• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/sound/pci/
1/*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4 *
5 *   This program is free software; you can redistribute it and/or modify
6 *   it under the terms of the GNU General Public License as published by
7 *   the Free Software Foundation; either version 2 of the License, or
8 *   (at your option) any later version.
9 *
10 *   This program is distributed in the hope that it will be useful,
11 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 *   GNU General Public License for more details.
14 *
15 *   You should have received a copy of the GNU General Public License
16 *   along with this program; if not, write to the Free Software
17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 */
19
20/* Does not work. Warning may block system in capture mode */
21/* #define USE_VAR48KRATE */
22
23#include <asm/io.h>
24#include <linux/delay.h>
25#include <linux/interrupt.h>
26#include <linux/init.h>
27#include <linux/pci.h>
28#include <linux/slab.h>
29#include <linux/gameport.h>
30#include <linux/moduleparam.h>
31#include <linux/mutex.h>
32#include <sound/core.h>
33#include <sound/info.h>
34#include <sound/control.h>
35#include <sound/pcm.h>
36#include <sound/rawmidi.h>
37#include <sound/mpu401.h>
38#include <sound/opl3.h>
39#include <sound/sb.h>
40#include <sound/asoundef.h>
41#include <sound/initval.h>
42
43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45MODULE_LICENSE("GPL");
46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47		"{C-Media,CMI8738B},"
48		"{C-Media,CMI8338A},"
49		"{C-Media,CMI8338B}}");
50
51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52#define SUPPORT_JOYSTICK 1
53#endif
54
55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58static long mpu_port[SNDRV_CARDS];
59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61#ifdef SUPPORT_JOYSTICK
62static int joystick_port[SNDRV_CARDS];
63#endif
64
65module_param_array(index, int, NULL, 0444);
66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67module_param_array(id, charp, NULL, 0444);
68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69module_param_array(enable, bool, NULL, 0444);
70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71module_param_array(mpu_port, long, NULL, 0444);
72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73module_param_array(fm_port, long, NULL, 0444);
74MODULE_PARM_DESC(fm_port, "FM port.");
75module_param_array(soft_ac3, bool, NULL, 0444);
76MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77#ifdef SUPPORT_JOYSTICK
78module_param_array(joystick_port, int, NULL, 0444);
79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80#endif
81
82/*
83 * CM8x38 registers definition
84 */
85
86#define CM_REG_FUNCTRL0		0x00
87#define CM_RST_CH1		0x00080000
88#define CM_RST_CH0		0x00040000
89#define CM_CHEN1		0x00020000	/* ch1: enable */
90#define CM_CHEN0		0x00010000	/* ch0: enable */
91#define CM_PAUSE1		0x00000008	/* ch1: pause */
92#define CM_PAUSE0		0x00000004	/* ch0: pause */
93#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
94#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
95
96#define CM_REG_FUNCTRL1		0x04
97#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
98#define CM_DSFC_SHIFT		13
99#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
100#define CM_ASFC_SHIFT		10
101#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
102#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
103#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
104#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
105#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
106#define CM_BREQ			0x00000010	/* bus master enabled */
107#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
108#define CM_UART_EN		0x00000004	/* legacy UART */
109#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
110#define CM_ZVPORT		0x00000001	/* ZVPORT */
111
112#define CM_REG_CHFORMAT		0x08
113
114#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
115#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
116#define CM_CHB3D		0x20000000	/* 4 channels */
117
118#define CM_CHIP_MASK1		0x1f000000
119#define CM_CHIP_037		0x01000000
120#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
121#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
122#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
123#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
124#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
125#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
126/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
127
128#define CM_ADCBITLEN_MASK	0x0000C000
129#define CM_ADCBITLEN_16		0x00000000
130#define CM_ADCBITLEN_15		0x00004000
131#define CM_ADCBITLEN_14		0x00008000
132#define CM_ADCBITLEN_13		0x0000C000
133
134#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
135#define CM_ADCDACLEN_060	0x00000000
136#define CM_ADCDACLEN_066	0x00001000
137#define CM_ADCDACLEN_130	0x00002000
138#define CM_ADCDACLEN_280	0x00003000
139
140#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
141#define CM_ADCDLEN_ORIGINAL	0x00000000
142#define CM_ADCDLEN_EXTRA	0x00001000
143#define CM_ADCDLEN_24K		0x00002000
144#define CM_ADCDLEN_WEIGHT	0x00003000
145
146#define CM_CH1_SRATE_176K	0x00000800
147#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
148#define CM_CH1_SRATE_88K	0x00000400
149#define CM_CH0_SRATE_176K	0x00000200
150#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
151#define CM_CH0_SRATE_88K	0x00000100
152#define CM_CH0_SRATE_128K	0x00000300
153#define CM_CH0_SRATE_MASK	0x00000300
154
155#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
156#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
157#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
158#define CM_SPDLOCKED		0x00000010
159
160#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
161#define CM_CH1FMT_SHIFT		2
162#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
163#define CM_CH0FMT_SHIFT		0
164
165#define CM_REG_INT_HLDCLR	0x0C
166#define CM_CHIP_MASK2		0xff000000
167#define CM_CHIP_8768		0x20000000
168#define CM_CHIP_055		0x08000000
169#define CM_CHIP_039		0x04000000
170#define CM_CHIP_039_6CH		0x01000000
171#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
172#define CM_TDMA_INT_EN		0x00040000
173#define CM_CH1_INT_EN		0x00020000
174#define CM_CH0_INT_EN		0x00010000
175
176#define CM_REG_INT_STATUS	0x10
177#define CM_INTR			0x80000000
178#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
179#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
180#define CM_UARTINT		0x00010000
181#define CM_LTDMAINT		0x00008000
182#define CM_HTDMAINT		0x00004000
183#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
184#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
185#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
186#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
187#define CM_CH1BUSY		0x00000008
188#define CM_CH0BUSY		0x00000004
189#define CM_CHINT1		0x00000002
190#define CM_CHINT0		0x00000001
191
192#define CM_REG_LEGACY_CTRL	0x14
193#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
194#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
195#define CM_VMPU_330		0x00000000
196#define CM_VMPU_320		0x20000000
197#define CM_VMPU_310		0x40000000
198#define CM_VMPU_300		0x60000000
199#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
200#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
201#define CM_VSBSEL_220		0x00000000
202#define CM_VSBSEL_240		0x04000000
203#define CM_VSBSEL_260		0x08000000
204#define CM_VSBSEL_280		0x0C000000
205#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
206#define CM_FMSEL_388		0x00000000
207#define CM_FMSEL_3C8		0x01000000
208#define CM_FMSEL_3E0		0x02000000
209#define CM_FMSEL_3E8		0x03000000
210#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
211#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
212#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
213#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
214#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
216#define CM_C_EECS		0x00040000
217#define CM_C_EEDI46		0x00020000
218#define CM_C_EECK46		0x00010000
219#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
220#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
221#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
222#define CM_EXBASEN		0x00001000	/* external bass input enable */
223
224#define CM_REG_MISC_CTRL	0x18
225#define CM_PWD			0x80000000	/* power down */
226#define CM_RESET		0x40000000
227#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
228#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
229#define CM_TXVX			0x08000000	/* model 037? */
230#define CM_N4SPK3D		0x04000000	/* copy front to rear */
231#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
232#define CM_SPDIF48K		0x01000000	/* write */
233#define CM_SPATUS48K		0x01000000	/* read */
234#define CM_ENDBDAC		0x00800000	/* enable double dac */
235#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
236#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
237#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
238#define CM_FM_EN		0x00080000	/* enable legacy FM */
239#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
240#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
241#define CM_VIDWPDSB		0x00010000	/* model 037? */
242#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
243#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
244#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
245#define CM_VIDWPPRT		0x00002000	/* model 037? */
246#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
247#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
248#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
249#define CM_ENCENTER		0x00000080
250#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
251#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
252#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
253#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
254#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
255#define CM_UPDDMA_2048		0x00000000
256#define CM_UPDDMA_1024		0x00000004
257#define CM_UPDDMA_512		0x00000008
258#define CM_UPDDMA_256		0x0000000C
259#define CM_TWAIT_MASK		0x00000003	/* model 037 */
260#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263#define CM_REG_TDMA_POSITION	0x1C
264#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
265#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
266
267	/* byte */
268#define CM_REG_MIXER0		0x20
269#define CM_REG_SBVR		0x20		/* write: sb16 version */
270#define CM_REG_DEV		0x20		/* read: hardware device version */
271
272#define CM_REG_MIXER21		0x21
273#define CM_UNKNOWN_21_MASK	0x78		/* ? */
274#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
275#define CM_PROINV		0x02		/* SBPro left/right channel switching */
276#define CM_X_SB16		0x01		/* SB16 compatible */
277
278#define CM_REG_SB16_DATA	0x22
279#define CM_REG_SB16_ADDR	0x23
280
281#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
282#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
284#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
285
286#define CM_REG_MIXER1		0x24
287#define CM_FMMUTE		0x80	/* mute FM */
288#define CM_FMMUTE_SHIFT		7
289#define CM_WSMUTE		0x40	/* mute PCM */
290#define CM_WSMUTE_SHIFT		6
291#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
292#define CM_REAR2LIN_SHIFT	5
293#define CM_REAR2FRONT		0x10	/* exchange rear/front */
294#define CM_REAR2FRONT_SHIFT	4
295#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
296#define CM_WAVEINL_SHIFT	3
297#define CM_WAVEINR		0x04	/* digical wave rec. right */
298#define CM_WAVEINR_SHIFT	2
299#define CM_X3DEN		0x02	/* 3D surround enable */
300#define CM_X3DEN_SHIFT		1
301#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
302#define CM_CDPLAY_SHIFT		0
303
304#define CM_REG_MIXER2		0x25
305#define CM_RAUXREN		0x80	/* AUX right capture */
306#define CM_RAUXREN_SHIFT	7
307#define CM_RAUXLEN		0x40	/* AUX left capture */
308#define CM_RAUXLEN_SHIFT	6
309#define CM_VAUXRM		0x20	/* AUX right mute */
