• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/net/sunrpc/xprtrdma/
1/*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 *      Redistributions of source code must retain the above copyright
15 *      notice, this list of conditions and the following disclaimer.
16 *
17 *      Redistributions in binary form must reproduce the above
18 *      copyright notice, this list of conditions and the following
19 *      disclaimer in the documentation and/or other materials provided
20 *      with the distribution.
21 *
22 *      Neither the name of the Network Appliance, Inc. nor the names of
23 *      its contributors may be used to endorse or promote products
24 *      derived from this software without specific prior written
25 *      permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40/*
41 * rpc_rdma.c
42 *
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
46 */
47
48#include "xprt_rdma.h"
49
50#include <linux/highmem.h>
51
52#ifdef RPC_DEBUG
53# define RPCDBG_FACILITY	RPCDBG_TRANS
54#endif
55
56enum rpcrdma_chunktype {
57	rpcrdma_noch = 0,
58	rpcrdma_readch,
59	rpcrdma_areadch,
60	rpcrdma_writech,
61	rpcrdma_replych
62};
63
64#ifdef RPC_DEBUG
65static const char transfertypes[][12] = {
66	"pure inline",	/* no chunks */
67	" read chunk",	/* some argument via rdma read */
68	"*read chunk",	/* entire request via rdma read */
69	"write chunk",	/* some result via rdma write */
70	"reply chunk"	/* entire reply via rdma write */
71};
72#endif
73
74/*
75 * Chunk assembly from upper layer xdr_buf.
76 *
77 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78 * elements. Segments are then coalesced when registered, if possible
79 * within the selected memreg mode.
80 *
81 * Note, this routine is never called if the connection's memory
82 * registration strategy is 0 (bounce buffers).
83 */
84
85static int
86rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
87	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
88{
89	int len, n = 0, p;
90
91	if (pos == 0 && xdrbuf->head[0].iov_len) {
92		seg[n].mr_page = NULL;
93		seg[n].mr_offset = xdrbuf->head[0].iov_base;
94		seg[n].mr_len = xdrbuf->head[0].iov_len;
95		++n;
96	}
97
98	if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
99		if (n == nsegs)
100			return 0;
101		seg[n].mr_page = xdrbuf->pages[0];
102		seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
103		seg[n].mr_len = min_t(u32,
104			PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
105		len = xdrbuf->page_len - seg[n].mr_len;
106		++n;
107		p = 1;
108		while (len > 0) {
109			if (n == nsegs)
110				return 0;
111			seg[n].mr_page = xdrbuf->pages[p];
112			seg[n].mr_offset = NULL;
113			seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
114			len -= seg[n].mr_len;
115			++n;
116			++p;
117		}
118	}
119
120	if (xdrbuf->tail[0].iov_len) {
121		/* the rpcrdma protocol allows us to omit any trailing
122		 * xdr pad bytes, saving the server an RDMA operation. */
123		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
124			return n;
125		if (n == nsegs)
126			return 0;
127		seg[n].mr_page = NULL;
128		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
129		seg[n].mr_len = xdrbuf->tail[0].iov_len;
130		++n;
131	}
132
133	return n;
134}
135
136/*
137 * Create read/write chunk lists, and reply chunks, for RDMA
138 *
139 *   Assume check against THRESHOLD has been done, and chunks are required.
140 *   Assume only encoding one list entry for read|write chunks. The NFSv3
141 *     protocol is simple enough to allow this as it only has a single "bulk
142 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
144 *
145 * When used for a single reply chunk (which is a special write
146 * chunk used for the entire reply, rather than just the data), it
147 * is used primarily for READDIR and READLINK which would otherwise
148 * be severely size-limited by a small rdma inline read max. The server
149 * response will come back as an RDMA Write, followed by a message
150 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151 * chunks do not provide data alignment, however they do not require
152 * "fixup" (moving the response to the upper layer buffer) either.
