• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/ia64/kernel/
1/*
2 * File:	mca.c
3 * Purpose:	Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 *	David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 *	      added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 *	      errors, completed code for logging of corrected & uncorrected
33 *	      machine check errors, and updated for conformance with Nov. 2000
34 *	      revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 *	      set SAL default return values, changed error record structure to
39 *	      linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 *	      GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 *	      Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 *	      smp_call_function() must not be called from interrupt context
49 *	      (can deadlock on tasklist_lock).
50 *	      Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 *	      Avoid deadlock when using printk() for MCA and INIT records.
54 *	      Delete all record printing code, moved to salinfo_decode in user
55 *	      space.  Mark variables and functions static where possible.
56 *	      Delete dead variables and functions.  Reorder to remove the need
57 *	      for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 *	      state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 *	      Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 *	      Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 *	      Support multiple cpus going through OS_MCA in the same event.
71 */
72#include <linux/jiffies.h>
73#include <linux/types.h>
74#include <linux/init.h>
75#include <linux/sched.h>
76#include <linux/interrupt.h>
77#include <linux/irq.h>
78#include <linux/bootmem.h>
79#include <linux/acpi.h>
80#include <linux/timer.h>
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/smp.h>
84#include <linux/workqueue.h>
85#include <linux/cpumask.h>
86#include <linux/kdebug.h>
87#include <linux/cpu.h>
88#include <linux/gfp.h>
89
90#include <asm/delay.h>
91#include <asm/machvec.h>
92#include <asm/meminit.h>
93#include <asm/page.h>
94#include <asm/ptrace.h>
95#include <asm/system.h>
96#include <asm/sal.h>
97#include <asm/mca.h>
98#include <asm/kexec.h>
99
100#include <asm/irq.h>
101#include <asm/hw_irq.h>
102#include <asm/tlb.h>
103
104#include "mca_drv.h"
105#include "entry.h"
106
107#if defined(IA64_MCA_DEBUG_INFO)
108# define IA64_MCA_DEBUG(fmt...)	printk(fmt)
109#else
110# define IA64_MCA_DEBUG(fmt...)
111#endif
112
113#define NOTIFY_INIT(event, regs, arg, spin)				\
114do {									\
115	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
116			== NOTIFY_STOP) && ((spin) == 1))		\
117		ia64_mca_spin(__func__);				\
118} while (0)
119
120#define NOTIFY_MCA(event, regs, arg, spin)				\
121do {									\
122	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
123			== NOTIFY_STOP) && ((spin) == 1))		\
124		ia64_mca_spin(__func__);				\
125} while (0)
126
127/* Used by mca_asm.S */
128DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
129DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
130DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
131DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
132DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
133
134unsigned long __per_cpu_mca[NR_CPUS];
135
136/* In mca_asm.S */
137extern void			ia64_os_init_dispatch_monarch (void);
138extern void			ia64_os_init_dispatch_slave (void);
139
140static int monarch_cpu = -1;
141
142static ia64_mc_info_t		ia64_mc_info;
143
144#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
145#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
146#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
147#define CPE_HISTORY_LENGTH    5
148#define CMC_HISTORY_LENGTH    5
149
150#ifdef CONFIG_ACPI
151static struct timer_list cpe_poll_timer;
152#endif
153static struct timer_list cmc_poll_timer;
154/*
155 * This variable tells whether we are currently in polling mode.
156 * Start with this in the wrong state so we won't play w/ timers
157 * before the system is ready.
158 */
159static int cmc_polling_enabled = 1;
160
161/*
162 * Clearing this variable prevents CPE polling from getting activated
163 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
164 * but encounters problems retrieving CPE logs.  This should only be
165 * necessary for debugging.
166 */
167static int cpe_poll_enabled = 1;
168
169extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
170
171static int mca_init __initdata;
172
173/*
174 * limited & delayed printing support for MCA/INIT handler
175 */
176
177#define mprintk(fmt...) ia64_mca_printk(fmt)
178
179#define MLOGBUF_SIZE (512+256*NR_CPUS)
180#define MLOGBUF_MSGMAX 256
181static char mlogbuf[MLOGBUF_SIZE];
182static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
183static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
184static unsigned long mlogbuf_start;
185static unsigned long mlogbuf_end;
186static unsigned int mlogbuf_finished = 0;
187static unsigned long mlogbuf_timestamp = 0;
188
189static int loglevel_save = -1;
190#define BREAK_LOGLEVEL(__console_loglevel)		\
191	oops_in_progress = 1;				\
192	if (loglevel_save < 0)				\
193		loglevel_save = __console_loglevel;	\
194	__console_loglevel = 15;
195
196#define RESTORE_LOGLEVEL(__console_loglevel)		\
197	if (loglevel_save >= 0) {			\
198		__console_loglevel = loglevel_save;	\
199		loglevel_save = -1;			\
200	}						\
201	mlogbuf_finished = 0;				\
202	oops_in_progress = 0;
203
204/*
205 * Push messages into buffer, print them later if not urgent.
206 */
207void ia64_mca_printk(const char *fmt, ...)
208{
209	va_list args;
210	int printed_len;
211	char temp_buf[MLOGBUF_MSGMAX];
212	char *p;
213
214	va_start(args, fmt);
215	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
216	va_end(args);
217
218	/* Copy the output into mlogbuf */
219	if (oops_in_progress) {
220		/* mlogbuf was abandoned, use printk directly instead. */
221		printk(temp_buf);
222	} else {
223		spin_lock(&mlogbuf_wlock);
224		for (p = temp_buf; *p; p++) {
225			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
226			if (next != mlogbuf_start) {
227				mlogbuf[mlogbuf_end] = *p;
228				mlogbuf_end = next;
229			} else {
230				/* buffer full */
231				break;
232			}
233		}
234		mlogbuf[mlogbuf_end] = '\0';
235		spin_unlock(&mlogbuf_wlock);
236	}
237}
238EXPORT_SYMBOL(ia64_mca_printk);
239
240/*
241 * Print buffered messages.
242 *  NOTE: call this after returning normal context. (ex. from salinfod)
243 */
244void ia64_mlogbuf_dump(void)
245{
246	char temp_buf[MLOGBUF_MSGMAX];
247	char *p;
248	unsigned long index;
249	unsigned long flags;
250	unsigned int printed_len;
251
252	/* Get output from mlogbuf */
253	while (mlogbuf_start != mlogbuf_end) {
254		temp_buf[0] = '\0';
255		p = temp_buf;
256		printed_len = 0;
257
258		spin_lock_irqsave(&mlogbuf_rlock, flags);
259
260		index = mlogbuf_start;
261		while (index != mlogbuf_end) {
262			*p = mlogbuf[index];
263			index = (index + 1) % MLOGBUF_SIZE;
264			if (!*p)
265				break;
266			p++;
267			if (++printed_len >= MLOGBUF_MSGMAX - 1)
268				break;
269		}
270		*p = '\0';
271		if (temp_buf[0])
272			printk(temp_buf);
273		mlogbuf_start = index;
274
275		mlogbuf_timestamp = 0;
276		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
277	}
278}
279EXPORT_SYMBOL(ia64_mlogbuf_dump);
280
281/*
282 * Call this if system is going to down or if immediate flushing messages to
283 * console is required. (ex. recovery was failed, crash dump is going to be
284 * invoked, long-wait rendezvous etc.)
285 *  NOTE: this should be called from monarch.
