH						\
86	 | (c) << RT_SH						\
87	 | (d) << RD_SH						\
88	 | (e) << RE_SH						\
89	 | (f) << FUNC_SH)
90
91static struct insn insn_table[] __uasminitdata = {
92	{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
93	{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
94	{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
95	{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
96	{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
97	{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
98	{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
99	{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
100	{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
101	{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
102	{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
103	{ insn_cache,  M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
104	{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
105	{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
106	{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
107	{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
108	{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
109	{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
110	{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
111	{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
112	{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
113	{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
114	{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
115	{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
116	{ insn_eret,  M(cop0_op, cop_op, 0, 0, 0, eret_op),  0 },
117	{ insn_iret,  M(cop0_op, cop_op, 0, 0, 0, iret_op),  0 },
118	{ insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
119	{ insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
120	{ insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
121	{ insn_jal,  M(jal_op, 0, 0, 0, 0, 0),  JIMM },
122	{ insn_jr,  M(spec_op, 0, 0, 0, 0, jr_op),  RS },
123	{ insn_ld,  M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
124	{ insn_ll,  M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
125	{ insn_lld,  M(lld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
126	{ insn_lui,  M(lui_op, 0, 0, 0, 0, 0),  RT | SIMM },
127	{ insn_lw,  M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
128	{ insn_mfc0,  M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
129	{ insn_mtc0,  M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
130	{ insn_or,  M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD },
131	{ insn_ori,  M(ori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
132	{ insn_pref,  M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
133	{ insn_rfe,  M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0 },
134	{ insn_sc,  M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
135	{ insn_scd,  M(scd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
136	{ insn_sd,  M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
137	{ insn_sll,  M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE },
138	{ insn_sra,  M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE },
139	{ insn_srl,  M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE },
140	{ insn_rotr,  M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE },
141	{ insn_subu,  M(spec_op, 0, 0, 0, 0, subu_op),  RS | RT | RD },
142	{ insn_sw,  M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
143	{ insn_tlbp,  M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0 },
144	{ insn_tlbr,  M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0 },
145	{ insn_tlbwi,  M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0 },
146	{ insn_tlbwr,  M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0 },
147	{ insn_xor,  M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD },
148	{ insn_xori,  M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
149	{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
150	{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
151	{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
152	{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
153	{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
154	{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
155	{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
156	{ insn_invalid, 0, 0 }
157};
158
159#undef M
160
161static inline __uasminit u32 build_rs(u32 arg)
162{
163	WARN(arg & ~RS_MASK, KERN_WARNING "Micro-assembler field overflow\n");
164
165	return (arg & RS_MASK) << RS_SH;
166}
167
168static inline __uasminit u32 build_rt(u32 arg)
169{
170	WARN(arg & ~RT_MASK, KERN_WARNING "Micro-assembler field overflow\n");
171
172	return (arg & RT_MASK) << RT_SH;
173}
174
175static inline __uasminit u32 build_rd(u32 arg)
176{
177	WARN(arg & ~RD_MASK, KERN_WARNING "Micro-assembler field overflow\n");
178
179	return (arg & RD_MASK) << RD_SH;
180}
181
182static inline __uasminit u32 build_re(u32 arg)
183{
184	WARN(arg & ~RE_MASK, KERN_WARNING "Micro-assembler field overflow\n");
185
186	return (arg & RE_MASK) << RE_SH;
187}
188
189static inline __uasminit u32 build_simm(s32 arg)
190{
191	WARN(arg > 0x7fff || arg < -0x8000,
192	     KERN_WARNING "Micro-assembler field overflow\n");
193
194	return arg & 0xffff;
195}
196
197static inline __uasminit u32 build_uimm(u32 arg)
198{
199	WARN(arg & ~IMM_MASK, KERN_WARNING "Micro-assembler field overflow\n");
200
201	return arg & IMM_MASK;
202}
203
204static inline __uasminit u32 build_bimm(s32 arg)
205{
206	WARN(arg > 0x1ffff || arg < -0x20000,
207	     KERN_WARNING "Micro-assembler field overflow\n");
208
209	WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
210
211	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
212}
213
214static inline __uasminit u32 build_jimm(u32 arg)
215{
216	WARN(arg & ~(JIMM_MASK << 2),
217	     KERN_WARNING "Micro-assembler field overflow\n");
218
219	return (arg >> 2) & JIMM_MASK;
220}
221
222static inline __uasminit u32 build_scimm(u32 arg)
223{
224	WARN(arg & ~SCIMM_MASK,
225	     KERN_WARNING "Micro-assembler field overflow\n");
226
227	return (arg & SCIMM_MASK) << SCIMM_SH;
228}
229
230static inline __uasminit u32 build_func(u32 arg)
231{
232	WARN(arg & ~FUNC_MASK, KERN_WARNING "Micro-assembler field overflow\n");
233
234	return arg & FUNC_MASK;
235}
236
237static inline __uasminit u32 build_set(u32 arg)
238{
239	WARN(arg & ~SET_MASK, KERN_WARNING "Micro-assembler field overflow\n");
240
241	return arg & SET_MASK;
242}
243
244/*
245 * The order of opcode arguments is implicitly left to right,
246 * starting with RS and ending with FUNC or IMM.