153 *
154 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
155 *
156 *  Read chunklist (a linked list):
157 *   N elements, position P (same P for all chunks of same arg!):
158 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
159 *
160 *  Write chunklist (a list of (one) counted array):
161 *   N elements:
162 *    1 - N - HLOO - HLOO - ... - HLOO - 0
163 *
164 *  Reply chunk (a counted array):
165 *   N elements:
166 *    1 - N - HLOO - HLOO - ... - HLOO
167 */
168
169static unsigned int
170rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172{
173	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
175	int nsegs, nchunks = 0;
176	unsigned int pos;
177	struct rpcrdma_mr_seg *seg = req->rl_segments;
178	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179	struct rpcrdma_write_array *warray = NULL;
180	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181	__be32 *iptr = headerp->rm_body.rm_chunks;
182
183	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184		/* a read chunk - server will RDMA Read our memory */
185		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186	} else {
187		/* a write or reply chunk - server will RDMA Write our memory */
188		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189		if (type == rpcrdma_replych)
190			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191		warray = (struct rpcrdma_write_array *) iptr;
192		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193	}
194
195	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196		pos = 0;
197	else
198		pos = target->head[0].iov_len;
199
200	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201	if (nsegs == 0)
202		return 0;
203
204	do {
205		/* bind/register the memory, then build chunk from result. */
206		int n = rpcrdma_register_external(seg, nsegs,
207						cur_wchunk != NULL, r_xprt);
208		if (n <= 0)
209			goto out;
210		if (cur_rchunk) {	/* read */
211			cur_rchunk->rc_discrim = xdr_one;
212			/* all read chunks have the same "position" */
213			cur_rchunk->rc_position = htonl(pos);
214			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
215			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216			xdr_encode_hyper(
217					(__be32 *)&cur_rchunk->rc_target.rs_offset,
218					seg->mr_base);
219			dprintk("RPC:       %s: read chunk "
220				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221				seg->mr_len, (unsigned long long)seg->mr_base,
222				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223			cur_rchunk++;
224			r_xprt->rx_stats.read_chunk_count++;
225		} else {		/* write/reply */
226			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
227			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228			xdr_encode_hyper(
229					(__be32 *)&cur_wchunk->wc_target.rs_offset,
230					seg->mr_base);
231			dprintk("RPC:       %s: %s chunk "
232				"elem %d@0x%llx:0x%x (%s)\n", __func__,
233				(type == rpcrdma_replych) ? "reply" : "write",
234				seg->mr_len, (unsigned long long)seg->mr_base,
235				seg->mr_rkey, n < nsegs ? "more" : "last");
236			cur_wchunk++;
237			if (type == rpcrdma_replych)
238				r_xprt->rx_stats.reply_chunk_count++;
239			else
240				r_xprt->rx_stats.write_chunk_count++;
241			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
242		}
243		nchunks++;
244		seg   += n;
245		nsegs -= n;
246	} while (nsegs);
247
248	/* success. all failures return above */
249	req->rl_nchunks = nchunks;
250
251	BUG_ON(nchunks == 0);
252	BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
253	       && (nchunks > 3));
254
255	/*
256	 * finish off header. If write, marshal discrim and nchunks.
257	 */
258	if (cur_rchunk) {
259		iptr = (__be32 *) cur_rchunk;
260		*iptr++ = xdr_zero;	/* finish the read chunk list */
261		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
262		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
263	} else {
264		warray->wc_discrim = xdr_one;
265		warray->wc_nchunks = htonl(nchunks);
266		iptr = (__be32 *) cur_wchunk;
267		if (type == rpcrdma_writech) {
268			*iptr++ = xdr_zero; /* finish the write chunk list */
269			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
270		}
271	}
272
273	/*
274	 * Return header size.
275	 */
276	return (unsigned char *)iptr - (unsigned char *)headerp;
277
278out:
279	for (pos = 0; nchunks--;)
280		pos += rpcrdma_deregister_external(
281				&req->rl_segments[pos], r_xprt, NULL);
282	return 0;
283}
284
285/*
286 * Copy write data inline.