286 */
287static void ia64_mlogbuf_finish(int wait)
288{
289	BREAK_LOGLEVEL(console_loglevel);
290
291	spin_lock_init(&mlogbuf_rlock);
292	ia64_mlogbuf_dump();
293	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
294		"MCA/INIT might be dodgy or fail.\n");
295
296	if (!wait)
297		return;
298
299	/* wait for console */
300	printk("Delaying for 5 seconds...\n");
301	udelay(5*1000000);
302
303	mlogbuf_finished = 1;
304}
305
306/*
307 * Print buffered messages from INIT context.
308 */
309static void ia64_mlogbuf_dump_from_init(void)
310{
311	if (mlogbuf_finished)
312		return;
313
314	if (mlogbuf_timestamp &&
315			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
316		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
317			" and the system seems to be messed up.\n");
318		ia64_mlogbuf_finish(0);
319		return;
320	}
321
322	if (!spin_trylock(&mlogbuf_rlock)) {
323		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
324			"Generated messages other than stack dump will be "
325			"buffered to mlogbuf and will be printed later.\n");
326		printk(KERN_ERR "INIT: If messages would not printed after "
327			"this INIT, wait 30sec and assert INIT again.\n");
328		if (!mlogbuf_timestamp)
329			mlogbuf_timestamp = jiffies;
330		return;
331	}
332	spin_unlock(&mlogbuf_rlock);
333	ia64_mlogbuf_dump();
334}
335
336static void inline
337ia64_mca_spin(const char *func)
338{
339	if (monarch_cpu == smp_processor_id())
340		ia64_mlogbuf_finish(0);
341	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
342	while (1)
343		cpu_relax();
344}
345/*
346 * IA64_MCA log support
347 */
348#define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
349#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
350
351typedef struct ia64_state_log_s
352{
353	spinlock_t	isl_lock;
354	int		isl_index;
355	unsigned long	isl_count;
356	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357} ia64_state_log_t;
358
359static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
360
361#define IA64_LOG_ALLOCATE(it, size) \
362	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
363		(ia64_err_rec_t *)alloc_bootmem(size); \
364	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
365		(ia64_err_rec_t *)alloc_bootmem(size);}
366#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
367#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
368#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
369#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
370#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
371#define IA64_LOG_INDEX_INC(it) \
372    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
373    ia64_state_log[it].isl_count++;}
374#define IA64_LOG_INDEX_DEC(it) \
375    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
376#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
377#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
378#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
379
380/*
381 * ia64_log_init
382 *	Reset the OS ia64 log buffer
383 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384 * Outputs	:	None
385 */
386static void __init
387ia64_log_init(int sal_info_type)
388{
389	u64	max_size = 0;
390
391	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
392	IA64_LOG_LOCK_INIT(sal_info_type);
393
394	// SAL will tell us the maximum size of any error record of this type
395	max_size = ia64_sal_get_state_info_size(sal_info_type);
396	if (!max_size)
397		/* alloc_bootmem() doesn't like zero-sized allocations! */
398		return;
399
400	// set up OS data structures to hold error info
401	IA64_LOG_ALLOCATE(sal_info_type, max_size);
402	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
403	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
404}
405
406/*
407 * ia64_log_get
408 *
409 *	Get the current MCA log from SAL and copy it into the OS log buffer.
410 *
411 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
412 *              irq_safe    whether you can use printk at this point
413 *  Outputs :   size        (total record length)
414 *              *buffer     (ptr to error record)
415 *
416 */
417static u64
418ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
419{
420	sal_log_record_header_t     *log_buffer;
421	u64                         total_len = 0;
422	unsigned long               s;
423
424	IA64_LOG_LOCK(sal_info_type);
425
426	/* Get the process state information */
427	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
428
429	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
430
431	if (total_len) {
432		IA64_LOG_INDEX_INC(sal_info_type);
433		IA64_LOG_UNLOCK(sal_info_type);
434		if (irq_safe) {
435			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
436				       __func__, sal_info_type, total_len);
437		}
438		*buffer = (u8 *) log_buffer;
439		return total_len;
440	} else {
441		IA64_LOG_UNLOCK(sal_info_type);
442		return 0;
443	}
444}
445
446static void
447ia64_mca_log_sal_error_record(int sal_info_type)
448{
449	u8 *buffer;
450	sal_log_record_header_t *rh;
451	u64 size;
452	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
453#ifdef IA64_MCA_DEBUG_INFO
454	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
455#endif
456
457	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
458	if (!size)
459		return;
460
461	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
462
463	if (irq_safe)
464		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
465			smp_processor_id(),
466			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
467
468	/* Clear logs from corrected errors in case there's no user-level logger */
469	rh = (sal_log_record_header_t *)buffer;
470	if (rh->severity == sal_log_severity_corrected)
471		ia64_sal_clear_state_info(sal_info_type);
472}
473
474/*
475 * search_mca_table
476 *  See if the MCA surfaced in an instruction range
477 *  that has been tagged as recoverable.
478 *
479 *  Inputs
480 *	first	First address range to check
481 *	last	Last address range to check
482 *	ip	Instruction pointer, address we are looking for
483 *
484 * Return value:
485 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
486 */
487int
488search_mca_table (const struct mca_table_entry *first,
489                const struct mca_table_entry *last,
490                unsigned long ip)
491{
492        const struct mca_table_entry *curr;
493        u64 curr_start, curr_end;
494
495        curr = first;
496        while (curr <= last) {
497                curr_start = (u64) &curr->start_addr + curr->start_addr;
498                curr_end = (u64) &curr->end_addr + curr->end_addr;
499
500                if ((ip >= curr_start) && (ip <= curr_end)) {
501                        return 1;
502                }
503                curr++;
504        }
505        return 0;
506}
507
508/* Given an address, look for it in the mca tables. */
509int mca_recover_range(unsigned long addr)
510{
511	extern struct mca_table_entry __start___mca_table[];
512	extern struct mca_table_entry __stop___mca_table[];
513
514	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
515}
516EXPORT_SYMBOL_GPL(mca_recover_range);
517
518#ifdef CONFIG_ACPI
519
520int cpe_vector = -1;
521int ia64_cpe_irq = -1;
522
523static irqreturn_t
524ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
525{
526	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
527	static int		index;
528	static DEFINE_SPINLOCK(cpe_history_lock);
529
530	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
531		       __func__, cpe_irq, smp_processor_id());
532
533	/* SAL spec states this should run w/ interrupts enabled */
534	local_irq_enable();
535
536	spin_lock(&cpe_history_lock);
537	if (!cpe_poll_enabled && cpe_vector >= 0) {
538
539		int i, count = 1; /* we know 1 happened now */
540		unsigned long now = jiffies;
541
542		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
543			if (now - cpe_history[i] <= HZ)
544				count++;
545		}
546
547		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
548		if (count >= CPE_HISTORY_LENGTH) {
549
550			cpe_poll_enabled = 1;
551			spin_unlock(&cpe_history_lock);
552			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
553
554			/*
555			 * Corrected errors will still be corrected, but
556			 * make sure there's a log somewhere that indicates
557			 * something is generating more than we can handle.
558			 */
559			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
560
561			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
562
563			/* lock already released, get out now */
564			goto out;
565		} else {
566			cpe_history[index++] = now;
567			if (index == CPE_HISTORY_LENGTH)
568				index = 0;
569		}
570	}
571	spin_unlock(&cpe_history_lock);
572out:
573	/* Get the CPE error record and log it */
574	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
575
576	return IRQ_HANDLED;
577}
578
579#endif /* CONFIG_ACPI */
580
581#ifdef CONFIG_ACPI
582/*
583 * ia64_mca_register_cpev
584 *
585 *  Register the corrected platform error vector with SAL.