310#define CM_VAUXRM_SHIFT		5
311#define CM_VAUXLM		0x10	/* AUX left mute */
312#define CM_VAUXLM_SHIFT		4
313#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
314#define CM_VADMIC_SHIFT		1
315#define CM_MICGAINZ		0x01	/* mic boost */
316#define CM_MICGAINZ_SHIFT	0
317
318#define CM_REG_MIXER3		0x24
319#define CM_REG_AUX_VOL		0x26
320#define CM_VAUXL_MASK		0xf0
321#define CM_VAUXR_MASK		0x0f
322
323#define CM_REG_MISC		0x27
324#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
325#define CM_XGPO1		0x20
326// #define CM_XGPBIO		0x04
327#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
328#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
329#define CM_SPDVALID		0x02	/* spdif input valid check */
330#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
331
332#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
333/*
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
336 */
337#define CM_REG_EXTERN_CODEC	CM_REG_AC97
338
339/*
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341 */
342#define CM_REG_MPU_PCI		0x40
343
344/*
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346 */
347#define CM_REG_FM_PCI		0x50
348
349/*
350 * access from SB-mixer port
351 */
352#define CM_REG_EXTENT_IND	0xf0
353#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
354#define CM_VPHONE_SHIFT		5
355#define CM_VPHOM		0x10	/* Phone mute control */
356#define CM_VSPKM		0x08	/* Speaker mute control, default high */
357#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
358#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
359#define CM_VADMIC3		0x01	/* Mic record boost */
360
361/*
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
365 */
366#define CM_REG_PLL		0xf8
367
368/*
369 * extended registers
370 */
371#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
372#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
373#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
374#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
375
376#define CM_REG_EXT_MISC		0x90
377#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
378#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
379#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
380#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
381#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
382#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
383#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
384#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
385
386/*
387 * size of i/o region
388 */
389#define CM_EXTENT_CODEC	  0x100
390#define CM_EXTENT_MIDI	  0x2
391#define CM_EXTENT_SYNTH	  0x4
392
393
394/*
395 * channels for playback / capture
396 */
397#define CM_CH_PLAY	0
398#define CM_CH_CAPT	1
399
400/*
401 * flags to check device open/close
402 */
403#define CM_OPEN_NONE	0
404#define CM_OPEN_CH_MASK	0x01
405#define CM_OPEN_DAC	0x10
406#define CM_OPEN_ADC	0x20
407#define CM_OPEN_SPDIF	0x40
408#define CM_OPEN_MCHAN	0x80
409#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
410#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
411#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
413#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417#if CM_CH_PLAY == 1
418#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
419#define CM_PLAYBACK_SPDF	CM_SPDF_1
420#define CM_CAPTURE_SPDF		CM_SPDF_0
421#else
422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423#define CM_PLAYBACK_SPDF	CM_SPDF_0
424#define CM_CAPTURE_SPDF		CM_SPDF_1
425#endif
426
427
428/*
429 * driver data
430 */
431
432struct cmipci_pcm {
433	struct snd_pcm_substream *substream;
434	u8 running;		/* dac/adc running? */
435	u8 fmt;			/* format bits */
436	u8 is_dac;
437	u8 needs_silencing;
438	unsigned int dma_size;	/* in frames */
439	unsigned int shift;
440	unsigned int ch;	/* channel (0/1) */
441	unsigned int offset;	/* physical address of the buffer */
442};
443
444/* mixer elements toggled/resumed during ac3 playback */
445struct cmipci_mixer_auto_switches {
446	const char *name;	/* switch to toggle */
447	int toggle_on;		/* value to change when ac3 mode */
448};
449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450	{"PCM Playback Switch", 0},
451	{"IEC958 Output Switch", 1},
452	{"IEC958 Mix Analog", 0},
453	// {"IEC958 Out To DAC", 1}, // no longer used
454	{"IEC958 Loop", 0},
455};
456#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
457
458struct cmipci {
459	struct snd_card *card;
460
461	struct pci_dev *pci;
462	unsigned int device;	/* device ID */
463	int irq;
464
465	unsigned long iobase;
466	unsigned int ctrl;	/* FUNCTRL0 current value */
467
468	struct snd_pcm *pcm;		/* DAC/ADC PCM */
469	struct snd_pcm *pcm2;	/* 2nd DAC */
470	struct snd_pcm *pcm_spdif;	/* SPDIF */
471
472	int chip_version;
473	int max_channels;
474	unsigned int can_ac3_sw: 1;
475	unsigned int can_ac3_hw: 1;
476	unsigned int can_multi_ch: 1;
477	unsigned int can_96k: 1;	/* samplerate above 48k */
478	unsigned int do_soft_ac3: 1;
479
480	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
481	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
482	int spdif_counter;	/* for software AC3 */
483
484	unsigned int dig_status;
485	unsigned int dig_pcm_status;
486
487	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489	int opened[2];	/* open mode */
490	struct mutex open_mutex;
491
492	unsigned int mixer_insensitive: 1;
493	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494	int mixer_res_status[CM_SAVED_MIXERS];
495
496	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498	/* external MIDI */
499	struct snd_rawmidi *rmidi;
500
501#ifdef SUPPORT_JOYSTICK
502	struct gameport *gameport;
503#endif
504
505	spinlock_t reg_lock;
506
507#ifdef CONFIG_PM
508	unsigned int saved_regs[0x20];
509	unsigned char saved_mixers[0x20];
510#endif
511};
512
513
514/* read/write operations for dword register */
515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516{
517	outl(data, cm->iobase + cmd);
518}
519
520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521{
522	return inl(cm->iobase + cmd);
523}
524
525/* read/write operations for word register */
526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527{
528	outw(data, cm->iobase + cmd);
529}
530
531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532{
533	return inw(cm->iobase + cmd);
534}
535
536/* read/write operations for byte register */
537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538{
539	outb(data, cm->iobase + cmd);
540}
541
542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543{
544	return inb(cm->iobase + cmd);
545}
546
547/* bit operations for dword register */
548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549{
550	unsigned int val, oval;
551	val = oval = inl(cm->iobase + cmd);
552	val |= flag;
553	if (val == oval)
554		return 0;
555	outl(val, cm->iobase + cmd);
556	return 1;
557}
558
559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560{
561	unsigned int val, oval;
562	val = oval = inl(cm->iobase + cmd);
563	val &= ~flag;
564	if (val == oval)
565		return 0;
566	outl(val, cm->iobase + cmd);
567	return 1;
568}
569
570/* bit operations for byte register */
571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572{
573	unsigned char val, oval;
574	val = oval = inb(cm->iobase + cmd);
575	val |= flag;
576	if (val == oval)
577		return 0;
578	outb(val, cm->iobase + cmd);
579	return 1;
580}
581
582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583{
584	unsigned char val, oval;
585	val = oval = inb(cm->iobase + cmd);
586	val &= ~flag;
587	if (val == oval)
588		return 0;
589	outb(val, cm->iobase + cmd);
590	return 1;
591}
592
593
594/*
595 * PCM interface
596 */
597
598/*
599 * calculate frequency
600 */
601
602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605{
606	unsigned int i;
607
608	for (i = 0; i < ARRAY_SIZE(rates); i++) {
609		if (rates[i] == rate)
610			return i;
611	}
612	snd_BUG();
613	return 0;
614}
615
616#ifdef USE_VAR48KRATE
617/*
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not.  Never get any information from C-Media about
620 * that <werner@suse.de>.
621 */
622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623{
624	unsigned int delta, tolerance;
625	int xm, xn, xr;
626
627	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628		rate <<= 1;
629	*n = -1;
630	if (*r > 0xff)
631		goto out;
632	tolerance = rate*CM_TOLERANCE_RATE;
633
634	for (xn = (1+2); xn < (0x1f+2); xn++) {
635		for (xm = (1+2); xm < (0xff+2); xm++) {
636			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638			if (xr < rate)
639				delta = rate - xr;
640			else
641				delta = xr - rate;
642
643			/*
644			 * If we found one, remember this,
645			 * and try to find a closer one
646			 */
647			if (delta < tolerance) {
648				tolerance = delta;
649				*m = xm - 2;
650				*n = xn - 2;
651			}
652		}
653	}
654out:
655	return (*n > -1);
656}
657
658/*
659 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
663 */
664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665{
666	unsigned int reg = CM_REG_PLL + slot;
667	/*
668	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669	 * for DSFC/ASFC (000 upto 111).
670	 */
671
672
673	snd_cmipci_write_b(cm, reg, rate>>8);
674	snd_cmipci_write_b(cm, reg, rate&0xff);
675
676}
677#endif /* USE_VAR48KRATE */
678
679static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
680				struct snd_pcm_hw_params *hw_params)
681{
682	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
683}
684
685static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
686					  struct snd_pcm_hw_params *hw_params)
687{
688	struct cmipci *cm = snd_pcm_substream_chip(substream);
689	if (params_channels(hw_params) > 2) {
690		mutex_lock(&cm->open_mutex);
691		if (cm->opened[CM_CH_PLAY]) {
692			mutex_unlock(&cm->open_mutex);
693			return -EBUSY;
694		}
695		/* reserve the channel A */
696		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
697		mutex_unlock(&cm->open_mutex);
698	}
699	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
700}
701
702static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
703{
704	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
705	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
706	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
707	udelay(10);
708}
709
710static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
711{
712	return snd_pcm_lib_free_pages(substream);
713}
714
715
716/*
717 */
718
719static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
720static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
721	.count = 3,
722	.list = hw_channels,
723	.mask = 0,
724};
725static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
726	.count = 4,
727	.list = hw_channels,
728	.mask = 0,
729};
730static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
731	.count = 5,
732	.list = hw_channels,
733	.mask = 0,
734};
735
736static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
737{
738	if (channels > 2) {
739		if (!cm->can_multi_ch || !rec->ch)
740			return -EINVAL;
741		if (rec->fmt != 0x03) /* stereo 16bit only */
742			return -EINVAL;
743	}
744
745	if (cm->can_multi_ch) {
746		spin_lock_irq(&cm->reg_lock);
747		if (channels > 2) {
748			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
749			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
750		} else {
751			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753		}
754		if (channels == 8)
755			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
756		else
757			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
758		if (channels == 6) {
759			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
760			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
761		} else {
762			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764		}
765		if (channels == 4)
766			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
767		else
768			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
769		spin_unlock_irq(&cm->reg_lock);
770	}
771	return 0;
772}
773
774
775/*
776 * prepare playback/capture channel
777 * channel to be used must have been set in rec->ch.