287 * This function is used for "small" requests. Data which is passed
288 * to RPC via iovecs (or page list) is copied directly into the
289 * pre-registered memory buffer for this request. For small amounts
290 * of data, this is efficient. The cutoff value is tunable.
291 */
292static int
293rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
294{
295	int i, npages, curlen;
296	int copy_len;
297	unsigned char *srcp, *destp;
298	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
299
300	destp = rqst->rq_svec[0].iov_base;
301	curlen = rqst->rq_svec[0].iov_len;
302	destp += curlen;
303	/*
304	 * Do optional padding where it makes sense. Alignment of write
305	 * payload can help the server, if our setting is accurate.
306	 */
307	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
308	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
309		pad = 0;	/* don't pad this request */
310
311	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
312		__func__, pad, destp, rqst->rq_slen, curlen);
313
314	copy_len = rqst->rq_snd_buf.page_len;
315
316	if (rqst->rq_snd_buf.tail[0].iov_len) {
317		curlen = rqst->rq_snd_buf.tail[0].iov_len;
318		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
319			memmove(destp + copy_len,
320				rqst->rq_snd_buf.tail[0].iov_base, curlen);
321			r_xprt->rx_stats.pullup_copy_count += curlen;
322		}
323		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
324			__func__, destp + copy_len, curlen);
325		rqst->rq_svec[0].iov_len += curlen;
326	}
327
328	r_xprt->rx_stats.pullup_copy_count += copy_len;
329	npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
330	for (i = 0; copy_len && i < npages; i++) {
331		if (i == 0)
332			curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
333		else
334			curlen = PAGE_SIZE;
335		if (curlen > copy_len)
336			curlen = copy_len;
337		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
338			__func__, i, destp, copy_len, curlen);
339		srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
340					KM_SKB_SUNRPC_DATA);
341		if (i == 0)
342			memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
343		else
344			memcpy(destp, srcp, curlen);
345		kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
346		rqst->rq_svec[0].iov_len += curlen;
347		destp += curlen;
348		copy_len -= curlen;
349	}
350	/* header now contains entire send message */
351	return pad;
352}
353
354/*
355 * Marshal a request: the primary job of this routine is to choose
356 * the transfer modes. See comments below.
357 *
358 * Uses multiple RDMA IOVs for a request:
359 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
360 *         preregistered buffer that already holds the RPC data in
361 *         its middle.
362 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
363 *  [2] -- optional padding.
364 *  [3] -- if padded, header only in [1] and data here.
365 */
366
367int
368rpcrdma_marshal_req(struct rpc_rqst *rqst)
369{
370	struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
371	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
372	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
373	char *base;
374	size_t hdrlen, rpclen, padlen;
375	enum rpcrdma_chunktype rtype, wtype;
376	struct rpcrdma_msg *headerp;
377
378	/*
379	 * rpclen gets amount of data in first buffer, which is the
380	 * pre-registered buffer.
381	 */
382	base = rqst->rq_svec[0].iov_base;
383	rpclen = rqst->rq_svec[0].iov_len;
384
385	/* build RDMA header in private area at front */
386	headerp = (struct rpcrdma_msg *) req->rl_base;
387	/* don't htonl XID, it's already done in request */
388	headerp->rm_xid = rqst->rq_xid;
389	headerp->rm_vers = xdr_one;
390	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
391	headerp->rm_type = htonl(RDMA_MSG);
392
393	/*
394	 * Chunks needed for results?
395	 *
396	 * o If the expected result is under the inline threshold, all ops
397	 *   return as inline (but see later).
398	 * o Large non-read ops return as a single reply chunk.
399	 * o Large read ops return data as write chunk(s), header as inline.