586 *
587 *  Inputs
588 *      cpev        Corrected Platform Error Vector number
589 *
590 *  Outputs
591 *      None
592 */
593void
594ia64_mca_register_cpev (int cpev)
595{
596	/* Register the CPE interrupt vector with SAL */
597	struct ia64_sal_retval isrv;
598
599	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
600	if (isrv.status) {
601		printk(KERN_ERR "Failed to register Corrected Platform "
602		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
603		return;
604	}
605
606	IA64_MCA_DEBUG("%s: corrected platform error "
607		       "vector %#x registered\n", __func__, cpev);
608}
609#endif /* CONFIG_ACPI */
610
611/*
612 * ia64_mca_cmc_vector_setup
613 *
614 *  Setup the corrected machine check vector register in the processor.
615 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
616 *  This function is invoked on a per-processor basis.
617 *
618 * Inputs
619 *      None
620 *
621 * Outputs
622 *	None
623 */
624void __cpuinit
625ia64_mca_cmc_vector_setup (void)
626{
627	cmcv_reg_t	cmcv;
628
629	cmcv.cmcv_regval	= 0;
630	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
631	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
632	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
633
634	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
635		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
636
637	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
638		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
639}
640
641/*
642 * ia64_mca_cmc_vector_disable
643 *
644 *  Mask the corrected machine check vector register in the processor.
645 *  This function is invoked on a per-processor basis.
646 *
647 * Inputs
648 *      dummy(unused)
649 *
650 * Outputs
651 *	None
652 */
653static void
654ia64_mca_cmc_vector_disable (void *dummy)
655{
656	cmcv_reg_t	cmcv;
657
658	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
659
660	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
661	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
662
663	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
664		       __func__, smp_processor_id(), cmcv.cmcv_vector);
665}
666
667/*
668 * ia64_mca_cmc_vector_enable
669 *
670 *  Unmask the corrected machine check vector register in the processor.
671 *  This function is invoked on a per-processor basis.
672 *
673 * Inputs
674 *      dummy(unused)
675 *
676 * Outputs
677 *	None
678 */
679static void
680ia64_mca_cmc_vector_enable (void *dummy)
681{
682	cmcv_reg_t	cmcv;
683
684	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
685
686	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
687	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
688
689	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
690		       __func__, smp_processor_id(), cmcv.cmcv_vector);
691}
692
693/*
694 * ia64_mca_cmc_vector_disable_keventd
695 *
696 * Called via keventd (smp_call_function() is not safe in interrupt context) to
697 * disable the cmc interrupt vector.
698 */
699static void
700ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
701{
702	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
703}
704
705/*
706 * ia64_mca_cmc_vector_enable_keventd
707 *
708 * Called via keventd (smp_call_function() is not safe in interrupt context) to
709 * enable the cmc interrupt vector.
710 */
711static void
712ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
713{
714	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
715}
716
717/*
718 * ia64_mca_wakeup
719 *
720 *	Send an inter-cpu interrupt to wake-up a particular cpu.
721 *
722 *  Inputs  :   cpuid
723 *  Outputs :   None
724 */
725static void
726ia64_mca_wakeup(int cpu)
727{
728	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
729}
730
731/*
732 * ia64_mca_wakeup_all
733 *
734 *	Wakeup all the slave cpus which have rendez'ed previously.
735 *
736 *  Inputs  :   None
737 *  Outputs :   None
738 */
739static void
740ia64_mca_wakeup_all(void)
741{
742	int cpu;
743
744	/* Clear the Rendez checkin flag for all cpus */
745	for_each_online_cpu(cpu) {
746		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
747			ia64_mca_wakeup(cpu);
748	}
749
750}
751
752/*
753 * ia64_mca_rendez_interrupt_handler
754 *
755 *	This is handler used to put slave processors into spinloop
756 *	while the monarch processor does the mca handling and later
757 *	wake each slave up once the monarch is done.  The state
758 *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
759 *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
760 *	the cpu has come out of OS rendezvous.
761 *
762 *  Inputs  :   None
763 *  Outputs :   None
764 */
765static irqreturn_t
766ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
767{
768	unsigned long flags;
769	int cpu = smp_processor_id();
770	struct ia64_mca_notify_die nd =
771		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
772
773	/* Mask all interrupts */
774	local_irq_save(flags);
775
776	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
777
778	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
779	/* Register with the SAL monarch that the slave has
780	 * reached SAL
781	 */
782	ia64_sal_mc_rendez();
783
784	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
785
786	/* Wait for the monarch cpu to exit. */
787	while (monarch_cpu != -1)
788	       cpu_relax();	/* spin until monarch leaves */
789
790	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
791
792	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
793	/* Enable all interrupts */
794	local_irq_restore(flags);
795	return IRQ_HANDLED;
796}
797
798/*
799 * ia64_mca_wakeup_int_handler
800 *
801 *	The interrupt handler for processing the inter-cpu interrupt to the
802 *	slave cpu which was spinning in the rendez loop.
803 *	Since this spinning is done by turning off the interrupts and
804 *	polling on the wakeup-interrupt bit in the IRR, there is
805 *	nothing useful to be done in the handler.
806 *
807 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
808 *	arg		(Interrupt handler specific argument)
809 *  Outputs :   None
810 *
811 */
812static irqreturn_t
813ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
814{
815	return IRQ_HANDLED;
816}
817
818/* Function pointer for extra MCA recovery */
819int (*ia64_mca_ucmc_extension)
820	(void*,struct ia64_sal_os_state*)
821	= NULL;
822
823int
824ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
825{
826	if (ia64_mca_ucmc_extension)
827		return 1;
828
829	ia64_mca_ucmc_extension = fn;
830	return 0;
831}
832
833void
834ia64_unreg_MCA_extension(void)
835{
836	if (ia64_mca_ucmc_extension)
837		ia64_mca_ucmc_extension = NULL;
838}
839
840EXPORT_SYMBOL(ia64_reg_MCA_extension);
841EXPORT_SYMBOL(ia64_unreg_MCA_extension);
842
843
844static inline void
845copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
846{
847	u64 fslot, tslot, nat;
848	*tr = *fr;
849	fslot = ((unsigned long)fr >> 3) & 63;
850	tslot = ((unsigned long)tr >> 3) & 63;
851	*tnat &= ~(1UL << tslot);
852	nat = (fnat >> fslot) & 1;
853	*tnat |= (nat << tslot);
854}
855
856/* Change the comm field on the MCA/INT task to include the pid that
857 * was interrupted, it makes for easier debugging.  If that pid was 0
858 * (swapper or nested MCA/INIT) then use the start of the previous comm
859 * field suffixed with its cpu.