778 */
779static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
780				 struct snd_pcm_substream *substream)
781{
782	unsigned int reg, freq, freq_ext, val;
783	unsigned int period_size;
784	struct snd_pcm_runtime *runtime = substream->runtime;
785
786	rec->fmt = 0;
787	rec->shift = 0;
788	if (snd_pcm_format_width(runtime->format) >= 16) {
789		rec->fmt |= 0x02;
790		if (snd_pcm_format_width(runtime->format) > 16)
791			rec->shift++; /* 24/32bit */
792	}
793	if (runtime->channels > 1)
794		rec->fmt |= 0x01;
795	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
796		snd_printd("cannot set dac channels\n");
797		return -EINVAL;
798	}
799
800	rec->offset = runtime->dma_addr;
801	/* buffer and period sizes in frame */
802	rec->dma_size = runtime->buffer_size << rec->shift;
803	period_size = runtime->period_size << rec->shift;
804	if (runtime->channels > 2) {
805		/* multi-channels */
806		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
807		period_size = (period_size * runtime->channels) / 2;
808	}
809
810	spin_lock_irq(&cm->reg_lock);
811
812	/* set buffer address */
813	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
814	snd_cmipci_write(cm, reg, rec->offset);
815	/* program sample counts */
816	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
817	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
818	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
819
820	/* set adc/dac flag */
821	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
822	if (rec->is_dac)
823		cm->ctrl &= ~val;
824	else
825		cm->ctrl |= val;
826	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
827	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
828
829	/* set sample rate */
830	freq = 0;
831	freq_ext = 0;
832	if (runtime->rate > 48000)
833		switch (runtime->rate) {
834		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
835		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
836		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
837		default:     snd_BUG(); break;
838		}
839	else
840		freq = snd_cmipci_rate_freq(runtime->rate);
841	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
842	if (rec->ch) {
843		val &= ~CM_DSFC_MASK;
844		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
845	} else {
846		val &= ~CM_ASFC_MASK;
847		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
848	}
849	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
850	//snd_printd("cmipci: functrl1 = %08x\n", val);
851
852	/* set format */
853	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
854	if (rec->ch) {
855		val &= ~CM_CH1FMT_MASK;
856		val |= rec->fmt << CM_CH1FMT_SHIFT;
857	} else {
858		val &= ~CM_CH0FMT_MASK;
859		val |= rec->fmt << CM_CH0FMT_SHIFT;
860	}
861	if (cm->can_96k) {
862		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
863		val |= freq_ext << (rec->ch * 2);
864	}
865	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
866	//snd_printd("cmipci: chformat = %08x\n", val);
867
868	if (!rec->is_dac && cm->chip_version) {
869		if (runtime->rate > 44100)
870			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
871		else
872			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
873	}
874
875	rec->running = 0;
876	spin_unlock_irq(&cm->reg_lock);
877
878	return 0;
879}
880
881/*
882 * PCM trigger/stop
883 */
884static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
885				  int cmd)
886{
887	unsigned int inthld, chen, reset, pause;
888	int result = 0;
889
890	inthld = CM_CH0_INT_EN << rec->ch;
891	chen = CM_CHEN0 << rec->ch;
892	reset = CM_RST_CH0 << rec->ch;
893	pause = CM_PAUSE0 << rec->ch;
894
895	spin_lock(&cm->reg_lock);
896	switch (cmd) {
897	case SNDRV_PCM_TRIGGER_START:
898		rec->running = 1;
899		/* set interrupt */
900		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
901		cm->ctrl |= chen;
902		/* enable channel */
903		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
904		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
905		break;
906	case SNDRV_PCM_TRIGGER_STOP:
907		rec->running = 0;
908		/* disable interrupt */
909		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
910		/* reset */
911		cm->ctrl &= ~chen;
912		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
913		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
914		rec->needs_silencing = rec->is_dac;
915		break;
916	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
917	case SNDRV_PCM_TRIGGER_SUSPEND:
918		cm->ctrl |= pause;
919		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
920		break;
921	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
922	case SNDRV_PCM_TRIGGER_RESUME:
923		cm->ctrl &= ~pause;
924		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
925		break;
926	default:
927		result = -EINVAL;
928		break;
929	}
930	spin_unlock(&cm->reg_lock);
931	return result;
932}
933
934/*
935 * return the current pointer
936 */
937static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
938						struct snd_pcm_substream *substream)
939{
940	size_t ptr;
941	unsigned int reg, rem, tries;
942
943	if (!rec->running)
944		return 0;
945	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
946	for (tries = 0; tries < 3; tries++) {
947		rem = snd_cmipci_read_w(cm, reg);
948		if (rem < rec->dma_size)
949			goto ok;
950	}
951	printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
952	return SNDRV_PCM_POS_XRUN;
953ok:
954	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
955	if (substream->runtime->channels > 2)
956		ptr = (ptr * 2) / substream->runtime->channels;
957	return ptr;
958}
959
960/*
961 * playback
962 */
963
964static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
965				       int cmd)
966{
967	struct cmipci *cm = snd_pcm_substream_chip(substream);
968	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
969}
970
971static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
972{
973	struct cmipci *cm = snd_pcm_substream_chip(substream);
974	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
975}
976
977
978
979/*
980 * capture
981 */
982
983static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
984				     int cmd)
985{
986	struct cmipci *cm = snd_pcm_substream_chip(substream);
987	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
988}
989
990static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
991{
992	struct cmipci *cm = snd_pcm_substream_chip(substream);
993	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
994}
995
996
997/*
998 * hw preparation for spdif
999 */
1000
1001static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1002					 struct snd_ctl_elem_info *uinfo)
1003{
1004	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1005	uinfo->count = 1;
1006	return 0;
1007}
1008
1009static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1010					struct snd_ctl_elem_value *ucontrol)
1011{
1012	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1013	int i;
1014
1015	spin_lock_irq(&chip->reg_lock);
1016	for (i = 0; i < 4; i++)
1017		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1018	spin_unlock_irq(&chip->reg_lock);
1019	return 0;
1020}
1021
1022static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1023					 struct snd_ctl_elem_value *ucontrol)
1024{
1025	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1026	int i, change;
1027	unsigned int val;
1028
1029	val = 0;
1030	spin_lock_irq(&chip->reg_lock);
1031	for (i = 0; i < 4; i++)
1032		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1033	change = val != chip->dig_status;
1034	chip->dig_status = val;
1035	spin_unlock_irq(&chip->reg_lock);
1036	return change;
1037}
1038
1039static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1040{
1041	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1042	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1043	.info =		snd_cmipci_spdif_default_info,
1044	.get =		snd_cmipci_spdif_default_get,
1045	.put =		snd_cmipci_spdif_default_put
1046};
1047
1048static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1049				      struct snd_ctl_elem_info *uinfo)
1050{
1051	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1052	uinfo->count = 1;
1053	return 0;
1054}
1055
1056static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1057				     struct snd_ctl_elem_value *ucontrol)
1058{
1059	ucontrol->value.iec958.status[0] = 0xff;
1060	ucontrol->value.iec958.status[1] = 0xff;
1061	ucontrol->value.iec958.status[2] = 0xff;
1062	ucontrol->value.iec958.status[3] = 0xff;
1063	return 0;
1064}
1065
1066static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1067{
1068	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1069	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1070	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1071	.info =		snd_cmipci_spdif_mask_info,
1072	.get =		snd_cmipci_spdif_mask_get,
1073};
1074
1075static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1076					struct snd_ctl_elem_info *uinfo)
1077{
1078	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1079	uinfo->count = 1;
1080	return 0;
1081}
1082
1083static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1084				       struct snd_ctl_elem_value *ucontrol)
1085{
1086	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1087	int i;
1088
1089	spin_lock_irq(&chip->reg_lock);
1090	for (i = 0; i < 4; i++)
1091		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1092	spin_unlock_irq(&chip->reg_lock);
1093	return 0;
1094}
1095
1096static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1097				       struct snd_ctl_elem_value *ucontrol)
1098{
1099	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1100	int i, change;
1101	unsigned int val;
1102
1103	val = 0;
1104	spin_lock_irq(&chip->reg_lock);
1105	for (i = 0; i < 4; i++)
1106		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1107	change = val != chip->dig_pcm_status;
1108	chip->dig_pcm_status = val;
1109	spin_unlock_irq(&chip->reg_lock);
1110	return change;
1111}
1112
1113static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1114{
1115	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1116	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1117	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1118	.info =		snd_cmipci_spdif_stream_info,
1119	.get =		snd_cmipci_spdif_stream_get,
1120	.put =		snd_cmipci_spdif_stream_put
1121};
1122
1123/*
1124 */
1125
1126/* save mixer setting and mute for AC3 playback */
1127static int save_mixer_state(struct cmipci *cm)
1128{
1129	if (! cm->mixer_insensitive) {
1130		struct snd_ctl_elem_value *val;
1131		unsigned int i;
1132
1133		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1134		if (!val)
1135			return -ENOMEM;
1136		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1137			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1138			if (ctl) {
1139				int event;
1140				memset(val, 0, sizeof(*val));
1141				ctl->get(ctl, val);
1142				cm->mixer_res_status[i] = val->value.integer.value[0];
1143				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1144				event = SNDRV_CTL_EVENT_MASK_INFO;
1145				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1146					ctl->put(ctl, val); /* toggle */
1147					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1148				}
1149				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1150				snd_ctl_notify(cm->card, event, &ctl->id);
1151			}
1152		}
1153		kfree(val);
1154		cm->mixer_insensitive = 1;
1155	}
1156	return 0;
1157}
1158
1159
1160/* restore the previously saved mixer status */
1161static void restore_mixer_state(struct cmipci *cm)
1162{
1163	if (cm->mixer_insensitive) {
1164		struct snd_ctl_elem_value *val;
1165		unsigned int i;
1166
1167		val = kmalloc(sizeof(*val), GFP_KERNEL);
1168		if (!val)
1169			return;
1170		cm->mixer_insensitive = 0; /* at first clear this;
1171					      otherwise the changes will be ignored */
1172		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1173			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1174			if (ctl) {
1175				int event;
1176
1177				memset(val, 0, sizeof(*val));
1178				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1179				ctl->get(ctl, val);
1180				event = SNDRV_CTL_EVENT_MASK_INFO;
1181				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1182					val->value.integer.value[0] = cm->mixer_res_status[i];
1183					ctl->put(ctl, val);
1184					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1185				}
1186				snd_ctl_notify(cm->card, event, &ctl->id);
1187			}
1188		}
1189		kfree(val);
1190	}
1191}
1192
1193/* spinlock held! */
1194static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1195{
1196	if (do_ac3) {
1197		/* AC3EN for 037 */
1198		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1199		/* AC3EN for 039 */
1200		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201
1202		if (cm->can_ac3_hw) {
1203			/* SPD24SEL for 037, 0x02 */
1204			/* SPD24SEL for 039, 0x20, but cannot be set */
1205			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1206			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1207		} else { /* can_ac3_sw */
1208			/* SPD32SEL for 037 & 039, 0x20 */
1209			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1210			/* set 176K sample rate to fix 033 HW bug */
1211			if (cm->chip_version == 33) {
1212				if (rate >= 48000) {
1213					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1214				} else {
1215					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1216				}
1217			}
1218		}
1219
1220	} else {
1221		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1222		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1223
1224		if (cm->can_ac3_hw) {
1225			/* chip model >= 37 */
1226			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1227				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1228				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1229			} else {
1230				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1231				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1232			}
1233		} else {
1234			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1235			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1236			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1237		}
1238	}
1239}
1240
1241static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1242{
1243	int rate, err;
1244
1245	rate = subs->runtime->rate;
1246
1247	if (up && do_ac3)
1248		if ((err = save_mixer_state(cm)) < 0)
1249			return err;
1250
1251	spin_lock_irq(&cm->reg_lock);
1252	cm->spdif_playback_avail = up;
1253	if (up) {
1254		/* they are controlled via "IEC958 Output Switch" */
1255		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1256		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1257		if (cm->spdif_playback_enabled)
1258			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1259		setup_ac3(cm, subs, do_ac3, rate);
1260
1261		if (rate == 48000 || rate == 96000)
1262			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1263		else
1264			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1265		if (rate > 48000)
1266			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1267		else
1268			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1269	} else {
1270		/* they are controlled via "IEC958 Output Switch" */
1271		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1272		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1273		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1274		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1275		setup_ac3(cm, subs, 0, 0);
1276	}
1277	spin_unlock_irq(&cm->reg_lock);
1278	return 0;
1279}
1280
1281
1282/*
1283 * preparation
1284 */
1285
1286/* playback - enable spdif only on the certain condition */
1287static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1288{
1289	struct cmipci *cm = snd_pcm_substream_chip(substream);
1290	int rate = substream->runtime->rate;
1291	int err, do_spdif, do_ac3 = 0;
1292
1293	do_spdif = (rate >= 44100 && rate <= 96000 &&
1294		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1295		    substream->runtime->channels == 2);
1296	if (do_spdif && cm->can_ac3_hw)
1297		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1298	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1299		return err;
1300	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301}
1302
1303/* playback  (via device #2) - enable spdif always */
1304static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1305{
1306	struct cmipci *cm = snd_pcm_substream_chip(substream);
1307	int err, do_ac3;
1308
1309	if (cm->can_ac3_hw)
1310		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1311	else
1312		do_ac3 = 1; /* doesn't matter */
1313	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1314		return err;
1315	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1316}
1317
1318/*
1319 * Apparently, the samples last played on channel A stay in some buffer, even
1320 * after the channel is reset, and get added to the data for the rear DACs when
1321 * playing a multichannel stream on channel B.  This is likely to generate
1322 * wraparounds and thus distortions.