400	 *
401	 * Note: the NFS code sending down multiple result segments implies
402	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
403	 */
404
405	/*
406	 * This code can handle read chunks, write chunks OR reply
407	 * chunks -- only one type. If the request is too big to fit
408	 * inline, then we will choose read chunks. If the request is
409	 * a READ, then use write chunks to separate the file data
410	 * into pages; otherwise use reply chunks.
411	 */
412	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
413		wtype = rpcrdma_noch;
414	else if (rqst->rq_rcv_buf.page_len == 0)
415		wtype = rpcrdma_replych;
416	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
417		wtype = rpcrdma_writech;
418	else
419		wtype = rpcrdma_replych;
420
421	/*
422	 * Chunks needed for arguments?
423	 *
424	 * o If the total request is under the inline threshold, all ops
425	 *   are sent as inline.
426	 * o Large non-write ops are sent with the entire message as a
427	 *   single read chunk (protocol 0-position special case).
428	 * o Large write ops transmit data as read chunk(s), header as
429	 *   inline.
430	 *
431	 * Note: the NFS code sending down multiple argument segments
432	 * implies the op is a write.
433	 * TBD check NFSv4 setacl
434	 */
435	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
436		rtype = rpcrdma_noch;
437	else if (rqst->rq_snd_buf.page_len == 0)
438		rtype = rpcrdma_areadch;
439	else
440		rtype = rpcrdma_readch;
441
442	/* The following simplification is not true forever */
443	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
444		wtype = rpcrdma_noch;
445	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
446
447	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
448	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
449		/* forced to "pure inline"? */
450		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
451			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
452		return -1;
453	}
454
455	hdrlen = 28; /*sizeof *headerp;*/
456	padlen = 0;
457
458	/*
459	 * Pull up any extra send data into the preregistered buffer.
460	 * When padding is in use and applies to the transfer, insert
461	 * it and change the message type.
462	 */
463	if (rtype == rpcrdma_noch) {
464
465		padlen = rpcrdma_inline_pullup(rqst,
466						RPCRDMA_INLINE_PAD_VALUE(rqst));
467
468		if (padlen) {
469			headerp->rm_type = htonl(RDMA_MSGP);
470			headerp->rm_body.rm_padded.rm_align =
471				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
472			headerp->rm_body.rm_padded.rm_thresh =
473				htonl(RPCRDMA_INLINE_PAD_THRESH);
474			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
475			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
476			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
477			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
478			BUG_ON(wtype != rpcrdma_noch);
479
480		} else {
481			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
482			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
483			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
484			/* new length after pullup */
485			rpclen = rqst->rq_svec[0].iov_len;
486			/*
487			 * Currently we try to not actually use read inline.
488			 * Reply chunks have the desirable property that
489			 * they land, packed, directly in the target buffers
490			 * without headers, so they require no fixup. The
491			 * additional RDMA Write op sends the same amount
492			 * of data, streams on-the-wire and adds no overhead
493			 * on receive. Therefore, we request a reply chunk
494			 * for non-writes wherever feasible and efficient.
495			 */
496			if (wtype == rpcrdma_noch &&
497			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
498				wtype = rpcrdma_replych;
499		}
500	}
501
502	/*
503	 * Marshal chunks. This routine will return the header length
504	 * consumed by marshaling.
505	 */
506	if (rtype != rpcrdma_noch) {
507		hdrlen = rpcrdma_create_chunks(rqst,
508					&rqst->rq_snd_buf, headerp, rtype);
509		wtype = rtype;	/* simplify dprintk */
510
511	} else if (wtype != rpcrdma_noch) {
512		hdrlen = rpcrdma_create_chunks(rqst,
513					&rqst->rq_rcv_buf, headerp, wtype);
514	}
515
516	if (hdrlen == 0)
517		return -1;
518
519	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
520		" headerp 0x%p base 0x%p lkey 0x%x\n",
521		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
522		headerp, base, req->rl_iov.lkey);
523
524	/*
525	 * initialize send_iov's - normally only two: rdma chunk header and
526	 * single preregistered RPC header buffer, but if padding is present,
527	 * then use a preregistered (and zeroed) pad buffer between the RPC
528	 * header and any write data. In all non-rdma cases, any following
529	 * data has been copied into the RPC header buffer.