860 */
861
862static void
863ia64_mca_modify_comm(const struct task_struct *previous_current)
864{
865	char *p, comm[sizeof(current->comm)];
866	if (previous_current->pid)
867		snprintf(comm, sizeof(comm), "%s %d",
868			current->comm, previous_current->pid);
869	else {
870		int l;
871		if ((p = strchr(previous_current->comm, ' ')))
872			l = p - previous_current->comm;
873		else
874			l = strlen(previous_current->comm);
875		snprintf(comm, sizeof(comm), "%s %*s %d",
876			current->comm, l, previous_current->comm,
877			task_thread_info(previous_current)->cpu);
878	}
879	memcpy(current->comm, comm, sizeof(current->comm));
880}
881
882static void
883finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
884		unsigned long *nat)
885{
886	const pal_min_state_area_t *ms = sos->pal_min_state;
887	const u64 *bank;
888
889	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
890	 * pmsa_{xip,xpsr,xfs}
891	 */
892	if (ia64_psr(regs)->ic) {
893		regs->cr_iip = ms->pmsa_iip;
894		regs->cr_ipsr = ms->pmsa_ipsr;
895		regs->cr_ifs = ms->pmsa_ifs;
896	} else {
897		regs->cr_iip = ms->pmsa_xip;
898		regs->cr_ipsr = ms->pmsa_xpsr;
899		regs->cr_ifs = ms->pmsa_xfs;
900
901		sos->iip = ms->pmsa_iip;
902		sos->ipsr = ms->pmsa_ipsr;
903		sos->ifs = ms->pmsa_ifs;
904	}
905	regs->pr = ms->pmsa_pr;
906	regs->b0 = ms->pmsa_br0;
907	regs->ar_rsc = ms->pmsa_rsc;
908	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
909	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
910	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
911	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
912	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
913	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
914	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
915	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
916	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
917	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
918	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
919	if (ia64_psr(regs)->bn)
920		bank = ms->pmsa_bank1_gr;
921	else
922		bank = ms->pmsa_bank0_gr;
923	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
924	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
925	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
926	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
927	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
928	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
929	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
930	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
931	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
932	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
933	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
934	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
935	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
936	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
937	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
938	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
939}
940
941/* On entry to this routine, we are running on the per cpu stack, see
942 * mca_asm.h.  The original stack has not been touched by this event.  Some of
943 * the original stack's registers will be in the RBS on this stack.  This stack
944 * also contains a partial pt_regs and switch_stack, the rest of the data is in
945 * PAL minstate.
946 *
947 * The first thing to do is modify the original stack to look like a blocked
948 * task so we can run backtrace on the original task.  Also mark the per cpu
949 * stack as current to ensure that we use the correct task state, it also means
950 * that we can do backtrace on the MCA/INIT handler code itself.
951 */
952
953static struct task_struct *
954ia64_mca_modify_original_stack(struct pt_regs *regs,
955		const struct switch_stack *sw,
956		struct ia64_sal_os_state *sos,
957		const char *type)
958{
959	char *p;
960	ia64_va va;
961	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
962	const pal_min_state_area_t *ms = sos->pal_min_state;
963	struct task_struct *previous_current;
964	struct pt_regs *old_regs;
965	struct switch_stack *old_sw;
966	unsigned size = sizeof(struct pt_regs) +
967			sizeof(struct switch_stack) + 16;
968	unsigned long *old_bspstore, *old_bsp;
969	unsigned long *new_bspstore, *new_bsp;
970	unsigned long old_unat, old_rnat, new_rnat, nat;
971	u64 slots, loadrs = regs->loadrs;
972	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
973	u64 ar_bspstore = regs->ar_bspstore;
974	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
975	const char *msg;
976	int cpu = smp_processor_id();
977
978	previous_current = curr_task(cpu);
979	set_curr_task(cpu, current);
980	if ((p = strchr(current->comm, ' ')))
981		*p = '\0';
982
983	/* Best effort attempt to cope with MCA/INIT delivered while in
984	 * physical mode.
985	 */
986	regs->cr_ipsr = ms->pmsa_ipsr;
987	if (ia64_psr(regs)->dt == 0) {
988		va.l = r12;
989		if (va.f.reg == 0) {
990			va.f.reg = 7;
991			r12 = va.l;
992		}
993		va.l = r13;
994		if (va.f.reg == 0) {
995			va.f.reg = 7;
996			r13 = va.l;
997		}
998	}
999	if (ia64_psr(regs)->rt == 0) {
1000		va.l = ar_bspstore;
1001		if (va.f.reg == 0) {
1002			va.f.reg = 7;
1003			ar_bspstore = va.l;
1004		}
1005		va.l = ar_bsp;
1006		if (va.f.reg == 0) {
1007			va.f.reg = 7;
1008			ar_bsp = va.l;
1009		}
1010	}
1011
1012	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1013	 * have been copied to the old stack, the old stack may fail the
1014	 * validation tests below.  So ia64_old_stack() must restore the dirty
1015	 * registers from the new stack.  The old and new bspstore probably
1016	 * have different alignments, so loadrs calculated on the old bsp
1017	 * cannot be used to restore from the new bsp.  Calculate a suitable
1018	 * loadrs for the new stack and save it in the new pt_regs, where
1019	 * ia64_old_stack() can get it.
1020	 */
1021	old_bspstore = (unsigned long *)ar_bspstore;
1022	old_bsp = (unsigned long *)ar_bsp;
1023	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1024	new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1025	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1026	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1027
1028	/* Verify the previous stack state before we change it */
1029	if (user_mode(regs)) {
1030		msg = "occurred in user space";
1031		/* previous_current is guaranteed to be valid when the task was
1032		 * in user space, so ...
1033		 */
1034		ia64_mca_modify_comm(previous_current);
1035		goto no_mod;
1036	}
1037
1038	if (r13 != sos->prev_IA64_KR_CURRENT) {
1039		msg = "inconsistent previous current and r13";
1040		goto no_mod;
1041	}
1042
1043	if (!mca_recover_range(ms->pmsa_iip)) {
1044		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1045			msg = "inconsistent r12 and r13";
1046			goto no_mod;
1047		}
1048		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1049			msg = "inconsistent ar.bspstore and r13";
1050			goto no_mod;
1051		}
1052		va.p = old_bspstore;
1053		if (va.f.reg < 5) {
1054			msg = "old_bspstore is in the wrong region";
1055			goto no_mod;
1056		}
1057		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1058			msg = "inconsistent ar.bsp and r13";
1059			goto no_mod;
1060		}
1061		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1062		if (ar_bspstore + size > r12) {
1063			msg = "no room for blocked state";
1064			goto no_mod;
1065		}
1066	}
1067
1068	ia64_mca_modify_comm(previous_current);
1069
1070	/* Make the original task look blocked.  First stack a struct pt_regs,
1071	 * describing the state at the time of interrupt.  mca_asm.S built a
1072	 * partial pt_regs, copy it and fill in the blanks using minstate.
1073	 */
1074	p = (char *)r12 - sizeof(*regs);
1075	old_regs = (struct pt_regs *)p;
1076	memcpy(old_regs, regs, sizeof(*regs));
1077	old_regs->loadrs = loadrs;
1078	old_unat = old_regs->ar_unat;
1079	finish_pt_regs(old_regs, sos, &old_unat);
1080
1081	/* Next stack a struct switch_stack.  mca_asm.S built a partial
1082	 * switch_stack, copy it and fill in the blanks using pt_regs and
1083	 * minstate.
1084	 *
1085	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1086	 * ar.pfs is set to 0.
1087	 *
1088	 * unwind.c::unw_unwind() does special processing for interrupt frames.
1089	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1090	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1091	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1092	 * switch_stack on the original stack so it will unwind correctly when
1093	 * unwind.c reads pt_regs.
1094	 *
1095	 * thread.ksp is updated to point to the synthesized switch_stack.
1096	 */
1097	p -= sizeof(struct switch_stack);
1098	old_sw = (struct switch_stack *)p;
1099	memcpy(old_sw, sw, sizeof(*sw));
1100	old_sw->caller_unat = old_unat;
1101	old_sw->ar_fpsr = old_regs->ar_fpsr;
1102	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1103	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1104	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1105	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1106	old_sw->b0 = (u64)ia64_leave_kernel;
1107	old_sw->b1 = ms->pmsa_br1;
1108	old_sw->ar_pfs = 0;
1109	old_sw->ar_unat = old_unat;
1110	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1111	previous_current->thread.ksp = (u64)p - 16;
1112
1113	/* Finally copy the original stack's registers back to its RBS.