1323 * To avoid this, we play at least one zero sample after the actual stream has
1324 * stopped.
1325 */
1326static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1327{
1328	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1329	unsigned int reg, val;
1330
1331	if (rec->needs_silencing && runtime && runtime->dma_area) {
1332		/* set up a small silence buffer */
1333		memset(runtime->dma_area, 0, PAGE_SIZE);
1334		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1335		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1336		snd_cmipci_write(cm, reg, val);
1337
1338		/* configure for 16 bits, 2 channels, 8 kHz */
1339		if (runtime->channels > 2)
1340			set_dac_channels(cm, rec, 2);
1341		spin_lock_irq(&cm->reg_lock);
1342		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1343		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1344		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1345		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1346		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1347		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1348		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1349		if (cm->can_96k)
1350			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1351		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1352
1353		/* start stream (we don't need interrupts) */
1354		cm->ctrl |= CM_CHEN0 << rec->ch;
1355		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1356		spin_unlock_irq(&cm->reg_lock);
1357
1358		msleep(1);
1359
1360		/* stop and reset stream */
1361		spin_lock_irq(&cm->reg_lock);
1362		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1363		val = CM_RST_CH0 << rec->ch;
1364		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1365		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1366		spin_unlock_irq(&cm->reg_lock);
1367
1368		rec->needs_silencing = 0;
1369	}
1370}
1371
1372static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1373{
1374	struct cmipci *cm = snd_pcm_substream_chip(substream);
1375	setup_spdif_playback(cm, substream, 0, 0);
1376	restore_mixer_state(cm);
1377	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1378	return snd_cmipci_hw_free(substream);
1379}
1380
1381static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1382{
1383	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1385	return snd_cmipci_hw_free(substream);
1386}
1387
1388/* capture */
1389static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1390{
1391	struct cmipci *cm = snd_pcm_substream_chip(substream);
1392	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1393}
1394
1395/* capture with spdif (via device #2) */
1396static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1397{
1398	struct cmipci *cm = snd_pcm_substream_chip(substream);
1399
1400	spin_lock_irq(&cm->reg_lock);
1401	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1402	if (cm->can_96k) {
1403		if (substream->runtime->rate > 48000)
1404			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1405		else
1406			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1407	}
1408	if (snd_pcm_format_width(substream->runtime->format) > 16)
1409		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410	else
1411		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1412
1413	spin_unlock_irq(&cm->reg_lock);
1414
1415	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1416}
1417
1418static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1419{
1420	struct cmipci *cm = snd_pcm_substream_chip(subs);
1421
1422	spin_lock_irq(&cm->reg_lock);
1423	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1424	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1425	spin_unlock_irq(&cm->reg_lock);
1426
1427	return snd_cmipci_hw_free(subs);
1428}
1429
1430
1431/*
1432 * interrupt handler
1433 */
1434static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1435{
1436	struct cmipci *cm = dev_id;
1437	unsigned int status, mask = 0;
1438
1439	/* fastpath out, to ease interrupt sharing */
1440	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1441	if (!(status & CM_INTR))
1442		return IRQ_NONE;
1443
1444	/* acknowledge interrupt */
1445	spin_lock(&cm->reg_lock);
1446	if (status & CM_CHINT0)
1447		mask |= CM_CH0_INT_EN;
1448	if (status & CM_CHINT1)
1449		mask |= CM_CH1_INT_EN;
1450	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1451	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1452	spin_unlock(&cm->reg_lock);
1453
1454	if (cm->rmidi && (status & CM_UARTINT))
1455		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1456
1457	if (cm->pcm) {
1458		if ((status & CM_CHINT0) && cm->channel[0].running)
1459			snd_pcm_period_elapsed(cm->channel[0].substream);
1460		if ((status & CM_CHINT1) && cm->channel[1].running)
1461			snd_pcm_period_elapsed(cm->channel[1].substream);
1462	}
1463	return IRQ_HANDLED;
1464}
1465
1466/*
1467 * h/w infos
1468 */
1469
1470/* playback on channel A */
1471static struct snd_pcm_hardware snd_cmipci_playback =
1472{
1473	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1474				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1475				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1476	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1477	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1478	.rate_min =		5512,
1479	.rate_max =		48000,
1480	.channels_min =		1,
1481	.channels_max =		2,
1482	.buffer_bytes_max =	(128*1024),
1483	.period_bytes_min =	64,
1484	.period_bytes_max =	(128*1024),
1485	.periods_min =		2,
1486	.periods_max =		1024,
1487	.fifo_size =		0,
1488};
1489
1490/* capture on channel B */
1491static struct snd_pcm_hardware snd_cmipci_capture =
1492{
1493	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1494				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1495				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1496	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1497	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1498	.rate_min =		5512,
1499	.rate_max =		48000,
1500	.channels_min =		1,
1501	.channels_max =		2,
1502	.buffer_bytes_max =	(128*1024),
1503	.period_bytes_min =	64,
1504	.period_bytes_max =	(128*1024),
1505	.periods_min =		2,
1506	.periods_max =		1024,
1507	.fifo_size =		0,
1508};
1509
1510/* playback on channel B - stereo 16bit only? */
1511static struct snd_pcm_hardware snd_cmipci_playback2 =
1512{
1513	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1514				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1515				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1516	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1517	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1518	.rate_min =		5512,
1519	.rate_max =		48000,
1520	.channels_min =		2,
1521	.channels_max =		2,
1522	.buffer_bytes_max =	(128*1024),
1523	.period_bytes_min =	64,
1524	.period_bytes_max =	(128*1024),
1525	.periods_min =		2,
1526	.periods_max =		1024,
1527	.fifo_size =		0,
1528};
1529
1530/* spdif playback on channel A */
1531static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1532{
1533	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1534				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1535				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1536	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1537	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1538	.rate_min =		44100,
1539	.rate_max =		48000,
1540	.channels_min =		2,
1541	.channels_max =		2,
1542	.buffer_bytes_max =	(128*1024),
1543	.period_bytes_min =	64,
1544	.period_bytes_max =	(128*1024),
1545	.periods_min =		2,
1546	.periods_max =		1024,
1547	.fifo_size =		0,
1548};
1549
1550/* spdif playback on channel A (32bit, IEC958 subframes) */
1551static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1552{
1553	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1554				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1555				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1556	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1557	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1558	.rate_min =		44100,
1559	.rate_max =		48000,
1560	.channels_min =		2,
1561	.channels_max =		2,
1562	.buffer_bytes_max =	(128*1024),
1563	.period_bytes_min =	64,
1564	.period_bytes_max =	(128*1024),
1565	.periods_min =		2,
1566	.periods_max =		1024,
1567	.fifo_size =		0,
1568};
1569
1570/* spdif capture on channel B */
1571static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1572{
1573	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1574				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1575				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1576	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1577				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1578	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1579	.rate_min =		44100,
1580	.rate_max =		48000,
1581	.channels_min =		2,
1582	.channels_max =		2,
1583	.buffer_bytes_max =	(128*1024),
1584	.period_bytes_min =	64,
1585	.period_bytes_max =	(128*1024),
1586	.periods_min =		2,
1587	.periods_max =		1024,
1588	.fifo_size =		0,
1589};
1590
1591static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1592			32000, 44100, 48000, 88200, 96000, 128000 };
1593static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1594		.count = ARRAY_SIZE(rate_constraints),
1595		.list = rate_constraints,
1596		.mask = 0,
1597};
1598
1599/*
1600 * check device open/close
1601 */
1602static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1603{
1604	int ch = mode & CM_OPEN_CH_MASK;
1605
1606	mutex_lock(&cm->open_mutex);
1607	if (cm->opened[ch]) {
1608		mutex_unlock(&cm->open_mutex);
1609		return -EBUSY;
1610	}
1611	cm->opened[ch] = mode;
1612	cm->channel[ch].substream = subs;
1613	if (! (mode & CM_OPEN_DAC)) {
1614		/* disable dual DAC mode */
1615		cm->channel[ch].is_dac = 0;
1616		spin_lock_irq(&cm->reg_lock);
1617		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1618		spin_unlock_irq(&cm->reg_lock);
1619	}
1620	mutex_unlock(&cm->open_mutex);
1621	return 0;
1622}
1623
1624static void close_device_check(struct cmipci *cm, int mode)
1625{
1626	int ch = mode & CM_OPEN_CH_MASK;
1627
1628	mutex_lock(&cm->open_mutex);
1629	if (cm->opened[ch] == mode) {
1630		if (cm->channel[ch].substream) {
1631			snd_cmipci_ch_reset(cm, ch);