530	 */
531	req->rl_send_iov[0].addr = req->rl_iov.addr;
532	req->rl_send_iov[0].length = hdrlen;
533	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
534
535	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
536	req->rl_send_iov[1].length = rpclen;
537	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
538
539	req->rl_niovs = 2;
540
541	if (padlen) {
542		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
543
544		req->rl_send_iov[2].addr = ep->rep_pad.addr;
545		req->rl_send_iov[2].length = padlen;
546		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
547
548		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
549		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
550		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
551
552		req->rl_niovs = 4;
553	}
554
555	return 0;
556}
557
558/*
559 * Chase down a received write or reply chunklist to get length
560 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
561 */
562static int
563rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
564{
565	unsigned int i, total_len;
566	struct rpcrdma_write_chunk *cur_wchunk;
567
568	i = ntohl(**iptrp);	/* get array count */
569	if (i > max)
570		return -1;
571	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
572	total_len = 0;
573	while (i--) {
574		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
575		ifdebug(FACILITY) {
576			u64 off;
577			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
578			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
579				__func__,
580				ntohl(seg->rs_length),
581				(unsigned long long)off,
582				ntohl(seg->rs_handle));
583		}
584		total_len += ntohl(seg->rs_length);
585		++cur_wchunk;
586	}
587	/* check and adjust for properly terminated write chunk */
588	if (wrchunk) {
589		__be32 *w = (__be32 *) cur_wchunk;
590		if (*w++ != xdr_zero)
591			return -1;
592		cur_wchunk = (struct rpcrdma_write_chunk *) w;
593	}
594	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
595		return -1;
596
597	*iptrp = (__be32 *) cur_wchunk;
598	return total_len;
599}
600
601/*
602 * Scatter inline received data back into provided iov's.
603 */
604static void
605rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
606{
607	int i, npages, curlen, olen;
608	char *destp;
609
610	curlen = rqst->rq_rcv_buf.head[0].iov_len;
611	if (curlen > copy_len) {	/* write chunk header fixup */
612		curlen = copy_len;
613		rqst->rq_rcv_buf.head[0].iov_len = curlen;
614	}
615
616	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
617		__func__, srcp, copy_len, curlen);
618
619	/* Shift pointer for first receive segment only */
620	rqst->rq_rcv_buf.head[0].iov_base = srcp;
621	srcp += curlen;
622	copy_len -= curlen;
623
624	olen = copy_len;
625	i = 0;
626	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
627	if (copy_len && rqst->rq_rcv_buf.page_len) {
628		npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
629			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
630		for (; i < npages; i++) {
631			if (i == 0)
632				curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
633			else
634				curlen = PAGE_SIZE;
635			if (curlen > copy_len)
636				curlen = copy_len;
637			dprintk("RPC:       %s: page %d"
638				" srcp 0x%p len %d curlen %d\n",
639				__func__, i, srcp, copy_len, curlen);
640			destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
641						KM_SKB_SUNRPC_DATA);
642			if (i == 0)
643				memcpy(destp + rqst->rq_rcv_buf.page_base,
644						srcp, curlen);
645			else
646				memcpy(destp, srcp, curlen);
647			flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
648			kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
649			srcp += curlen;
650			copy_len -= curlen;
651			if (copy_len == 0)
652				break;
653		}
654		rqst->rq_rcv_buf.page_len = olen - copy_len;
655	} else
656		rqst->rq_rcv_buf.page_len = 0;
657
658	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
659		curlen = copy_len;
660		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
661			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
662		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
663			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
664		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
665			__func__, srcp, copy_len, curlen);
666		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
667		copy_len -= curlen; ++i;
668	} else
669		rqst->rq_rcv_buf.tail[0].iov_len = 0;
670
671	if (pad) {
672		/* implicit padding on terminal chunk */
673		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
674		while (pad--)
675			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
676	}
677
678	if (copy_len)
679		dprintk("RPC:       %s: %d bytes in"
680			" %d extra segments (%d lost)\n",
681			__func__, olen, i, copy_len);
682
683	/* TBD avoid a warning from call_decode() */
684	rqst->rq_private_buf = rqst->rq_rcv_buf;
685}
686
687/*
688 * This function is called when an async event is posted to
689 * the connection which changes the connection state. All it
690 * does at this point is mark the connection up/down, the rpc
691 * timers do the rest.