247 */
248static void __uasminit build_insn(u32 **buf, enum opcode opc, ...)
249{
250	struct insn *ip = NULL;
251	unsigned int i;
252	va_list ap;
253	u32 op;
254
255	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
256		if (insn_table[i].opcode == opc) {
257			ip = &insn_table[i];
258			break;
259		}
260
261	if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
262		panic("Unsupported Micro-assembler instruction %d", opc);
263
264	op = ip->match;
265	va_start(ap, opc);
266	if (ip->fields & RS)
267		op |= build_rs(va_arg(ap, u32));
268	if (ip->fields & RT)
269		op |= build_rt(va_arg(ap, u32));
270	if (ip->fields & RD)
271		op |= build_rd(va_arg(ap, u32));
272	if (ip->fields & RE)
273		op |= build_re(va_arg(ap, u32));
274	if (ip->fields & SIMM)
275		op |= build_simm(va_arg(ap, s32));
276	if (ip->fields & UIMM)
277		op |= build_uimm(va_arg(ap, u32));
278	if (ip->fields & BIMM)
279		op |= build_bimm(va_arg(ap, s32));
280	if (ip->fields & JIMM)
281		op |= build_jimm(va_arg(ap, u32));
282	if (ip->fields & FUNC)
283		op |= build_func(va_arg(ap, u32));
284	if (ip->fields & SET)
285		op |= build_set(va_arg(ap, u32));
286	if (ip->fields & SCIMM)
287		op |= build_scimm(va_arg(ap, u32));
288	va_end(ap);
289
290	**buf = op;
291	(*buf)++;
292}
293
294#define I_bit_extract(op)				\
295Ip_bit_extract(op)					\
296{							\
297	build_insn(buf, insn##op, b, a, d-1, c);	\
298}
299#define I_bit_insert(op)				\
300Ip_bit_insert(op)					\
301{							\
302	build_insn(buf, insn##op, b, a, c+d-1, c);	\
303}
304#define I_u1u2u3(op)					\
305Ip_u1u2u3(op)						\
306{							\
307	build_insn(buf, insn##op, a, b, c);		\
308}							\
309UASM_EXPORT_SYMBOL(uasm_i##op);
310
311#define I_u2u1u3(op)					\
312Ip_u2u1u3(op)						\
313{							\
314	build_insn(buf, insn##op, b, a, c);		\
315}							\
316UASM_EXPORT_SYMBOL(uasm_i##op);
317
318#define I_u3u1u2(op)					\
319Ip_u3u1u2(op)						\
320{							\
321	build_insn(buf, insn##op, b, c, a);		\
322}							\
323UASM_EXPORT_SYMBOL(uasm_i##op);
324
325#define I_u1u2s3(op)					\
326Ip_u1u2s3(op)						\
327{							\
328	build_insn(buf, insn##op, a, b, c);		\
329}							\
330UASM_EXPORT_SYMBOL(uasm_i##op);
331
332#define I_u2s3u1(op)					\
333Ip_u2s3u1(op)						\
334{							\
335	build_insn(buf, insn##op, c, a, b);		\
336}							\
337UASM_EXPORT_SYMBOL(uasm_i##op);
338
339#define I_u2u1s3(op)					\
340Ip_u2u1s3(op)						\
341{							\
342	build_insn(buf, insn##op, b, a, c);		\
343}							\
344UASM_EXPORT_SYMBOL(uasm_i##op);
345
346#define I_u2u1msbu3(op)					\
347Ip_u2u1msbu3(op)					\
348{							\
349	build_insn(buf, insn##op, b, a, c+d-1, c);	\
350}							\
351UASM_EXPORT_SYMBOL(uasm_i##op);
352
353#define I_u2u1msb32u3(op)				\
354Ip_u2u1msbu3(op)					\
355{							\