1632			cm->channel[ch].running = 0;
1633			cm->channel[ch].substream = NULL;
1634		}
1635		cm->opened[ch] = 0;
1636		if (! cm->channel[ch].is_dac) {
1637			/* enable dual DAC mode again */
1638			cm->channel[ch].is_dac = 1;
1639			spin_lock_irq(&cm->reg_lock);
1640			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1641			spin_unlock_irq(&cm->reg_lock);
1642		}
1643	}
1644	mutex_unlock(&cm->open_mutex);
1645}
1646
1647/*
1648 */
1649
1650static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1651{
1652	struct cmipci *cm = snd_pcm_substream_chip(substream);
1653	struct snd_pcm_runtime *runtime = substream->runtime;
1654	int err;
1655
1656	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1657		return err;
1658	runtime->hw = snd_cmipci_playback;
1659	if (cm->chip_version == 68) {
1660		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1661				     SNDRV_PCM_RATE_96000;
1662		runtime->hw.rate_max = 96000;
1663	} else if (cm->chip_version == 55) {
1664		err = snd_pcm_hw_constraint_list(runtime, 0,
1665			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1666		if (err < 0)
1667			return err;
1668		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1669		runtime->hw.rate_max = 128000;
1670	}
1671	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1672	cm->dig_pcm_status = cm->dig_status;
1673	return 0;
1674}
1675
1676static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1677{
1678	struct cmipci *cm = snd_pcm_substream_chip(substream);
1679	struct snd_pcm_runtime *runtime = substream->runtime;
1680	int err;
1681
1682	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1683		return err;
1684	runtime->hw = snd_cmipci_capture;
1685	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1686		runtime->hw.rate_min = 41000;
1687		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1688	} else if (cm->chip_version == 55) {
1689		err = snd_pcm_hw_constraint_list(runtime, 0,
1690			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1691		if (err < 0)
1692			return err;
1693		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1694		runtime->hw.rate_max = 128000;
1695	}
1696	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1697	return 0;
1698}
1699
1700static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1701{
1702	struct cmipci *cm = snd_pcm_substream_chip(substream);
1703	struct snd_pcm_runtime *runtime = substream->runtime;
1704	int err;
1705
1706	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1707		return err;
1708	runtime->hw = snd_cmipci_playback2;
1709	mutex_lock(&cm->open_mutex);
1710	if (! cm->opened[CM_CH_PLAY]) {
1711		if (cm->can_multi_ch) {
1712			runtime->hw.channels_max = cm->max_channels;
1713			if (cm->max_channels == 4)
1714				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1715			else if (cm->max_channels == 6)
1716				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1717			else if (cm->max_channels == 8)
1718				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1719		}
1720	}
1721	mutex_unlock(&cm->open_mutex);
1722	if (cm->chip_version == 68) {
1723		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1724				     SNDRV_PCM_RATE_96000;
1725		runtime->hw.rate_max = 96000;
1726	} else if (cm->chip_version == 55) {
1727		err = snd_pcm_hw_constraint_list(runtime, 0,
1728			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1729		if (err < 0)
1730			return err;
1731		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1732		runtime->hw.rate_max = 128000;
1733	}
1734	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1735	return 0;
1736}
1737
1738static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1739{
1740	struct cmipci *cm = snd_pcm_substream_chip(substream);
1741	struct snd_pcm_runtime *runtime = substream->runtime;
1742	int err;
1743
1744	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1745		return err;
1746	if (cm->can_ac3_hw) {
1747		runtime->hw = snd_cmipci_playback_spdif;
1748		if (cm->chip_version >= 37) {
1749			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1750			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1751		}
1752		if (cm->can_96k) {
1753			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1754					     SNDRV_PCM_RATE_96000;
1755			runtime->hw.rate_max = 96000;
1756		}
1757	} else {
1758		runtime->hw = snd_cmipci_playback_iec958_subframe;
1759	}
1760	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1761	cm->dig_pcm_status = cm->dig_status;
1762	return 0;
1763}
1764
1765static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1766{
1767	struct cmipci *cm = snd_pcm_substream_chip(substream);
1768	struct snd_pcm_runtime *runtime = substream->runtime;
1769	int err;
1770
1771	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1772		return err;
1773	runtime->hw = snd_cmipci_capture_spdif;
1774	if (cm->can_96k && !(cm->chip_version == 68)) {
1775		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1776				     SNDRV_PCM_RATE_96000;
1777		runtime->hw.rate_max = 96000;
1778	}
1779	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1780	return 0;
1781}
1782
1783
1784/*
1785 */
1786
1787static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1788{
1789	struct cmipci *cm = snd_pcm_substream_chip(substream);
1790	close_device_check(cm, CM_OPEN_PLAYBACK);
1791	return 0;
1792}
1793
1794static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1795{
1796	struct cmipci *cm = snd_pcm_substream_chip(substream);
1797	close_device_check(cm, CM_OPEN_CAPTURE);
1798	return 0;
1799}
1800
1801static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1802{
1803	struct cmipci *cm = snd_pcm_substream_chip(substream);
1804	close_device_check(cm, CM_OPEN_PLAYBACK2);
1805	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1806	return 0;
1807}
1808
1809static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1810{
1811	struct cmipci *cm = snd_pcm_substream_chip(substream);
1812	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1813	return 0;
1814}
1815
1816static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1817{
1818	struct cmipci *cm = snd_pcm_substream_chip(substream);
1819	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1820	return 0;
1821}
1822
1823
1824/*
1825 */
1826
1827static struct snd_pcm_ops snd_cmipci_playback_ops = {
1828	.open =		snd_cmipci_playback_open,
1829	.close =	snd_cmipci_playback_close,
1830	.ioctl =	snd_pcm_lib_ioctl,
1831	.hw_params =	snd_cmipci_hw_params,
1832	.hw_free =	snd_cmipci_playback_hw_free,
1833	.prepare =	snd_cmipci_playback_prepare,
1834	.trigger =	snd_cmipci_playback_trigger,
1835	.pointer =	snd_cmipci_playback_pointer,
1836};
1837
1838static struct snd_pcm_ops snd_cmipci_capture_ops = {
1839	.open =		snd_cmipci_capture_open,
1840	.close =	snd_cmipci_capture_close,
1841	.ioctl =	snd_pcm_lib_ioctl,
1842	.hw_params =	snd_cmipci_hw_params,
1843	.hw_free =	snd_cmipci_hw_free,
1844	.prepare =	snd_cmipci_capture_prepare,
1845	.trigger =	snd_cmipci_capture_trigger,
1846	.pointer =	snd_cmipci_capture_pointer,
1847};
1848
1849static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1850	.open =		snd_cmipci_playback2_open,
1851	.close =	snd_cmipci_playback2_close,
1852	.ioctl =	snd_pcm_lib_ioctl,
1853	.hw_params =	snd_cmipci_playback2_hw_params,
1854	.hw_free =	snd_cmipci_playback2_hw_free,
1855	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1856	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1857	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1858};
1859
1860static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1861	.open =		snd_cmipci_playback_spdif_open,
1862	.close =	snd_cmipci_playback_spdif_close,
1863	.ioctl =	snd_pcm_lib_ioctl,
1864	.hw_params =	snd_cmipci_hw_params,
1865	.hw_free =	snd_cmipci_playback_hw_free,
1866	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1867	.trigger =	snd_cmipci_playback_trigger,
1868	.pointer =	snd_cmipci_playback_pointer,
1869};
1870
1871static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1872	.open =		snd_cmipci_capture_spdif_open,
1873	.close =	snd_cmipci_capture_spdif_close,
1874	.ioctl =	snd_pcm_lib_ioctl,
1875	.hw_params =	snd_cmipci_hw_params,
1876	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1877	.prepare =	snd_cmipci_capture_spdif_prepare,
1878	.trigger =	snd_cmipci_capture_trigger,
1879	.pointer =	snd_cmipci_capture_pointer,
1880};
1881
1882
1883/*
1884 */
1885
1886static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1887{
1888	struct snd_pcm *pcm;
1889	int err;
1890
1891	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1892	if (err < 0)
1893		return err;
1894
1895	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1896	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1897
1898	pcm->private_data = cm;
1899	pcm->info_flags = 0;
1900	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1901	cm->pcm = pcm;
1902
1903	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1904					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1905
1906	return 0;
1907}
1908
1909static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1910{
1911	struct snd_pcm *pcm;
1912	int err;
1913
1914	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1915	if (err < 0)
1916		return err;
1917
1918	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1919
1920	pcm->private_data = cm;
1921	pcm->info_flags = 0;
1922	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1923	cm->pcm2 = pcm;
1924
1925	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1926					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1927
1928	return 0;
1929}
1930
1931static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1932{
1933	struct snd_pcm *pcm;
1934	int err;
1935
1936	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1937	if (err < 0)
1938		return err;
1939
1940	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1941	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1942
1943	pcm->private_data = cm;
1944	pcm->info_flags = 0;
1945	strcpy(pcm->name, "C-Media PCI IEC958");
1946	cm->pcm_spdif = pcm;
1947
1948	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1949					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1950
1951	return 0;
1952}
1953
1954/*
1955 * mixer interface:
1956 * - CM8338/8738 has a compatible mixer interface with SB16, but
1957 *   lack of some elements like tone control, i/o gain and AGC.