692 */
693void
694rpcrdma_conn_func(struct rpcrdma_ep *ep)
695{
696	struct rpc_xprt *xprt = ep->rep_xprt;
697
698	spin_lock_bh(&xprt->transport_lock);
699	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
700		++xprt->connect_cookie;
701	if (ep->rep_connected > 0) {
702		if (!xprt_test_and_set_connected(xprt))
703			xprt_wake_pending_tasks(xprt, 0);
704	} else {
705		if (xprt_test_and_clear_connected(xprt))
706			xprt_wake_pending_tasks(xprt, -ENOTCONN);
707	}
708	spin_unlock_bh(&xprt->transport_lock);
709}
710
711/*
712 * This function is called when memory window unbind which we are waiting
713 * for completes. Just use rr_func (zeroed by upcall) to signal completion.
714 */
715static void
716rpcrdma_unbind_func(struct rpcrdma_rep *rep)
717{
718	wake_up(&rep->rr_unbind);
719}
720
721/*
722 * Called as a tasklet to do req/reply match and complete a request
723 * Errors must result in the RPC task either being awakened, or
724 * allowed to timeout, to discover the errors at that time.
725 */
726void
727rpcrdma_reply_handler(struct rpcrdma_rep *rep)
728{
729	struct rpcrdma_msg *headerp;
730	struct rpcrdma_req *req;
731	struct rpc_rqst *rqst;
732	struct rpc_xprt *xprt = rep->rr_xprt;
733	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
734	__be32 *iptr;
735	int i, rdmalen, status;
736
737	/* Check status. If bad, signal disconnect and return rep to pool */
738	if (rep->rr_len == ~0U) {
739		rpcrdma_recv_buffer_put(rep);
740		if (r_xprt->rx_ep.rep_connected == 1) {
741			r_xprt->rx_ep.rep_connected = -EIO;
742			rpcrdma_conn_func(&r_xprt->rx_ep);
743		}
744		return;
745	}
746	if (rep->rr_len < 28) {
747		dprintk("RPC:       %s: short/invalid reply\n", __func__);
748		goto repost;
749	}
750	headerp = (struct rpcrdma_msg *) rep->rr_base;
751	if (headerp->rm_vers != xdr_one) {
752		dprintk("RPC:       %s: invalid version %d\n",
753			__func__, ntohl(headerp->rm_vers));
754		goto repost;
755	}
756
757	/* Get XID and try for a match. */
758	spin_lock(&xprt->transport_lock);
759	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
760	if (rqst == NULL) {
761		spin_unlock(&xprt->transport_lock);
762		dprintk("RPC:       %s: reply 0x%p failed "
763			"to match any request xid 0x%08x len %d\n",
764			__func__, rep, headerp->rm_xid, rep->rr_len);
765repost:
766		r_xprt->rx_stats.bad_reply_count++;
767		rep->rr_func = rpcrdma_reply_handler;
768		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
769			rpcrdma_recv_buffer_put(rep);
770
771		return;
772	}
773
774	/* get request object */
775	req = rpcr_to_rdmar(rqst);
776
777	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
778		"                   RPC request 0x%p xid 0x%08x\n",
779			__func__, rep, req, rqst, headerp->rm_xid);
780
781	BUG_ON(!req || req->rl_reply);
782
783	/* from here on, the reply is no longer an orphan */
784	req->rl_reply = rep;
785
786	/* check for expected message types */
787	/* The order of some of these tests is important. */
788	switch (headerp->rm_type) {
789	case htonl(RDMA_MSG):
790		/* never expect read chunks */
791		/* never expect reply chunks (two ways to check) */
792		/* never expect write chunks without having offered RDMA */
793		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