1114	 * Registers from ar.bspstore through ar.bsp at the time of the event
1115	 * are in the current RBS, copy them back to the original stack.  The
1116	 * copy must be done register by register because the original bspstore
1117	 * and the current one have different alignments, so the saved RNAT
1118	 * data occurs at different places.
1119	 *
1120	 * mca_asm does cover, so the old_bsp already includes all registers at
1121	 * the time of MCA/INIT.  It also does flushrs, so all registers before
1122	 * this function have been written to backing store on the MCA/INIT
1123	 * stack.
1124	 */
1125	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1126	old_rnat = regs->ar_rnat;
1127	while (slots--) {
1128		if (ia64_rse_is_rnat_slot(new_bspstore)) {
1129			new_rnat = ia64_get_rnat(new_bspstore++);
1130		}
1131		if (ia64_rse_is_rnat_slot(old_bspstore)) {
1132			*old_bspstore++ = old_rnat;
1133			old_rnat = 0;
1134		}
1135		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1136		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1137		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1138		*old_bspstore++ = *new_bspstore++;
1139	}
1140	old_sw->ar_bspstore = (unsigned long)old_bspstore;
1141	old_sw->ar_rnat = old_rnat;
1142
1143	sos->prev_task = previous_current;
1144	return previous_current;
1145
1146no_mod:
1147	mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1148			smp_processor_id(), type, msg);
1149	old_unat = regs->ar_unat;
1150	finish_pt_regs(regs, sos, &old_unat);
1151	return previous_current;
1152}
1153
1154/* The monarch/slave interaction is based on monarch_cpu and requires that all
1155 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1156 * not entered rendezvous yet then wait a bit.  The assumption is that any
1157 * slave that has not rendezvoused after a reasonable time is never going to do
1158 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1159 * interrupt, as well as cpus that receive the INIT slave event.
1160 */
1161
1162static void
1163ia64_wait_for_slaves(int monarch, const char *type)
1164{
1165	int c, i , wait;
1166
1167	/*
1168	 * wait 5 seconds total for slaves (arbitrary)
1169	 */
1170	for (i = 0; i < 5000; i++) {
1171		wait = 0;
1172		for_each_online_cpu(c) {
1173			if (c == monarch)
1174				continue;
1175			if (ia64_mc_info.imi_rendez_checkin[c]
1176					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1177				udelay(1000);		/* short wait */
1178				wait = 1;
1179				break;
1180			}
1181		}
1182		if (!wait)
1183			goto all_in;
1184	}
1185
1186	/*
1187	 * Maybe slave(s) dead. Print buffered messages immediately.
1188	 */
1189	ia64_mlogbuf_finish(0);
1190	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1191	for_each_online_cpu(c) {
1192		if (c == monarch)
1193			continue;
1194		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1195			mprintk(" %d", c);
1196	}
1197	mprintk("\n");
1198	return;
1199
1200all_in:
1201	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1202	return;
1203}
1204
1205/*  mca_insert_tr
1206 *
1207 *  Switch rid when TR reload and needed!
1208 *  iord: 1: itr, 2: itr;
1209 *
1210*/
1211static void mca_insert_tr(u64 iord)
1212{
1213
1214	int i;
1215	u64 old_rr;
1216	struct ia64_tr_entry *p;
1217	unsigned long psr;
1218	int cpu = smp_processor_id();
1219
1220	if (!ia64_idtrs[cpu])
1221		return;
1222
1223	psr = ia64_clear_ic();
1224	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1225		p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1226		if (p->pte & 0x1) {
1227			old_rr = ia64_get_rr(p->ifa);
1228			if (old_rr != p->rr) {
1229				ia64_set_rr(p->ifa, p->rr);
1230				ia64_srlz_d();
1231			}
1232			ia64_ptr(iord, p->ifa, p->itir >> 2);
1233			ia64_srlz_i();
1234			if (iord & 0x1) {
1235				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1236				ia64_srlz_i();
1237			}
1238			if (iord & 0x2) {
1239				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1240				ia64_srlz_i();
1241			}
1242			if (old_rr != p->rr) {
1243				ia64_set_rr(p->ifa, old_rr);
1244				ia64_srlz_d();
1245			}
1246		}
1247	}
1248	ia64_set_psr(psr);
1249}
1250
1251/*
1252 * ia64_mca_handler
1253 *
1254 *	This is uncorrectable machine check handler called from OS_MCA
1255 *	dispatch code which is in turn called from SAL_CHECK().
1256 *	This is the place where the core of OS MCA handling is done.
1257 *	Right now the logs are extracted and displayed in a well-defined
1258 *	format. This handler code is supposed to be run only on the
1259 *	monarch processor. Once the monarch is done with MCA handling
1260 *	further MCA logging is enabled by clearing logs.
1261 *	Monarch also has the duty of sending wakeup-IPIs to pull the
1262 *	slave processors out of rendezvous spinloop.
1263 *
1264 *	If multiple processors call into OS_MCA, the first will become
1265 *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
1266 *	bitmask.  After the first monarch has processed its MCA, it
1267 *	will wake up the next cpu in the mca_cpu bitmask and then go
1268 *	into the rendezvous loop.  When all processors have serviced
1269 *	their MCA, the last monarch frees up the rest of the processors.
1270 */
1271void
1272ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1273		 struct ia64_sal_os_state *sos)
1274{
1275	int recover, cpu = smp_processor_id();
1276	struct task_struct *previous_current;
1277	struct ia64_mca_notify_die nd =
1278		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1279	static atomic_t mca_count;
1280	static cpumask_t mca_cpu;
1281
1282	if (atomic_add_return(1, &mca_count) == 1) {
1283		monarch_cpu = cpu;
1284		sos->monarch = 1;
1285	} else {
1286		cpu_set(cpu, mca_cpu);
1287		sos->monarch = 0;
1288	}
1289	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1290		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1291
1292	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1293
1294	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1295
1296	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1297	if (sos->monarch) {
1298		ia64_wait_for_slaves(cpu, "MCA");
1299
1300		/* Wakeup all the processors which are spinning in the
1301		 * rendezvous loop.  They will leave SAL, then spin in the OS
1302		 * with interrupts disabled until this monarch cpu leaves the
1303		 * MCA handler.  That gets control back to the OS so we can
1304		 * backtrace the other cpus, backtrace when spinning in SAL
1305		 * does not work.
1306		 */
1307		ia64_mca_wakeup_all();
1308	} else {
1309		while (cpu_isset(cpu, mca_cpu))
1310			cpu_relax();	/* spin until monarch wakes us */
1311	}
1312
1313	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1314
1315	/* Get the MCA error record and log it */
1316	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1317
1318	/* MCA error recovery */
1319	recover = (ia64_mca_ucmc_extension
1320		&& ia64_mca_ucmc_extension(
1321			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1322			sos));
1323
1324	if (recover) {
1325		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1326		rh->severity = sal_log_severity_corrected;
1327		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1328		sos->os_status = IA64_MCA_CORRECTED;
1329	} else {
1330		/* Dump buffered message to console */
1331		ia64_mlogbuf_finish(1);
1332	}
1333
1334	if (__get_cpu_var(ia64_mca_tr_reload)) {
1335		mca_insert_tr(0x1); /*Reload dynamic itrs*/
1336		mca_insert_tr(0x2); /*Reload dynamic itrs*/
1337	}
1338
1339	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1340
1341	if (atomic_dec_return(&mca_count) > 0) {
1342		int i;
1343
1344		/* wake up the next monarch cpu,
1345		 * and put this cpu in the rendez loop.