1958 * - Access to native registers:
1959 *   - A 3D switch
1960 *   - Output mute switches
1961 */
1962
1963static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1964{
1965	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1966	outb(data, s->iobase + CM_REG_SB16_DATA);
1967}
1968
1969static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1970{
1971	unsigned char v;
1972
1973	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1974	v = inb(s->iobase + CM_REG_SB16_DATA);
1975	return v;
1976}
1977
1978/*
1979 * general mixer element
1980 */
1981struct cmipci_sb_reg {
1982	unsigned int left_reg, right_reg;
1983	unsigned int left_shift, right_shift;
1984	unsigned int mask;
1985	unsigned int invert: 1;
1986	unsigned int stereo: 1;
1987};
1988
1989#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1990 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1991
1992#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1993{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1994  .info = snd_cmipci_info_volume, \
1995  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1996  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1997}
1998
1999#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2000#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2001#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2002#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2003
2004static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2005{
2006	r->left_reg = val & 0xff;
2007	r->right_reg = (val >> 8) & 0xff;
2008	r->left_shift = (val >> 16) & 0x07;
2009	r->right_shift = (val >> 19) & 0x07;
2010	r->invert = (val >> 22) & 1;
2011	r->stereo = (val >> 23) & 1;
2012	r->mask = (val >> 24) & 0xff;
2013}
2014
2015static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2016				  struct snd_ctl_elem_info *uinfo)
2017{
2018	struct cmipci_sb_reg reg;
2019
2020	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2021	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2022	uinfo->count = reg.stereo + 1;
2023	uinfo->value.integer.min = 0;
2024	uinfo->value.integer.max = reg.mask;
2025	return 0;
2026}
2027
2028static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2029				 struct snd_ctl_elem_value *ucontrol)
2030{
2031	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2032	struct cmipci_sb_reg reg;
2033	int val;
2034
2035	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2036	spin_lock_irq(&cm->reg_lock);
2037	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2038	if (reg.invert)
2039		val = reg.mask - val;
2040	ucontrol->value.integer.value[0] = val;
2041	if (reg.stereo) {
2042		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2043		if (reg.invert)
2044			val = reg.mask - val;
2045		 ucontrol->value.integer.value[1] = val;
2046	}
2047	spin_unlock_irq(&cm->reg_lock);
2048	return 0;
2049}
2050
2051static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2052				 struct snd_ctl_elem_value *ucontrol)
2053{
2054	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2055	struct cmipci_sb_reg reg;
2056	int change;
2057	int left, right, oleft, oright;
2058
2059	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2060	left = ucontrol->value.integer.value[0] & reg.mask;
2061	if (reg.invert)
2062		left = reg.mask - left;
2063	left <<= reg.left_shift;
2064	if (reg.stereo) {
2065		right = ucontrol->value.integer.value[1] & reg.mask;
2066		if (reg.invert)
2067			right = reg.mask - right;
2068		right <<= reg.right_shift;
2069	} else
2070		right = 0;
2071	spin_lock_irq(&cm->reg_lock);
2072	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2073	left |= oleft & ~(reg.mask << reg.left_shift);
2074	change = left != oleft;
2075	if (reg.stereo) {
2076		if (reg.left_reg != reg.right_reg) {
2077			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2078			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2079		} else
2080			oright = left;
2081		right |= oright & ~(reg.mask << reg.right_shift);
2082		change |= right != oright;
2083		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2084	} else
2085		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2086	spin_unlock_irq(&cm->reg_lock);
2087	return change;
2088}
2089
2090/*
2091 * input route (left,right) -> (left,right)
2092 */
2093#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2094{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2095  .info = snd_cmipci_info_input_sw, \
2096  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2097  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2098}
2099
2100static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2101				    struct snd_ctl_elem_info *uinfo)
2102{
2103	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2104	uinfo->count = 4;
2105	uinfo->value.integer.min = 0;
2106	uinfo->value.integer.max = 1;
2107	return 0;
2108}
2109
2110static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2111				   struct snd_ctl_elem_value *ucontrol)
2112{
2113	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2114	struct cmipci_sb_reg reg;
2115	int val1, val2;
2116
2117	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2118	spin_lock_irq(&cm->reg_lock);
2119	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2120	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2121	spin_unlock_irq(&cm->reg_lock);
2122	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2123	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2124	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2125	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2126	return 0;
2127}
2128
2129static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2130				   struct snd_ctl_elem_value *ucontrol)
2131{
2132	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2133	struct cmipci_sb_reg reg;
2134	int change;
2135	int val1, val2, oval1, oval2;
2136
2137	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138	spin_lock_irq(&cm->reg_lock);
2139	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2142	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2143	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2144	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2145	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2146	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2147	change = val1 != oval1 || val2 != oval2;
2148	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2149	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2150	spin_unlock_irq(&cm->reg_lock);
2151	return change;
2152}
2153
2154/*
2155 * native mixer switches/volumes
2156 */
2157
2158#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2159{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160  .info = snd_cmipci_info_native_mixer, \
2161  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2163}
2164
2165#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2166{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167  .info = snd_cmipci_info_native_mixer, \
2168  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2170}
2171
2172#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2173{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174  .info = snd_cmipci_info_native_mixer, \
2175  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2177}
2178
2179#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2180{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181  .info = snd_cmipci_info_native_mixer, \
2182  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2184}
2185
2186static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2187					struct snd_ctl_elem_info *uinfo)
2188{
2189	struct cmipci_sb_reg reg;
2190
2191	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2192	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2193	uinfo->count = reg.stereo + 1;
2194	uinfo->value.integer.min = 0;
2195	uinfo->value.integer.max = reg.mask;
2196	return 0;
2197
2198}
2199
2200static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2201				       struct snd_ctl_elem_value *ucontrol)
2202{
2203	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2204	struct cmipci_sb_reg reg;
2205	unsigned char oreg, val;
2206
2207	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2208	spin_lock_irq(&cm->reg_lock);
2209	oreg = inb(cm->iobase + reg.left_reg);
2210	val = (oreg >> reg.left_shift) & reg.mask;
2211	if (reg.invert)
2212		val = reg.mask - val;
2213	ucontrol->value.integer.value[0] = val;
2214	if (reg.stereo) {
2215		val = (oreg >> reg.right_shift) & reg.mask;
2216		if (reg.invert)
2217			val = reg.mask - val;
2218		ucontrol->value.integer.value[1] = val;
2219	}
2220	spin_unlock_irq(&cm->reg_lock);
2221	return 0;
2222}
2223
2224static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2225				       struct snd_ctl_elem_value *ucontrol)
2226{
2227	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2228	struct cmipci_sb_reg reg;
2229	unsigned char oreg, nreg, val;
2230
2231	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2232	spin_lock_irq(&cm->reg_lock);
2233	oreg = inb(cm->iobase + reg.left_reg);
2234	val = ucontrol->value.integer.value[0] & reg.mask;
2235	if (reg.invert)
2236		val = reg.mask - val;
2237	nreg = oreg & ~(reg.mask << reg.left_shift);
2238	nreg |= (val << reg.left_shift);
2239	if (reg.stereo) {
2240		val = ucontrol->value.integer.value[1] & reg.mask;
2241		if (reg.invert)
2242			val = reg.mask - val;
2243		nreg &= ~(reg.mask << reg.right_shift);
2244		nreg |= (val << reg.right_shift);
2245	}
2246	outb(nreg, cm->iobase + reg.left_reg);
2247	spin_unlock_irq(&cm->reg_lock);
2248	return (nreg != oreg);
2249}
2250
2251/*
2252 * special case - check mixer sensitivity
2253 */
2254static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2255						 struct snd_ctl_elem_value *ucontrol)
2256{
2257	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2258	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2259}
2260
2261static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2262						 struct snd_ctl_elem_value *ucontrol)
2263{
2264	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2265	if (cm->mixer_insensitive) {
2266		/* ignored */
2267		return 0;
2268	}
2269	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2270}
2271
2272
2273static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2274	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2275	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2276	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2277	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2278	{ /* switch with sensitivity */
2279		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2280		.name = "PCM Playback Switch",
2281		.info = snd_cmipci_info_native_mixer,
2282		.get = snd_cmipci_get_native_mixer_sensitive,
2283		.put = snd_cmipci_put_native_mixer_sensitive,
2284		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2285	},
2286	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2287	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2288	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2289	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2290	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2291	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2292	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2293	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2294	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2295	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2296	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2297	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2298	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2299	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2300	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2301	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2302	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2303	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2304	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2305	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2306	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2307	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2308	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2309};
2310
2311/*
2312 * other switches
2313 */
2314
2315struct cmipci_switch_args {
2316	int reg;		/* register index */
2317	unsigned int mask;	/* mask bits */
2318	unsigned int mask_on;	/* mask bits to turn on */
2319	unsigned int is_byte: 1;		/* byte access? */
2320	unsigned int ac3_sensitive: 1;	/* access forbidden during
2321					 * non-audio operation?
2322					 */
2323};
2324
2325#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2326
2327static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2328				   struct snd_ctl_elem_value *ucontrol,
2329				   struct cmipci_switch_args *args)
2330{
2331	unsigned int val;
2332	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2333
2334	spin_lock_irq(&cm->reg_lock);
2335	if (args->ac3_sensitive && cm->mixer_insensitive) {
2336		ucontrol->value.integer.value[0] = 0;
2337		spin_unlock_irq(&cm->reg_lock);
2338		return 0;
2339	}
2340	if (args->is_byte)
2341		val = inb(cm->iobase + args->reg);
2342	else
2343		val = snd_cmipci_read(cm, args->reg);
2344	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2345	spin_unlock_irq(&cm->reg_lock);
2346	return 0;
2347}
2348
2349static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2350				  struct snd_ctl_elem_value *ucontrol)
2351{
2352	struct cmipci_switch_args *args;
2353	args = (struct cmipci_switch_args *)kcontrol->private_value;
2354	if (snd_BUG_ON(!args))
2355		return -EINVAL;
2356	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2357}
2358
2359static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2360				   struct snd_ctl_elem_value *ucontrol,
2361				   struct cmipci_switch_args *args)
2362{
2363	unsigned int val;
2364	int change;
2365	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2366
2367	spin_lock_irq(&cm->reg_lock);
2368	if (args->ac3_sensitive && cm->mixer_insensitive) {
2369		/* ignored */
2370		spin_unlock_irq(&cm->reg_lock);
2371		return 0;
2372	}
2373	if (args->is_byte)
2374		val = inb(cm->iobase + args->reg);
2375	else
2376		val = snd_cmipci_read(cm, args->reg);
2377	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2378			args->mask_on : (args->mask & ~args->mask_on));
2379	if (change) {
2380		val &= ~args->mask;
2381		if (ucontrol->value.integer.value[0])
2382			val |= args->mask_on;
2383		else
2384			val |= (args->mask & ~args->mask_on);
2385		if (args->is_byte)
2386			outb((unsigned char)val, cm->iobase + args->reg);
2387		else
2388			snd_cmipci_write(cm, args->reg, val);
2389	}
2390	spin_unlock_irq(&cm->reg_lock);
2391	return change;
2392}
2393
2394static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2395				  struct snd_ctl_elem_value *ucontrol)
2396{
2397	struct cmipci_switch_args *args;
2398	args = (struct cmipci_switch_args *)kcontrol->private_value;
2399	if (snd_BUG_ON(!args))
2400		return -EINVAL;
2401	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2402}
2403
2404#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2405static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2406  .reg = xreg, \
2407  .mask = xmask, \
2408  .mask_on = xmask_on, \
2409  .is_byte = xis_byte, \
2410  .ac3_sensitive = xac3, \
2411}
2412
2413#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2414	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2415
2416DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2417DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2418DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2419DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2420DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2421DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2422DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2423DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2424// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2425DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2426DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2427/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2428DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2429DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2430#if CM_CH_PLAY == 1
2431DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2432#else
2433DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2434#endif
2435DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2436// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2437// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2438// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2439DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2440
2441#define DEFINE_SWITCH(sname, stype, sarg) \
2442{ .name = sname, \
2443  .iface = stype, \
2444  .info = snd_cmipci_uswitch_info, \
2445  .get = snd_cmipci_uswitch_get, \
2446  .put = snd_cmipci_uswitch_put, \
2447  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2448}
2449
2450#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2451#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2452
2453
2454/*
2455 * callbacks for spdif output switch
2456 * needs toggle two registers..
