• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6/arch/cris/arch-v32/kernel/
1/*
2 *  linux/arch/cris/arch-v32/kernel/time.c
3 *
4 *  Copyright (C) 2003-2010 Axis Communications AB
5 *
6 */
7
8#include <linux/timex.h>
9#include <linux/time.h>
10#include <linux/clocksource.h>
11#include <linux/interrupt.h>
12#include <linux/swap.h>
13#include <linux/sched.h>
14#include <linux/init.h>
15#include <linux/threads.h>
16#include <linux/cpufreq.h>
17#include <asm/types.h>
18#include <asm/signal.h>
19#include <asm/io.h>
20#include <asm/delay.h>
21#include <asm/rtc.h>
22#include <asm/irq.h>
23#include <asm/irq_regs.h>
24
25#include <hwregs/reg_map.h>
26#include <hwregs/reg_rdwr.h>
27#include <hwregs/timer_defs.h>
28#include <hwregs/intr_vect_defs.h>
29#ifdef CONFIG_CRIS_MACH_ARTPEC3
30#include <hwregs/clkgen_defs.h>
31#endif
32
33/* Watchdog defines */
34#define ETRAX_WD_KEY_MASK	0x7F /* key is 7 bit */
35#define ETRAX_WD_HZ		763 /* watchdog counts at 763 Hz */
36/* Number of 763 counts before watchdog bites */
37#define ETRAX_WD_CNT		((2*ETRAX_WD_HZ)/HZ + 1)
38
39/* Register the continuos readonly timer available in FS and ARTPEC-3.  */
40static cycle_t read_cont_rotime(struct clocksource *cs)
41{
42	return (u32)REG_RD(timer, regi_timer0, r_time);
43}
44
45static struct clocksource cont_rotime = {
46	.name   = "crisv32_rotime",
47	.rating = 300,
48	.read   = read_cont_rotime,
49	.mask   = CLOCKSOURCE_MASK(32),
50	.shift  = 10,
51	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
52};
53
54static int __init etrax_init_cont_rotime(void)
55{
56	cont_rotime.mult = clocksource_khz2mult(100000, cont_rotime.shift);
57	clocksource_register(&cont_rotime);
58	return 0;
59}
60arch_initcall(etrax_init_cont_rotime);
61
62
63unsigned long timer_regs[NR_CPUS] =
64{
65	regi_timer0,
66#ifdef CONFIG_SMP
67	regi_timer2
68#endif
69};
70
71extern int set_rtc_mmss(unsigned long nowtime);
72extern int have_rtc;
73
74#ifdef CONFIG_CPU_FREQ
75static int
76cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
77			void *data);
78
79static struct notifier_block cris_time_freq_notifier_block = {
80	.notifier_call = cris_time_freq_notifier,
81};
82#endif
83
84unsigned long get_ns_in_jiffie(void)
85{
86	reg_timer_r_tmr0_data data;
87	unsigned long ns;
88
89	data = REG_RD(timer, regi_timer0, r_tmr0_data);
90	ns = (TIMER0_DIV - data) * 10;
91	return ns;
92}
93
94
95/* From timer MDS describing the hardware watchdog:
96 * 4.3.1 Watchdog Operation
97 * The watchdog timer is an 8-bit timer with a configurable start value.
98 * Once started the watchdog counts downwards with a frequency of 763 Hz
99 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
100 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
101 * chip.
102 */
103/* This gives us 1.3 ms to do something useful when the NMI comes */
104
105/* Right now, starting the watchdog is the same as resetting it */
106#define start_watchdog reset_watchdog
107
108#if defined(CONFIG_ETRAX_WATCHDOG)
109static short int watchdog_key = 42;  /* arbitrary 7 bit number */
110#endif
111
112/* Number of pages to consider "out of memory". It is normal that the memory
113 * is used though, so set this really low. */
114#define WATCHDOG_MIN_FREE_PAGES 8
115
116void reset_watchdog(void)
117{
118#if defined(CONFIG_ETRAX_WATCHDOG)
119	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
120
121	/* Only keep watchdog happy as long as we have memory left! */
122	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
123		/* Reset the watchdog with the inverse of the old key */
124		/* Invert key, which is 7 bits */
125		watchdog_key ^= ETRAX_WD_KEY_MASK;
126		wd_ctrl.cnt = ETRAX_WD_CNT;
127		wd_ctrl.cmd = regk_timer_start;
128		wd_ctrl.key = watchdog_key;
129		REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
130	}
131#endif
132}
133
134/* stop the watchdog - we still need the correct key */
135
136void stop_watchdog(void)
137{
138#if defined(CONFIG_ETRAX_WATCHDOG)
139	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
140	watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
141	wd_ctrl.cnt = ETRAX_WD_CNT;
142	wd_ctrl.cmd = regk_timer_stop;
143	wd_ctrl.key = watchdog_key;
144	REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
145#endif
146}
147
148extern void show_registers(struct pt_regs *regs);
149
150void handle_watchdog_bite(struct pt_regs *regs)
151{
152#if defined(CONFIG_ETRAX_WATCHDOG)
153	extern int cause_of_death;
154
155	oops_in_progress = 1;
156	printk(KERN_WARNING "Watchdog bite\n");
157
158	/* Check if forced restart or unexpected watchdog */
159	if (cause_of_death == 0xbedead) {
160#ifdef CONFIG_CRIS_MACH_ARTPEC3
161		/* There is a bug in Artpec-3 (voodoo TR 78) that requires
162		 * us to go to lower frequency for the reset to be reliable
163		 */
164		reg_clkgen_rw_clk_ctrl ctrl =
165			REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
166		ctrl.pll = 0;
167		REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
168#endif
169		while(1);
170	}
171
172	/* Unexpected watchdog, stop the watchdog and dump registers. */
173	stop_watchdog();
174	printk(KERN_WARNING "Oops: bitten by watchdog\n");
175	show_registers(regs);
176	oops_in_progress = 0;
177#ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
178	reset_watchdog();
179#endif
180	while(1) /* nothing */;
181#endif
182}
183
184/*
185 * timer_interrupt() needs to keep up the real-time clock,
186 * as well as call the "do_timer()" routine every clocktick.