1346		 */
1347		for_each_online_cpu(i) {
1348			if (cpu_isset(i, mca_cpu)) {
1349				monarch_cpu = i;
1350				cpu_clear(i, mca_cpu);	/* wake next cpu */
1351				while (monarch_cpu != -1)
1352					cpu_relax();	/* spin until last cpu leaves */
1353				set_curr_task(cpu, previous_current);
1354				ia64_mc_info.imi_rendez_checkin[cpu]
1355						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1356				return;
1357			}
1358		}
1359	}
1360	set_curr_task(cpu, previous_current);
1361	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1362	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
1363}
1364
1365static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1366static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1367
1368/*
1369 * ia64_mca_cmc_int_handler
1370 *
1371 *  This is corrected machine check interrupt handler.
1372 *	Right now the logs are extracted and displayed in a well-defined
1373 *	format.
1374 *
1375 * Inputs
1376 *      interrupt number
1377 *      client data arg ptr
1378 *
1379 * Outputs
1380 *	None
1381 */
1382static irqreturn_t
1383ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1384{
1385	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1386	static int		index;
1387	static DEFINE_SPINLOCK(cmc_history_lock);
1388
1389	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1390		       __func__, cmc_irq, smp_processor_id());
1391
1392	/* SAL spec states this should run w/ interrupts enabled */
1393	local_irq_enable();
1394
1395	spin_lock(&cmc_history_lock);
1396	if (!cmc_polling_enabled) {
1397		int i, count = 1; /* we know 1 happened now */
1398		unsigned long now = jiffies;
1399
1400		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1401			if (now - cmc_history[i] <= HZ)
1402				count++;
1403		}
1404
1405		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1406		if (count >= CMC_HISTORY_LENGTH) {
1407
1408			cmc_polling_enabled = 1;
1409			spin_unlock(&cmc_history_lock);
1410			/* If we're being hit with CMC interrupts, we won't
1411			 * ever execute the schedule_work() below.  Need to
1412			 * disable CMC interrupts on this processor now.
1413			 */
1414			ia64_mca_cmc_vector_disable(NULL);
1415			schedule_work(&cmc_disable_work);
1416
1417			/*
1418			 * Corrected errors will still be corrected, but
1419			 * make sure there's a log somewhere that indicates
1420			 * something is generating more than we can handle.
1421			 */
1422			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1423
1424			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1425
1426			/* lock already released, get out now */
1427			goto out;
1428		} else {
1429			cmc_history[index++] = now;
1430			if (index == CMC_HISTORY_LENGTH)
1431				index = 0;
1432		}
1433	}
1434	spin_unlock(&cmc_history_lock);
1435out:
1436	/* Get the CMC error record and log it */
1437	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1438
1439	return IRQ_HANDLED;
1440}
1441
1442/*
1443 *  ia64_mca_cmc_int_caller
1444 *
1445 * 	Triggered by sw interrupt from CMC polling routine.  Calls
1446 * 	real interrupt handler and either triggers a sw interrupt
1447 * 	on the next cpu or does cleanup at the end.
1448 *
1449 * Inputs
1450 *	interrupt number
1451 *	client data arg ptr
1452 * Outputs
1453 * 	handled
1454 */
1455static irqreturn_t
1456ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1457{
1458	static int start_count = -1;
1459	unsigned int cpuid;
1460
1461	cpuid = smp_processor_id();
1462
1463	/* If first cpu, update count */
1464	if (start_count == -1)
1465		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1466
1467	ia64_mca_cmc_int_handler(cmc_irq, arg);
1468
1469	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1470
1471	if (cpuid < nr_cpu_ids) {
1472		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1473	} else {
1474		/* If no log record, switch out of polling mode */
1475		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1476
1477			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1478			schedule_work(&cmc_enable_work);
1479			cmc_polling_enabled = 0;
1480
1481		} else {
1482
1483			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1484		}
1485
1486		start_count = -1;
1487	}
1488
1489	return IRQ_HANDLED;
1490}
1491
1492/*
1493 *  ia64_mca_cmc_poll
1494 *
1495 *	Poll for Corrected Machine Checks (CMCs)
1496 *
1497 * Inputs   :   dummy(unused)
1498 * Outputs  :   None
1499 *
1500 */
1501static void
1502ia64_mca_cmc_poll (unsigned long dummy)
1503{
1504	/* Trigger a CMC interrupt cascade  */
1505	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1506}
1507
1508/*
1509 *  ia64_mca_cpe_int_caller
1510 *
1511 * 	Triggered by sw interrupt from CPE polling routine.  Calls
1512 * 	real interrupt handler and either triggers a sw interrupt
1513 * 	on the next cpu or does cleanup at the end.
1514 *
1515 * Inputs
1516 *	interrupt number
1517 *	client data arg ptr
1518 * Outputs
1519 * 	handled
1520 */
1521#ifdef CONFIG_ACPI
1522
1523static irqreturn_t
1524ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1525{
1526	static int start_count = -1;
1527	static int poll_time = MIN_CPE_POLL_INTERVAL;
1528	unsigned int cpuid;
1529
1530	cpuid = smp_processor_id();
1531
1532	/* If first cpu, update count */
1533	if (start_count == -1)
1534		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1535
1536	ia64_mca_cpe_int_handler(cpe_irq, arg);
1537
1538	cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1539
1540	if (cpuid < NR_CPUS) {
1541		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1542	} else {
1543		/*
1544		 * If a log was recorded, increase our polling frequency,
1545		 * otherwise, backoff or return to interrupt mode.
1546		 */
1547		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1548			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1549		} else if (cpe_vector < 0) {
1550			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1551		} else {
1552			poll_time = MIN_CPE_POLL_INTERVAL;
1553
1554			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1555			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1556			cpe_poll_enabled = 0;
1557		}
1558
1559		if (cpe_poll_enabled)
1560			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1561		start_count = -1;
1562	}
1563
1564	return IRQ_HANDLED;
1565}
1566
1567/*
1568 *  ia64_mca_cpe_poll
1569 *
1570 *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1571 *	on first cpu, from there it will trickle through all the cpus.
1572 *
1573 * Inputs   :   dummy(unused)
1574 * Outputs  :   None
1575 *
1576 */
1577static void
1578ia64_mca_cpe_poll (unsigned long dummy)
1579{
1580	/* Trigger a CPE interrupt cascade  */
1581	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1582}
1583
1584#endif /* CONFIG_ACPI */
1585
1586static int
1587default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1588{
1589	int c;
1590	struct task_struct *g, *t;
1591	if (val != DIE_INIT_MONARCH_PROCESS)
1592		return NOTIFY_DONE;
1593#ifdef CONFIG_KEXEC
1594	if (atomic_read(&kdump_in_progress))
1595		return NOTIFY_DONE;
1596#endif
1597
1598	BREAK_LOGLEVEL(console_loglevel);
1599	ia64_mlogbuf_dump_from_init();
1600
1601	printk(KERN_ERR "Processes interrupted by INIT -");
1602	for_each_online_cpu(c) {
1603		struct ia64_sal_os_state *s;
1604		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1605		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1606		g = s->prev_task;
1607		if (g) {
1608			if (g->pid)
1609				printk(" %d", g->pid);
1610			else
1611				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1612		}
1613	}
1614	printk("\n\n");
1615	if (read_trylock(&tasklist_lock)) {
1616		do_each_thread (g, t) {
1617			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1618			show_stack(t, NULL);
1619		} while_each_thread (g, t);
1620		read_unlock(&tasklist_lock);
1621	}
1622	RESTORE_LOGLEVEL(console_loglevel);
1623	return NOTIFY_DONE;
1624}
1625
1626/*
1627 * C portion of the OS INIT handler
1628 *
1629 * Called from ia64_os_init_dispatch
1630 *
1631 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1632 * this event.  This code is used for both monarch and slave INIT events, see
1633 * sos->monarch.