2457 */
2458static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2459					struct snd_ctl_elem_value *ucontrol)
2460{
2461	int changed;
2462	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2463	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2464	return changed;
2465}
2466
2467static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2468					struct snd_ctl_elem_value *ucontrol)
2469{
2470	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2471	int changed;
2472	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2473	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2474	if (changed) {
2475		if (ucontrol->value.integer.value[0]) {
2476			if (chip->spdif_playback_avail)
2477				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2478		} else {
2479			if (chip->spdif_playback_avail)
2480				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2481		}
2482	}
2483	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2484	return changed;
2485}
2486
2487
2488static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2489					struct snd_ctl_elem_info *uinfo)
2490{
2491	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2492	static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2493	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2494	uinfo->count = 1;
2495	uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2496	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2497		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2498	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2499	return 0;
2500}
2501
2502static inline unsigned int get_line_in_mode(struct cmipci *cm)
2503{
2504	unsigned int val;
2505	if (cm->chip_version >= 39) {
2506		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2507		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2508			return 2;
2509	}
2510	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2511	if (val & CM_REAR2LIN)
2512		return 1;
2513	return 0;
2514}
2515
2516static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2517				       struct snd_ctl_elem_value *ucontrol)
2518{
2519	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2520
2521	spin_lock_irq(&cm->reg_lock);
2522	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2523	spin_unlock_irq(&cm->reg_lock);
2524	return 0;
2525}
2526
2527static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2528				       struct snd_ctl_elem_value *ucontrol)
2529{
2530	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2531	int change;
2532
2533	spin_lock_irq(&cm->reg_lock);
2534	if (ucontrol->value.enumerated.item[0] == 2)
2535		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2536	else
2537		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2538	if (ucontrol->value.enumerated.item[0] == 1)
2539		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2540	else
2541		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2542	spin_unlock_irq(&cm->reg_lock);
2543	return change;
2544}
2545
2546static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2547				       struct snd_ctl_elem_info *uinfo)
2548{
2549	static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2550	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2551	uinfo->count = 1;
2552	uinfo->value.enumerated.items = 2;
2553	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2554		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2555	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2556	return 0;
2557}
2558
2559static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2560				      struct snd_ctl_elem_value *ucontrol)
2561{
2562	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2563	/* same bit as spdi_phase */
2564	spin_lock_irq(&cm->reg_lock);
2565	ucontrol->value.enumerated.item[0] =
2566		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2567	spin_unlock_irq(&cm->reg_lock);
2568	return 0;
2569}
2570
2571static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2572				      struct snd_ctl_elem_value *ucontrol)
2573{
2574	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2575	int change;
2576
2577	spin_lock_irq(&cm->reg_lock);
2578	if (ucontrol->value.enumerated.item[0])
2579		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2580	else
2581		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2582	spin_unlock_irq(&cm->reg_lock);
2583	return change;
2584}
2585
2586/* both for CM8338/8738 */
2587static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2588	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2589	{
2590		.name = "Line-In Mode",
2591		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2592		.info = snd_cmipci_line_in_mode_info,
2593		.get = snd_cmipci_line_in_mode_get,
2594		.put = snd_cmipci_line_in_mode_put,
2595	},
2596};
2597
2598/* for non-multichannel chips */
2599static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2600DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2601
2602/* only for CM8738 */
2603static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2604	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2605	{ .name = "IEC958 Output Switch",
2606	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2607	  .info = snd_cmipci_uswitch_info,
2608	  .get = snd_cmipci_spdout_enable_get,
2609	  .put = snd_cmipci_spdout_enable_put,
2610	},
2611	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2612	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2613	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2614//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2615	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2616	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2617};
2618
2619/* only for model 033/037 */
2620static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2621	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2622	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2623	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2624};
2625
2626/* only for model 039 or later */
2627static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2628	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2629	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2630	{
2631		.name = "Mic-In Mode",
2632		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2633		.info = snd_cmipci_mic_in_mode_info,
2634		.get = snd_cmipci_mic_in_mode_get,
2635		.put = snd_cmipci_mic_in_mode_put,
2636	}
2637};
2638
2639/* card control switches */
2640static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2641DEFINE_CARD_SWITCH("Modem", modem);
2642
2643
2644static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2645{
2646	struct snd_card *card;
2647	struct snd_kcontrol_new *sw;
2648	struct snd_kcontrol *kctl;
2649	unsigned int idx;
2650	int err;
2651
2652	if (snd_BUG_ON(!cm || !cm->card))
2653		return -EINVAL;
2654
2655	card = cm->card;
2656
2657	strcpy(card->mixername, "CMedia PCI");
2658
2659	spin_lock_irq(&cm->reg_lock);
2660	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2661	spin_unlock_irq(&cm->reg_lock);
2662
2663	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2664		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2665			if (!strcmp(snd_cmipci_mixers[idx].name,
2666				"PCM Playback Volume"))
2667				continue;
2668		}
2669		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2670			return err;
2671	}
2672
2673	/* mixer switches */
2674	sw = snd_cmipci_mixer_switches;
2675	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2676		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2677		if (err < 0)
2678			return err;
2679	}
2680	if (! cm->can_multi_ch) {
2681		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2682		if (err < 0)
2683			return err;
2684	}
2685	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2686	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2687		sw = snd_cmipci_8738_mixer_switches;
2688		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2689			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2690			if (err < 0)
2691				return err;
2692		}
2693		if (cm->can_ac3_hw) {
2694			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2695				return err;
2696			kctl->id.device = pcm_spdif_device;
2697			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2698				return err;
2699			kctl->id.device = pcm_spdif_device;
2700			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2701				return err;
2702			kctl->id.device = pcm_spdif_device;
2703		}
2704		if (cm->chip_version <= 37) {
2705			sw = snd_cmipci_old_mixer_switches;
2706			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2707				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2708				if (err < 0)
2709					return err;
2710			}
2711		}
2712	}
2713	if (cm->chip_version >= 39) {
2714		sw = snd_cmipci_extra_mixer_switches;
2715		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2716			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717			if (err < 0)
2718				return err;
2719		}
2720	}
2721
2722	/* card switches */
2723	/*
2724	 * newer chips don't have the register bits to force modem link
2725	 * detection; the bit that was FLINKON now mutes CH1
2726	 */
2727	if (cm->chip_version < 39) {
2728		err = snd_ctl_add(cm->card,
2729				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2730		if (err < 0)
2731			return err;
2732	}
2733
2734	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2735		struct snd_ctl_elem_id elem_id;
2736		struct snd_kcontrol *ctl;
2737		memset(&elem_id, 0, sizeof(elem_id));
2738		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2739		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2740		ctl = snd_ctl_find_id(cm->card, &elem_id);
2741		if (ctl)
2742			cm->mixer_res_ctl[idx] = ctl;
2743	}
2744
2745	return 0;
2746}
2747
2748
2749/*
2750 * proc interface
2751 */
2752
2753#ifdef CONFIG_PROC_FS
2754static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2755				 struct snd_info_buffer *buffer)
2756{
2757	struct cmipci *cm = entry->private_data;
2758	int i, v;
2759
2760	snd_iprintf(buffer, "%s\n", cm->card->longname);
2761	for (i = 0; i < 0x94; i++) {
2762		if (i == 0x28)
2763			i = 0x90;
2764		v = inb(cm->iobase + i);
2765		if (i % 4 == 0)
2766			snd_iprintf(buffer, "\n%02x:", i);
2767		snd_iprintf(buffer, " %02x", v);
2768	}
2769	snd_iprintf(buffer, "\n");
2770}
2771
2772static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2773{
2774	struct snd_info_entry *entry;
2775
2776	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2777		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2778}
2779#else /* !CONFIG_PROC_FS */
2780static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2781#endif
2782
2783
2784static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2785	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2786	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2787	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2788	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2789	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2790	{0,},
2791};
2792
2793
2794/*
2795 * check chip version and capabilities
2796 * driver name is modified according to the chip model
2797 */
2798static void __devinit query_chip(struct cmipci *cm)
2799{
2800	unsigned int detect;
2801
2802	/* check reg 0Ch, bit 24-31 */
2803	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2804	if (! detect) {
2805		/* check reg 08h, bit 24-28 */
2806		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2807		switch (detect) {
2808		case 0:
2809			cm->chip_version = 33;
2810			if (cm->do_soft_ac3)
2811				cm->can_ac3_sw = 1;
2812			else
2813				cm->can_ac3_hw = 1;
2814			break;
2815		case CM_CHIP_037:
2816			cm->chip_version = 37;
2817			cm->can_ac3_hw = 1;
2818			break;
2819		default:
2820			cm->chip_version = 39;
2821			cm->can_ac3_hw = 1;
2822			break;
2823		}
2824		cm->max_channels = 2;
2825	} else {
2826		if (detect & CM_CHIP_039) {
2827			cm->chip_version = 39;
2828			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2829				cm->max_channels = 6;
2830			else
2831				cm->max_channels = 4;
2832		} else if (detect & CM_CHIP_8768) {
2833			cm->chip_version = 68;
2834			cm->max_channels = 8;
2835			cm->can_96k = 1;
2836		} else {
2837			cm->chip_version = 55;
2838			cm->max_channels = 6;
2839			cm->can_96k = 1;
2840		}
2841		cm->can_ac3_hw = 1;
2842		cm->can_multi_ch = 1;
2843	}
2844}
2845
2846#ifdef SUPPORT_JOYSTICK
2847static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2848{
2849	static int ports[] = { 0x201, 0x200, 0 };
2850	struct gameport *gp;
2851	struct resource *r = NULL;
2852	int i, io_port = 0;
2853
2854	if (joystick_port[dev] == 0)
2855		return -ENODEV;
2856
2857	if (joystick_port[dev] == 1) { /* auto-detect */
2858		for (i = 0; ports[i]; i++) {
2859			io_port = ports[i];
2860			r = request_region(io_port, 1, "CMIPCI gameport");
2861			if (r)
2862				break;
2863		}
2864	} else {
2865		io_port = joystick_port[dev];
2866		r = request_region(io_port, 1, "CMIPCI gameport");
2867	}
2868
2869	if (!r) {
2870		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2871		return -EBUSY;
2872	}
2873
2874	cm->gameport = gp = gameport_allocate_port();
2875	if (!gp) {
2876		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2877		release_and_free_resource(r);
2878		return -ENOMEM;
2879	}
2880	gameport_set_name(gp, "C-Media Gameport");
2881	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2882	gameport_set_dev_parent(gp, &cm->pci->dev);
2883	gp->io = io_port;
2884	gameport_set_port_data(gp, r);
2885
2886	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2887
2888	gameport_register_port(cm->gameport);
2889
2890	return 0;
2891}
2892
2893static void snd_cmipci_free_gameport(struct cmipci *cm)
2894{
2895	if (cm->gameport) {
2896		struct resource *r = gameport_get_port_data(cm->gameport);
2897
2898		gameport_unregister_port(cm->gameport);
2899		cm->gameport = NULL;
2900
2901		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2902		release_and_free_resource(r);
2903	}
2904}
2905#else
2906static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2907static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2908#endif
2909
2910static int snd_cmipci_free(struct cmipci *cm)
2911{
2912	if (cm->irq >= 0) {
2913		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2914		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2915		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2916		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2917		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2918		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2919		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2920