794		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
795		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
796		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
797		     req->rl_nchunks == 0))
798			goto badheader;
799		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
800			/* count any expected write chunks in read reply */
801			/* start at write chunk array count */
802			iptr = &headerp->rm_body.rm_chunks[2];
803			rdmalen = rpcrdma_count_chunks(rep,
804						req->rl_nchunks, 1, &iptr);
805			/* check for validity, and no reply chunk after */
806			if (rdmalen < 0 || *iptr++ != xdr_zero)
807				goto badheader;
808			rep->rr_len -=
809			    ((unsigned char *)iptr - (unsigned char *)headerp);
810			status = rep->rr_len + rdmalen;
811			r_xprt->rx_stats.total_rdma_reply += rdmalen;
812			/* special case - last chunk may omit padding */
813			if (rdmalen &= 3) {
814				rdmalen = 4 - rdmalen;
815				status += rdmalen;
816			}
817		} else {
818			/* else ordinary inline */
819			rdmalen = 0;
820			iptr = (__be32 *)((unsigned char *)headerp + 28);
821			rep->rr_len -= 28; /*sizeof *headerp;*/
822			status = rep->rr_len;
823		}
824		/* Fix up the rpc results for upper layer */
825		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
826		break;
827
828	case htonl(RDMA_NOMSG):
829		/* never expect read or write chunks, always reply chunks */
830		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
831		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
832		    headerp->rm_body.rm_chunks[2] != xdr_one ||
833		    req->rl_nchunks == 0)
834			goto badheader;
835		iptr = (__be32 *)((unsigned char *)headerp + 28);
836		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
837		if (rdmalen < 0)
838			goto badheader;
839		r_xprt->rx_stats.total_rdma_reply += rdmalen;
840		/* Reply chunk buffer already is the reply vector - no fixup. */
841		status = rdmalen;
842		break;
843
844badheader:
845	default:
846		dprintk("%s: invalid rpcrdma reply header (type %d):"
847				" chunks[012] == %d %d %d"
848				" expected chunks <= %d\n",
849				__func__, ntohl(headerp->rm_type),
850				headerp->rm_body.rm_chunks[0],
851				headerp->rm_body.rm_chunks[1],
852				headerp->rm_body.rm_chunks[2],
853				req->rl_nchunks);
854		status = -EIO;
855		r_xprt->rx_stats.bad_reply_count++;
856		break;
857	}
858
859	/* If using mw bind, start the deregister process now. */
860	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
861	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
862	case RPCRDMA_MEMWINDOWS:
863		for (i = 0; req->rl_nchunks-- > 1;)
864			i += rpcrdma_deregister_external(
865				&req->rl_segments[i], r_xprt, NULL);
866		/* Optionally wait (not here) for unbinds to complete */
867		rep->rr_func = rpcrdma_unbind_func;
868		(void) rpcrdma_deregister_external(&req->rl_segments[i],
869						   r_xprt, rep);
870		break;
871	case RPCRDMA_MEMWINDOWS_ASYNC:
872		for (i = 0; req->rl_nchunks--;)
873			i += rpcrdma_deregister_external(&req->rl_segments[i],
874							 r_xprt, NULL);
875		break;
876	default:
877		break;
878	}
879
880	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
881			__func__, xprt, rqst, status);
882	xprt_complete_rqst(rqst->rq_task, status);
883	spin_unlock(&xprt->transport_lock);
884}
885