1634 *
1635 * All INIT events switch to the INIT stack and change the previous process to
1636 * blocked status.  If one of the INIT events is the monarch then we are
1637 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1638 * the processes.  The slave INIT events all spin until the monarch cpu
1639 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1640 * process is the monarch.
1641 */
1642
1643void
1644ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1645		  struct ia64_sal_os_state *sos)
1646{
1647	static atomic_t slaves;
1648	static atomic_t monarchs;
1649	struct task_struct *previous_current;
1650	int cpu = smp_processor_id();
1651	struct ia64_mca_notify_die nd =
1652		{ .sos = sos, .monarch_cpu = &monarch_cpu };
1653
1654	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1655
1656	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1657		sos->proc_state_param, cpu, sos->monarch);
1658	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1659
1660	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1661	sos->os_status = IA64_INIT_RESUME;
1662
1663	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1664		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1665		        __func__, cpu);
1666		atomic_dec(&slaves);
1667		sos->monarch = 1;
1668	}
1669
1670	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1671		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1672			       __func__, cpu);
1673		atomic_dec(&monarchs);
1674		sos->monarch = 0;
1675	}
1676
1677	if (!sos->monarch) {
1678		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1679
1680#ifdef CONFIG_KEXEC
1681		while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1682			udelay(1000);
1683#else
1684		while (monarch_cpu == -1)
1685			cpu_relax();	/* spin until monarch enters */
1686#endif
1687
1688		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1689		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1690
1691#ifdef CONFIG_KEXEC
1692		while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1693			udelay(1000);
1694#else
1695		while (monarch_cpu != -1)
1696			cpu_relax();	/* spin until monarch leaves */
1697#endif
1698
1699		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1700
1701		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1702		set_curr_task(cpu, previous_current);
1703		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1704		atomic_dec(&slaves);
1705		return;
1706	}
1707
1708	monarch_cpu = cpu;
1709	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1710
1711	/*
1712	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1713	 * generated via the BMC's command-line interface, but since the console is on the
1714	 * same serial line, the user will need some time to switch out of the BMC before
1715	 * the dump begins.
1716	 */
1717	mprintk("Delaying for 5 seconds...\n");
1718	udelay(5*1000000);
1719	ia64_wait_for_slaves(cpu, "INIT");
1720	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1721	 * to default_monarch_init_process() above and just print all the
1722	 * tasks.
1723	 */
1724	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1725	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1726
1727	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1728	atomic_dec(&monarchs);
1729	set_curr_task(cpu, previous_current);
1730	monarch_cpu = -1;
1731	return;
1732}
1733
1734static int __init
1735ia64_mca_disable_cpe_polling(char *str)
1736{
1737	cpe_poll_enabled = 0;
1738	return 1;
1739}
1740
1741__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1742
1743static struct irqaction cmci_irqaction = {
1744	.handler =	ia64_mca_cmc_int_handler,
1745	.flags =	IRQF_DISABLED,
1746	.name =		"cmc_hndlr"
1747};
1748
1749static struct irqaction cmcp_irqaction = {
1750	.handler =	ia64_mca_cmc_int_caller,
1751	.flags =	IRQF_DISABLED,
1752	.name =		"cmc_poll"
1753};
1754
1755static struct irqaction mca_rdzv_irqaction = {
1756	.handler =	ia64_mca_rendez_int_handler,
1757	.flags =	IRQF_DISABLED,
1758	.name =		"mca_rdzv"
1759};
1760
1761static struct irqaction mca_wkup_irqaction = {
1762	.handler =	ia64_mca_wakeup_int_handler,
1763	.flags =	IRQF_DISABLED,
1764	.name =		"mca_wkup"
1765};
1766
1767#ifdef CONFIG_ACPI
1768static struct irqaction mca_cpe_irqaction = {
1769	.handler =	ia64_mca_cpe_int_handler,
1770	.flags =	IRQF_DISABLED,
1771	.name =		"cpe_hndlr"
1772};
1773
1774static struct irqaction mca_cpep_irqaction = {
1775	.handler =	ia64_mca_cpe_int_caller,
1776	.flags =	IRQF_DISABLED,
1777	.name =		"cpe_poll"
1778};
1779#endif /* CONFIG_ACPI */
1780
1781/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1782 * these stacks can never sleep, they cannot return from the kernel to user
1783 * space, they do not appear in a normal ps listing.  So there is no need to
1784 * format most of the fields.
1785 */
1786
1787static void __cpuinit
1788format_mca_init_stack(void *mca_data, unsigned long offset,
1789		const char *type, int cpu)
1790{
1791	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1792	struct thread_info *ti;
1793	memset(p, 0, KERNEL_STACK_SIZE);
1794	ti = task_thread_info(p);
1795	ti->flags = _TIF_MCA_INIT;
1796	ti->preempt_count = 1;
1797	ti->task = p;
1798	ti->cpu = cpu;
1799	p->stack = ti;
1800	p->state = TASK_UNINTERRUPTIBLE;
1801	cpu_set(cpu, p->cpus_allowed);
1802	INIT_LIST_HEAD(&p->tasks);
1803	p->parent = p->real_parent = p->group_leader = p;
1804	INIT_LIST_HEAD(&p->children);
1805	INIT_LIST_HEAD(&p->sibling);
1806	strncpy(p->comm, type, sizeof(p->comm)-1);
1807}
1808
1809/* Caller prevents this from being called after init */
1810static void * __init_refok mca_bootmem(void)
1811{
1812	return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1813	                    KERNEL_STACK_SIZE, 0);
1814}
1815
1816/* Do per-CPU MCA-related initialization.  */
1817void __cpuinit
1818ia64_mca_cpu_init(void *cpu_data)
1819{
1820	void *pal_vaddr;
1821	void *data;
1822	long sz = sizeof(struct ia64_mca_cpu);
1823	int cpu = smp_processor_id();
1824	static int first_time = 1;
1825
1826	/*
1827	 * Structure will already be allocated if cpu has been online,
1828	 * then offlined.
1829	 */
1830	if (__per_cpu_mca[cpu]) {
1831		data = __va(__per_cpu_mca[cpu]);
1832	} else {
1833		if (first_time) {
1834			data = mca_bootmem();
1835			first_time = 0;
1836		} else
1837			data = __get_free_pages(GFP_KERNEL, get_order(sz));
1838		if (!data)
1839			panic("Could not allocate MCA memory for cpu %d\n",
1840					cpu);
1841	}
1842	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1843		"MCA", cpu);
1844	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1845		"INIT", cpu);
1846	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1847
1848	/*
1849	 * Stash away a copy of the PTE needed to map the per-CPU page.
1850	 * We may need it during MCA recovery.
1851	 */
1852	__get_cpu_var(ia64_mca_per_cpu_pte) =
1853		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1854
1855	/*
1856	 * Also, stash away a copy of the PAL address and the PTE
1857	 * needed to map it.