2921		/* reset mixer */
2922		snd_cmipci_mixer_write(cm, 0, 0);
2923
2924		free_irq(cm->irq, cm);
2925	}
2926
2927	snd_cmipci_free_gameport(cm);
2928	pci_release_regions(cm->pci);
2929	pci_disable_device(cm->pci);
2930	kfree(cm);
2931	return 0;
2932}
2933
2934static int snd_cmipci_dev_free(struct snd_device *device)
2935{
2936	struct cmipci *cm = device->device_data;
2937	return snd_cmipci_free(cm);
2938}
2939
2940static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2941{
2942	long iosynth;
2943	unsigned int val;
2944	struct snd_opl3 *opl3;
2945	int err;
2946
2947	if (!fm_port)
2948		goto disable_fm;
2949
2950	if (cm->chip_version >= 39) {
2951		/* first try FM regs in PCI port range */
2952		iosynth = cm->iobase + CM_REG_FM_PCI;
2953		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2954				      OPL3_HW_OPL3, 1, &opl3);
2955	} else {
2956		err = -EIO;
2957	}
2958	if (err < 0) {
2959		/* then try legacy ports */
2960		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2961		iosynth = fm_port;
2962		switch (iosynth) {
2963		case 0x3E8: val |= CM_FMSEL_3E8; break;
2964		case 0x3E0: val |= CM_FMSEL_3E0; break;
2965		case 0x3C8: val |= CM_FMSEL_3C8; break;
2966		case 0x388: val |= CM_FMSEL_388; break;
2967		default:
2968			goto disable_fm;
2969		}
2970		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2971		/* enable FM */
2972		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2973
2974		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2975				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2976			printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2977			       "skipping...\n", iosynth);
2978			goto disable_fm;
2979		}
2980	}
2981	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2982		printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2983		return err;
2984	}
2985	return 0;
2986
2987 disable_fm:
2988	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2989	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2990	return 0;
2991}
2992
2993static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2994				       int dev, struct cmipci **rcmipci)
2995{
2996	struct cmipci *cm;
2997	int err;
2998	static struct snd_device_ops ops = {
2999		.dev_free =	snd_cmipci_dev_free,
3000	};
3001	unsigned int val;
3002	long iomidi = 0;
3003	int integrated_midi = 0;
3004	char modelstr[16];
3005	int pcm_index, pcm_spdif_index;
3006	static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3007		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3008		{ },
3009	};
3010
3011	*rcmipci = NULL;
3012
3013	if ((err = pci_enable_device(pci)) < 0)
3014		return err;
3015
3016	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3017	if (cm == NULL) {
3018		pci_disable_device(pci);
3019		return -ENOMEM;
3020	}
3021
3022	spin_lock_init(&cm->reg_lock);
3023	mutex_init(&cm->open_mutex);
3024	cm->device = pci->device;
3025	cm->card = card;
3026	cm->pci = pci;
3027	cm->irq = -1;
3028	cm->channel[0].ch = 0;
3029	cm->channel[1].ch = 1;
3030	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3031
3032	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3033		kfree(cm);
3034		pci_disable_device(pci);
3035		return err;
3036	}
3037	cm->iobase = pci_resource_start(pci, 0);
3038
3039	if (request_irq(pci->irq, snd_cmipci_interrupt,
3040			IRQF_SHARED, card->driver, cm)) {
3041		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3042		snd_cmipci_free(cm);
3043		return -EBUSY;
3044	}
3045	cm->irq = pci->irq;
3046
3047	pci_set_master(cm->pci);
3048
3049	/*
3050	 * check chip version, max channels and capabilities
3051	 */
3052
3053	cm->chip_version = 0;
3054	cm->max_channels = 2;
3055	cm->do_soft_ac3 = soft_ac3[dev];
3056
3057	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3058	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3059		query_chip(cm);
3060	/* added -MCx suffix for chip supporting multi-channels */
3061	if (cm->can_multi_ch)
3062		sprintf(cm->card->driver + strlen(cm->card->driver),
3063			"-MC%d", cm->max_channels);
3064	else if (cm->can_ac3_sw)
3065		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3066
3067	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3068	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3069
3070#if CM_CH_PLAY == 1
3071	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3072#else
3073	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3074#endif
3075
3076	/* initialize codec registers */
3077	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3078	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3079	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3080	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3081	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3082	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3083	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3084
3085	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3086	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3087#if CM_CH_PLAY == 1
3088	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3089#else
3090	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091#endif
3092	if (cm->chip_version) {
3093		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3094		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3095	}
3096	/* Set Bus Master Request */
3097	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3098
3099	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3100	switch (pci->device) {
3101	case PCI_DEVICE_ID_CMEDIA_CM8738:
3102	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3103		if (!pci_dev_present(intel_82437vx))
3104			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3105		break;
3106	default:
3107		break;
3108	}
3109
3110	if (cm->chip_version < 68) {
3111		val = pci->device < 0x110 ? 8338 : 8738;
3112	} else {
3113		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3114		case 0:
3115			val = 8769;
3116			break;
3117		case 2:
3118			val = 8762;
3119			break;
3120		default:
3121			switch ((pci->subsystem_vendor << 16) |
3122				pci->subsystem_device) {
3123			case 0x13f69761:
3124			case 0x584d3741:
3125			case 0x584d3751:
3126			case 0x584d3761:
3127			case 0x584d3771:
3128			case 0x72848384:
3129				val = 8770;
3130				break;
3131			default:
3132				val = 8768;
3133				break;
3134			}
3135		}
3136	}
3137	sprintf(card->shortname, "C-Media CMI%d", val);
3138	if (cm->chip_version < 68)
3139		sprintf(modelstr, " (model %d)", cm->chip_version);
3140	else
3141		modelstr[0] = '\0';
3142	sprintf(card->longname, "%s%s at %#lx, irq %i",
3143		card->shortname, modelstr, cm->iobase, cm->irq);
3144
3145	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3146		snd_cmipci_free(cm);
3147		return err;
3148	}
3149
3150	if (cm->chip_version >= 39) {
3151		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3152		if (val != 0x00 && val != 0xff) {
3153			iomidi = cm->iobase + CM_REG_MPU_PCI;
3154			integrated_midi = 1;
3155		}
3156	}
3157	if (!integrated_midi) {
3158		val = 0;
3159		iomidi = mpu_port[dev];
3160		switch (iomidi) {
3161		case 0x320: val = CM_VMPU_320; break;
3162		case 0x310: val = CM_VMPU_310; break;
3163		case 0x300: val = CM_VMPU_300; break;
3164		case 0x330: val = CM_VMPU_330; break;
3165		default:
3166			    iomidi = 0; break;
3167		}
3168		if (iomidi > 0) {
3169			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3170			/* enable UART */
3171			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3172			if (inb(iomidi + 1) == 0xff) {
3173				snd_printk(KERN_ERR "cannot enable MPU-401 port"
3174					   " at %#lx\n", iomidi);
3175				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3176						     CM_UART_EN);
3177				iomidi = 0;
3178			}
3179		}
3180	}
3181
3182	if (cm->chip_version < 68) {
3183		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3184		if (err < 0)
3185			return err;
3186	}
3187
3188	/* reset mixer */
3189	snd_cmipci_mixer_write(cm, 0, 0);
3190
3191	snd_cmipci_proc_init(cm);
3192
3193	/* create pcm devices */
3194	pcm_index = pcm_spdif_index = 0;
3195	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3196		return err;
3197	pcm_index++;
3198	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3199		return err;
3200	pcm_index++;
3201	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3202		pcm_spdif_index = pcm_index;
3203		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3204			return err;
3205	}
3206
3207	/* create mixer interface & switches */
3208	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3209		return err;
3210
3211	if (iomidi > 0) {
3212		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3213					       iomidi,
3214					       (integrated_midi ?
3215						MPU401_INFO_INTEGRATED : 0),
3216					       cm->irq, 0, &cm->rmidi)) < 0) {
3217			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3218		}
3219	}
3220
3221#ifdef USE_VAR48KRATE
3222	for (val = 0; val < ARRAY_SIZE(rates); val++)
3223		snd_cmipci_set_pll(cm, rates[val], val);
3224
3225	/*
3226	 * (Re-)Enable external switch spdo_48k
3227	 */
3228	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3229#endif /* USE_VAR48KRATE */
3230
3231	if (snd_cmipci_create_gameport(cm, dev) < 0)
3232		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3233
3234	snd_card_set_dev(card, &pci->dev);
3235
3236	*rcmipci = cm;
3237	return 0;
3238}
3239
3240/*
3241 */
3242
3243MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3244
3245static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3246				      const struct pci_device_id *pci_id)
3247{
3248	static int dev;
3249	struct snd_card *card;
3250	struct cmipci *cm;
3251	int err;
3252
3253	if (dev >= SNDRV_CARDS)
3254		return -ENODEV;
3255	if (! enable[dev]) {
3256		dev++;
3257		return -ENOENT;
3258	}
3259
3260	err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3261	if (err < 0)
3262		return err;
3263
3264	switch (pci->device) {
3265	case PCI_DEVICE_ID_CMEDIA_CM8738:
3266	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3267		strcpy(card->driver, "CMI8738");
3268		break;
3269	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3270	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3271		strcpy(card->driver, "CMI8338");
3272		break;
3273	default:
3274		strcpy(card->driver, "CMIPCI");
3275		break;
3276	}
3277
3278	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3279		snd_card_free(card);
3280		return err;
3281	}
3282	card->private_data = cm;
3283
3284	if ((err = snd_card_register(card)) < 0) {
3285		snd_card_free(card);
3286		return err;
3287	}
3288	pci_set_drvdata(pci, card);
3289	dev++;
3290	return 0;
3291
3292}
3293
3294static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3295{
3296	snd_card_free(pci_get_drvdata(pci));
3297	pci_set_drvdata(pci, NULL);
3298}
3299
3300
3301#ifdef CONFIG_PM
3302/*
3303 * power management
3304 */
3305static unsigned char saved_regs[] = {
3306	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3307	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3308	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3309	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3310	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3311};
3312
3313static unsigned char saved_mixers[] = {
3314	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3315	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3316	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3317	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3318	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3319	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3320	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3321	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3322};
3323
3324static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3325{
3326	struct snd_card *card = pci_get_drvdata(pci);
3327	struct cmipci *cm = card->private_data;
3328	int i;
3329
3330	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3331
3332	snd_pcm_suspend_all(cm->pcm);
3333	snd_pcm_suspend_all(cm->pcm2);
3334	snd_pcm_suspend_all(cm->pcm_spdif);
3335
3336	/* save registers */
3337	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3338		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3339	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3340		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3341
3342	/* disable ints */
3343	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3344
3345	pci_disable_device(pci);
3346	pci_save_state(pci);
3347	pci_set_power_state(pci, pci_choose_state(pci, state));
3348	return 0;
3349}
3350
3351static int snd_cmipci_resume(struct pci_dev *pci)
3352{
3353	struct snd_card *card = pci_get_drvdata(pci);
3354	struct cmipci *cm = card->private_data;
3355	int i;
3356
3357	pci_set_power_state(pci, PCI_D0);
3358	pci_restore_state(pci);
3359	if (pci_enable_device(pci) < 0) {
3360		printk(KERN_ERR "cmipci: pci_enable_device failed, "
3361		       "disabling device\n");
3362		snd_card_disconnect(card);
3363		return -EIO;
3364	}
3365	pci_set_master(pci);
3366
3367	/* reset / initialize to a sane state */
3368	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3369	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3370	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3371	snd_cmipci_mixer_write(cm, 0, 0);
3372
3373	/* restore registers */
3374	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3375		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3376	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3377		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3378
3379	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3380	return 0;
3381}
3382#endif /* CONFIG_PM */
3383
3384static struct pci_driver driver = {
3385	.name = "C-Media PCI",
3386	.id_table = snd_cmipci_ids,
3387	.probe = snd_cmipci_probe,
3388	.remove = __devexit_p(snd_cmipci_remove),
3389#ifdef CONFIG_PM
3390	.suspend = snd_cmipci_suspend,
3391	.resume = snd_cmipci_resume,
3392#endif
3393};
3394
3395static int __init alsa_card_cmipci_init(void)
3396{
3397	return pci_register_driver(&driver);
3398}
3399
3400static void __exit alsa_card_cmipci_exit(void)
3401{
3402	pci_unregister_driver(&driver);
3403}
3404
3405module_init(alsa_card_cmipci_init)
3406module_exit(alsa_card_cmipci_exit)
3407