187 */
188extern void cris_do_profile(struct pt_regs *regs);
189
190static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
191{
192	struct pt_regs *regs = get_irq_regs();
193	int cpu = smp_processor_id();
194	reg_timer_r_masked_intr masked_intr;
195	reg_timer_rw_ack_intr ack_intr = { 0 };
196
197	/* Check if the timer interrupt is for us (a tmr0 int) */
198	masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
199	if (!masked_intr.tmr0)
200		return IRQ_NONE;
201
202	/* Acknowledge the timer irq. */
203	ack_intr.tmr0 = 1;
204	REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
205
206	/* Reset watchdog otherwise it resets us! */
207	reset_watchdog();
208
209        /* Update statistics. */
210	update_process_times(user_mode(regs));
211
212	cris_do_profile(regs); /* Save profiling information */
213
214	/* The master CPU is responsible for the time keeping. */
215	if (cpu != 0)
216		return IRQ_HANDLED;
217
218	/* Call the real timer interrupt handler */
219	write_seqlock(&xtime_lock);
220	do_timer(1);
221	write_sequnlock(&xtime_lock);
222        return IRQ_HANDLED;
223}
224
225/* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
226 * It needs to be IRQF_DISABLED to make the jiffies update work properly.
227 */
228static struct irqaction irq_timer = {
229	.handler = timer_interrupt,
230	.flags = IRQF_SHARED | IRQF_DISABLED,
231	.name = "timer"
232};
233
234void __init cris_timer_init(void)
235{
236	int cpu = smp_processor_id();
237	reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
238	reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
239	reg_timer_rw_intr_mask timer_intr_mask;
240
241	/* Setup the etrax timers.
242	 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
243	 * We use timer0, so timer1 is free.
244	 * The trig timer is used by the fasttimer API if enabled.
245	 */
246
247	tmr0_ctrl.op = regk_timer_ld;
248	tmr0_ctrl.freq = regk_timer_f100;
249	REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
250	REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
251	tmr0_ctrl.op = regk_timer_run;
252	REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
253
254	/* Enable the timer irq. */
255	timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
256	timer_intr_mask.tmr0 = 1;
257	REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
258}
259
260void __init time_init(void)
261{
262	reg_intr_vect_rw_mask intr_mask;
263
264	/* Probe for the RTC and read it if it exists.
265	 * Before the RTC can be probed the loops_per_usec variable needs
266	 * to be initialized to make usleep work. A better value for
267	 * loops_per_usec is calculated by the kernel later once the
268	 * clock has started.
269	 */
270	loops_per_usec = 50;
271
272	if(RTC_INIT() < 0)
273		have_rtc = 0;
274	else
275		have_rtc = 1;
276
277	/* Start CPU local timer. */
278	cris_timer_init();
279
280	/* Enable the timer irq in global config. */
281	intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
282	intr_mask.timer0 = 1;
283	REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
284
285	/* Now actually register the timer irq handler that calls
286	 * timer_interrupt(). */
287	setup_irq(TIMER0_INTR_VECT, &irq_timer);
288
289	/* Enable watchdog if we should use one. */
290
291#if defined(CONFIG_ETRAX_WATCHDOG)
292	printk(KERN_INFO "Enabling watchdog...\n");
293	start_watchdog();
294
295	/* If we use the hardware watchdog, we want to trap it as an NMI
296	 * and dump registers before it resets us.  For this to happen, we
297	 * must set the "m" NMI enable flag (which once set, is unset only
298	 * when an NMI is taken). */
299	{
300		unsigned long flags;
301		local_save_flags(flags);
302		flags |= (1<<30); /* NMI M flag is at bit 30 */
303		local_irq_restore(flags);
304	}
305#endif
306
307#ifdef CONFIG_CPU_FREQ
308	cpufreq_register_notifier(&cris_time_freq_notifier_block,
309		CPUFREQ_TRANSITION_NOTIFIER);
310#endif
311}
312
313#ifdef CONFIG_CPU_FREQ
314static int
315cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
316			void *data)
317{
318	struct cpufreq_freqs *freqs = data;
319	if (val == CPUFREQ_POSTCHANGE) {
320		reg_timer_r_tmr0_data data;
321		reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
322		do {
323			data = REG_RD(timer, timer_regs[freqs->cpu],
324				r_tmr0_data);
325		} while (data > 20);
326		REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
327	}
328	return 0;
329}
330#endif
331