1858	 */
1859	pal_vaddr = efi_get_pal_addr();
1860	if (!pal_vaddr)
1861		return;
1862	__get_cpu_var(ia64_mca_pal_base) =
1863		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1864	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1865							      PAGE_KERNEL));
1866}
1867
1868static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1869{
1870	unsigned long flags;
1871
1872	local_irq_save(flags);
1873	if (!cmc_polling_enabled)
1874		ia64_mca_cmc_vector_enable(NULL);
1875	local_irq_restore(flags);
1876}
1877
1878static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1879				      unsigned long action,
1880				      void *hcpu)
1881{
1882	int hotcpu = (unsigned long) hcpu;
1883
1884	switch (action) {
1885	case CPU_ONLINE:
1886	case CPU_ONLINE_FROZEN:
1887		smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1888					 NULL, 0);
1889		break;
1890	}
1891	return NOTIFY_OK;
1892}
1893
1894static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1895	.notifier_call = mca_cpu_callback
1896};
1897
1898/*
1899 * ia64_mca_init
1900 *
1901 *  Do all the system level mca specific initialization.
1902 *
1903 *	1. Register spinloop and wakeup request interrupt vectors
1904 *
1905 *	2. Register OS_MCA handler entry point
1906 *
1907 *	3. Register OS_INIT handler entry point
1908 *
1909 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1910 *
1911 *  Note that this initialization is done very early before some kernel
1912 *  services are available.
1913 *
1914 *  Inputs  :   None
1915 *
1916 *  Outputs :   None
1917 */
1918void __init
1919ia64_mca_init(void)
1920{
1921	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1922	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1923	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1924	int i;
1925	long rc;
1926	struct ia64_sal_retval isrv;
1927	unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1928	static struct notifier_block default_init_monarch_nb = {
1929		.notifier_call = default_monarch_init_process,
1930		.priority = 0/* we need to notified last */
1931	};
1932
1933	IA64_MCA_DEBUG("%s: begin\n", __func__);
1934
1935	/* Clear the Rendez checkin flag for all cpus */
1936	for(i = 0 ; i < NR_CPUS; i++)
1937		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1938
1939	/*
1940	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1941	 */
1942
1943	/* Register the rendezvous interrupt vector with SAL */
1944	while (1) {
1945		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1946					      SAL_MC_PARAM_MECHANISM_INT,
1947					      IA64_MCA_RENDEZ_VECTOR,
1948					      timeout,
1949					      SAL_MC_PARAM_RZ_ALWAYS);
1950		rc = isrv.status;
1951		if (rc == 0)
1952			break;
1953		if (rc == -2) {
1954			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1955				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1956			timeout = isrv.v0;
1957			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1958			continue;
1959		}
1960		printk(KERN_ERR "Failed to register rendezvous interrupt "
1961		       "with SAL (status %ld)\n", rc);
1962		return;
1963	}
1964
1965	/* Register the wakeup interrupt vector with SAL */
1966	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1967				      SAL_MC_PARAM_MECHANISM_INT,
1968				      IA64_MCA_WAKEUP_VECTOR,
1969				      0, 0);
1970	rc = isrv.status;
1971	if (rc) {
1972		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1973		       "(status %ld)\n", rc);
1974		return;
1975	}
1976
1977	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1978
1979	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1980	ia64_mc_info.imi_mca_handler_size	= 0;
1981
1982	/* Register the os mca handler with SAL */
1983	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1984				       ia64_mc_info.imi_mca_handler,
1985				       ia64_tpa(mca_hldlr_ptr->gp),
1986				       ia64_mc_info.imi_mca_handler_size,
1987				       0, 0, 0)))
1988	{
1989		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1990		       "(status %ld)\n", rc);
1991		return;
1992	}
1993
1994	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1995		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1996
1997	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
1998	ia64_mc_info.imi_monarch_init_handler_size	= 0;
1999	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
2000	ia64_mc_info.imi_slave_init_handler_size	= 0;
2001
2002	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2003		       ia64_mc_info.imi_monarch_init_handler);
2004
2005	/* Register the os init handler with SAL */
2006	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2007				       ia64_mc_info.imi_monarch_init_handler,
2008				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2009				       ia64_mc_info.imi_monarch_init_handler_size,
2010				       ia64_mc_info.imi_slave_init_handler,
2011				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2012				       ia64_mc_info.imi_slave_init_handler_size)))
2013	{
2014		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2015		       "(status %ld)\n", rc);
2016		return;
2017	}
2018	if (register_die_notifier(&default_init_monarch_nb)) {
2019		printk(KERN_ERR "Failed to register default monarch INIT process\n");
2020		return;
2021	}
2022
2023	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2024
2025	/*
2026	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2027	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2028	 */
2029	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2030	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2031	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2032
2033	/* Setup the MCA rendezvous interrupt vector */
2034	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2035
2036	/* Setup the MCA wakeup interrupt vector */
2037	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2038
2039#ifdef CONFIG_ACPI
2040	/* Setup the CPEI/P handler */
2041	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2042#endif
2043
2044	/* Initialize the areas set aside by the OS to buffer the
2045	 * platform/processor error states for MCA/INIT/CMC
2046	 * handling.
2047	 */
2048	ia64_log_init(SAL_INFO_TYPE_MCA);
2049	ia64_log_init(SAL_INFO_TYPE_INIT);
2050	ia64_log_init(SAL_INFO_TYPE_CMC);
2051	ia64_log_init(SAL_INFO_TYPE_CPE);
2052
2053	mca_init = 1;
2054	printk(KERN_INFO "MCA related initialization done\n");
2055}
2056
2057/*
2058 * ia64_mca_late_init
2059 *
2060 *	Opportunity to setup things that require initialization later
2061 *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
2062 *	platform doesn't support an interrupt driven mechanism.
2063 *
2064 *  Inputs  :   None
2065 *  Outputs :   Status
2066 */
2067static int __init
2068ia64_mca_late_init(void)
2069{
2070	if (!mca_init)
2071		return 0;
2072
2073	register_hotcpu_notifier(&mca_cpu_notifier);
2074
2075	/* Setup the CMCI/P vector and handler */
2076	init_timer(&cmc_poll_timer);
2077	cmc_poll_timer.function = ia64_mca_cmc_poll;
2078
2079	/* Unmask/enable the vector */
2080	cmc_polling_enabled = 0;
2081	schedule_work(&cmc_enable_work);
2082
2083	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2084
2085#ifdef CONFIG_ACPI
2086	/* Setup the CPEI/P vector and handler */
2087	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2088	init_timer(&cpe_poll_timer);
2089	cpe_poll_timer.function = ia64_mca_cpe_poll;
2090
2091	{
2092		struct irq_desc *desc;
2093		unsigned int irq;
2094
2095		if (cpe_vector >= 0) {
2096			/* If platform supports CPEI, enable the irq. */
2097			irq = local_vector_to_irq(cpe_vector);
2098			if (irq > 0) {
2099				cpe_poll_enabled = 0;
2100				desc = irq_desc + irq;
2101				desc->status |= IRQ_PER_CPU;
2102				setup_irq(irq, &mca_cpe_irqaction);
2103				ia64_cpe_irq = irq;
2104				ia64_mca_register_cpev(cpe_vector);
2105				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2106					__func__);
2107				return 0;
2108			}
2109			printk(KERN_ERR "%s: Failed to find irq for CPE "
2110					"interrupt handler, vector %d\n",
2111					__func__, cpe_vector);
2112		}
2113		/* If platform doesn't support CPEI, get the timer going. */
2114		if (cpe_poll_enabled) {
2115			ia64_mca_cpe_poll(0UL);
2116			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2117		}
2118	}
2119#endif
2120
2121	return 0;
2122}
2123
2124device_initcall(ia64_mca_late_init);
2125