356	build_insn(buf, insn##op, b, a, c+d-33, c);	\
357}							\
358UASM_EXPORT_SYMBOL(uasm_i##op);
359
360#define I_u1u2(op)					\
361Ip_u1u2(op)						\
362{							\
363	build_insn(buf, insn##op, a, b);		\
364}							\
365UASM_EXPORT_SYMBOL(uasm_i##op);
366
367#define I_u1s2(op)					\
368Ip_u1s2(op)						\
369{							\
370	build_insn(buf, insn##op, a, b);		\
371}							\
372UASM_EXPORT_SYMBOL(uasm_i##op);
373
374#define I_u1(op)					\
375Ip_u1(op)						\
376{							\
377	build_insn(buf, insn##op, a);			\
378}							\
379UASM_EXPORT_SYMBOL(uasm_i##op);
380
381#define I_0(op)						\
382Ip_0(op)						\
383{							\
384	build_insn(buf, insn##op);			\
385}							\
386UASM_EXPORT_SYMBOL(uasm_i##op);
387
388I_u2u1s3(_addiu)
389I_u3u1u2(_addu)
390I_u2u1u3(_andi)
391I_u3u1u2(_and)
392I_u1u2s3(_beq)
393I_u1u2s3(_beql)
394I_u1s2(_bgez)
395I_u1s2(_bgezl)
396I_u1s2(_bltz)
397I_u1s2(_bltzl)
398I_u1u2s3(_bne)
399I_u2s3u1(_cache)
400I_u1u2u3(_dmfc0)
401I_u1u2u3(_dmtc0)
402I_u2u1s3(_daddiu)
403I_u3u1u2(_daddu)
404I_u2u1u3(_dsll)
405I_u2u1u3(_dsll32)
406I_u2u1u3(_dsra)
407I_u2u1u3(_dsrl)
408I_u2u1u3(_dsrl32)
409I_u2u1u3(_drotr)
410I_u2u1u3(_drotr32)
411I_u3u1u2(_dsubu)
412I_0(_eret)
413I_0(_iret)
414I_bit_insert(_ins)
415I_bit_extract(_ext)
416I_u1(_j)
417I_u1(_jal)
418I_u1(_jr)
419I_u2s3u1(_ld)
420I_u2s3u1(_ll)
421I_u2s3u1(_lld)
422I_u1s2(_lui)
423I_u2s3u1(_lw)
424I_u1u2u3(_mfc0)
425I_u1u2u3(_mtc0)
426I_u2u1u3(_ori)
427I_u3u1u2(_or)
428I_u2s3u1(_pref)
429I_0(_rfe)
430I_u2s3u1(_sc)
431I_u2s3u1(_scd)
432I_u2s3u1(_sd)
433I_u2u1u3(_sll)
434I_u2u1u3(_sra)
435I_u2u1u3(_srl)
436I_u2u1u3(_rotr)
437I_u3u1u2(_subu)
438I_u2s3u1(_sw)
439I_0(_tlbp)
440I_0(_tlbr)
441I_0(_tlbwi)
442I_0(_tlbwr)
443I_u3u1u2(_xor)
444I_u2u1u3(_xori)
445I_u2u1msbu3(_dins);
446I_u2u1msb32u3(_dinsm);
447I_u1(_syscall);
448I_u1u2s3(_bbit0);
449I_u1u2s3(_bbit1);
450I_u3u1u2(_lwx)
451I_u3u1u2(_ldx)
452
453/* Handle labels. */
454void __uasminit uasm_build_label(struct uasm_label **lab, u32 *addr, int lid)
455{
456	(*lab)->addr = addr;
457	(*lab)->lab = lid;
458	(*lab)++;
459}
460UASM_EXPORT_SYMBOL(uasm_build_label);
461
462int __uasminit uasm_in_compat_space_p(long addr)
463{
464	/* Is this address in 32bit compat space? */
465#ifdef CONFIG_64BIT
466	return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
467#else
468	return 1;
469#endif
470}
471UASM_EXPORT_SYMBOL(uasm_in_compat_space_p);
472
473static int __uasminit uasm_rel_highest(long val)
474{
475#ifdef CONFIG_64BIT
476	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
477#else
478	return 0;
479#endif
480}
481
482static int __uasminit uasm_rel_higher(long val)
483{
484#ifdef CONFIG_64BIT
485	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
486#else
487	return 0;
488#endif
489}
490
491int __uasminit uasm_rel_hi(long val)
492{
493	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
494}
495UASM_EXPORT_SYMBOL(uasm_rel_hi);
496
497int __uasminit uasm_rel_lo(long val)
498{
499	return ((val & 0xffff) ^ 0x8000) - 0x8000;
500}
501UASM_EXPORT_SYMBOL(uasm_rel_lo);
502
503void __uasminit UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr)
504{
505	if (!uasm_in_compat_space_p(addr)) {
506		uasm_i_lui(buf, rs, uasm_rel_highest(addr));
507		if (uasm_rel_higher(addr))
508			uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr));
509		if (uasm_rel_hi(addr)) {
510			uasm_i_dsll(buf, rs, rs, 16);
511			uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr));
512			uasm_i_dsll(buf, rs, rs, 16);
513		} else
514			uasm_i_dsll32(buf, rs, rs, 0);
515	} else
516		uasm_i_lui(buf, rs, uasm_rel_hi(addr));
517}
518UASM_EXPORT_SYMBOL(UASM_i_LA_mostly);
519
520void __uasminit UASM_i_LA(u32 **buf, unsigned int rs, long addr)
521{
522	UASM_i_LA_mostly(buf, rs, addr);
523	if (uasm_rel_lo(addr)) {
524		if (!uasm_in_compat_space_p(addr))
525			uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr));
526		else
527			uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr));
528	}
529}
530UASM_EXPORT_SYMBOL(UASM_i_LA);
531
532/* Handle relocations. */
533void __uasminit
534uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid)
535{
536	(*rel)->addr = addr;
537	(*rel)->type = R_MIPS_PC16;
538	(*rel)->lab = lid;
539	(*rel)++;
540}
541UASM_EXPORT_SYMBOL(uasm_r_mips_pc16);
542
543static inline void __uasminit
544__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
545{
546	long laddr = (long)lab->addr;
547	long raddr = (long)rel->addr;
548
549	switch (rel->type) {
550	case R_MIPS_PC16:
551		*rel->addr |= build_bimm(laddr - (raddr + 4));
552		break;
553
554	default:
555		panic("Unsupported Micro-assembler relocation %d",
556		      rel->type);
557	}
558}
559
560void __uasminit
561uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
562{
563	struct uasm_label *l;
564
565	for (; rel->lab != UASM_LABEL_INVALID; rel++)
566		for (l = lab; l->lab != UASM_LABEL_INVALID; l++)
567			if (rel->lab == l->lab)
568				__resolve_relocs(rel, l);
569}
570UASM_EXPORT_SYMBOL(uasm_resolve_relocs);
571
572void __uasminit
573uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off)
574{
575	for (; rel->lab != UASM_LABEL_INVALID; rel++)
576		if (rel->addr >= first && rel->addr < end)
577			rel->addr += off;
578}
579UASM_EXPORT_SYMBOL(uasm_move_relocs);
580
581void __uasminit
582uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off)
583{
584	for (; lab->lab != UASM_LABEL_INVALID; lab++)
585		if (lab->addr >= first && lab->addr < end)
586			lab->addr += off;
587}
588UASM_EXPORT_SYMBOL(uasm_move_labels);
589
590void __uasminit
591uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first,
592		  u32 *end, u32 *target)
593{
594	long off = (long)(target - first);
595
596	memcpy(target, first, (end - first) * sizeof(u32));
597
598	uasm_move_relocs(rel, first, end, off);
599	uasm_move_labels(lab, first, end, off);
600}
601UASM_EXPORT_SYMBOL(uasm_copy_handler);
602
603int __uasminit uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr)
604{
605	for (; rel->lab != UASM_LABEL_INVALID; rel++) {
606		if (rel->addr == addr
607		    && (rel->type == R_MIPS_PC16
608			|| rel->type == R_MIPS_26))
609			return 1;
610	}
611
612	return 0;
613}
614UASM_EXPORT_SYMBOL(uasm_insn_has_bdelay);
615
616/* Convenience functions for labeled branches. */
617void __uasminit
618uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
619{
620	uasm_r_mips_pc16(r, *p, lid);
621	uasm_i_bltz(p, reg, 0);
622}
623UASM_EXPORT_SYMBOL(uasm_il_bltz);
624
625void __uasminit
626uasm_il_b(u32 **p, struct uasm_reloc **r, int lid)
627{
628	uasm_r_mips_pc16(r, *p, lid);
629	uasm_i_b(p, 0);
630}
631UASM_EXPORT_SYMBOL(uasm_il_b);
632
633void __uasminit
634uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
635{
636	uasm_r_mips_pc16(r, *p, lid);
637	uasm_i_beqz(p, reg, 0);
638}
639UASM_EXPORT_SYMBOL(uasm_il_beqz);
640
641void __uasminit
642uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
643{
644	uasm_r_mips_pc16(r, *p, lid);
645	uasm_i_beqzl(p, reg, 0);
646}
647UASM_EXPORT_SYMBOL(uasm_il_beqzl);
648
649void __uasminit
650uasm_il_bne(u32 **p, struct uasm_reloc **r, unsigned int reg1,
651	unsigned int reg2, int lid)
652{
653	uasm_r_mips_pc16(r, *p, lid);
654	uasm_i_bne(p, reg1, reg2, 0);
655}
656UASM_EXPORT_SYMBOL(uasm_il_bne);
657
658void __uasminit
659uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
660{
661	uasm_r_mips_pc16(r, *p, lid);
662	uasm_i_bnez(p, reg, 0);
663}
664UASM_EXPORT_SYMBOL(uasm_il_bnez);
665
666void __uasminit
667uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
668{
669	uasm_r_mips_pc16(r, *p, lid);
670	uasm_i_bgezl(p, reg, 0);
671}
672UASM_EXPORT_SYMBOL(uasm_il_bgezl);
673
674void __uasminit
675uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
676{
677	uasm_r_mips_pc16(r, *p, lid);
678	uasm_i_bgez(p, reg, 0);
679}
680UASM_EXPORT_SYMBOL(uasm_il_bgez);
681
682void __uasminit
683uasm_il_bbit0(u32 **p, struct uasm_reloc **r, unsigned int reg,
684	      unsigned int bit, int lid)
685{
686	uasm_r_mips_pc16(r, *p, lid);
687	uasm_i_bbit0(p, reg, bit, 0);
688}
689UASM_EXPORT_SYMBOL(uasm_il_bbit0);
690
691void __uasminit
692uasm_il_bbit1(u32 **p, struct uasm_reloc **r, unsigned int reg,
693	      unsigned int bit, int lid)
694{
695	uasm_r_mips_pc16(r, *p, lid);
696	uasm_i_bbit1(p, reg, bit, 0);
697}
698UASM_EXPORT_SYMBOL(uasm_il_bbit1);
699