1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks and only
7 * uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 */
11
12#include <linux/mm.h>
13#include <linux/swap.h> /* struct reclaim_state */
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/kmemcheck.h>
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
26#include <linux/debugobjects.h>
27#include <linux/kallsyms.h>
28#include <linux/memory.h>
29#include <linux/math64.h>
30#include <linux/fault-inject.h>
31
32#include <typedefs.h>
33#include <bcmdefs.h>
34
35/*
36 * Lock order:
37 *   1. slab_lock(page)
38 *   2. slab->list_lock
39 *
40 *   The slab_lock protects operations on the object of a particular
41 *   slab and its metadata in the page struct. If the slab lock
42 *   has been taken then no allocations nor frees can be performed
43 *   on the objects in the slab nor can the slab be added or removed
44 *   from the partial or full lists since this would mean modifying
45 *   the page_struct of the slab.
46 *
47 *   The list_lock protects the partial and full list on each node and
48 *   the partial slab counter. If taken then no new slabs may be added or
49 *   removed from the lists nor make the number of partial slabs be modified.
50 *   (Note that the total number of slabs is an atomic value that may be
51 *   modified without taking the list lock).
52 *
53 *   The list_lock is a centralized lock and thus we avoid taking it as
54 *   much as possible. As long as SLUB does not have to handle partial
55 *   slabs, operations can continue without any centralized lock. F.e.
56 *   allocating a long series of objects that fill up slabs does not require
57 *   the list lock.
58 *
59 *   The lock order is sometimes inverted when we are trying to get a slab
60 *   off a list. We take the list_lock and then look for a page on the list
61 *   to use. While we do that objects in the slabs may be freed. We can
62 *   only operate on the slab if we have also taken the slab_lock. So we use
63 *   a slab_trylock() on the slab. If trylock was successful then no frees
64 *   can occur anymore and we can use the slab for allocations etc. If the
65 *   slab_trylock() does not succeed then frees are in progress in the slab and
66 *   we must stay away from it for a while since we may cause a bouncing
67 *   cacheline if we try to acquire the lock. So go onto the next slab.
68 *   If all pages are busy then we may allocate a new slab instead of reusing
69 *   a partial slab. A new slab has noone operating on it and thus there is
70 *   no danger of cacheline contention.
71 *
72 *   Interrupts are disabled during allocation and deallocation in order to
73 *   make the slab allocator safe to use in the context of an irq. In addition
74 *   interrupts are disabled to ensure that the processor does not change
75 *   while handling per_cpu slabs, due to kernel preemption.
76 *
77 * SLUB assigns one slab for allocation to each processor.
78 * Allocations only occur from these slabs called cpu slabs.
79 *
80 * Slabs with free elements are kept on a partial list and during regular
81 * operations no list for full slabs is used. If an object in a full slab is
82 * freed then the slab will show up again on the partial lists.
83 * We track full slabs for debugging purposes though because otherwise we
84 * cannot scan all objects.
85 *
86 * Slabs are freed when they become empty. Teardown and setup is
87 * minimal so we rely on the page allocators per cpu caches for
88 * fast frees and allocs.
89 *
90 * Overloading of page flags that are otherwise used for LRU management.
91 *
92 * PageActive 		The slab is frozen and exempt from list processing.
93 * 			This means that the slab is dedicated to a purpose
94 * 			such as satisfying allocations for a specific
95 * 			processor. Objects may be freed in the slab while
96 * 			it is frozen but slab_free will then skip the usual
97 * 			list operations. It is up to the processor holding
98 * 			the slab to integrate the slab into the slab lists
99 * 			when the slab is no longer needed.
100 *
101 * 			One use of this flag is to mark slabs that are
102 * 			used for allocations. Then such a slab becomes a cpu
103 * 			slab. The cpu slab may be equipped with an additional
104 * 			freelist that allows lockless access to
105 * 			free objects in addition to the regular freelist
106 * 			that requires the slab lock.
107 *
108 * PageError		Slab requires special handling due to debug
109 * 			options set. This moves	slab handling out of
110 * 			the fast path and disables lockless freelists.
111 */
112
113#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
114		SLAB_TRACE | SLAB_DEBUG_FREE)
115
116static inline int kmem_cache_debug(struct kmem_cache *s)
117{
118#ifdef CONFIG_SLUB_DEBUG
119	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
120#else
121	return 0;
122#endif
123}
124
125/*
126 * Issues still to be resolved:
127 *
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
130 * - Variable sizing of the per node arrays
131 */
132
133/* Enable to test recovery from slab corruption on boot */
134#undef SLUB_RESILIENCY_TEST
135
136/*
137 * Mininum number of partial slabs. These will be left on the partial
138 * lists even if they are empty. kmem_cache_shrink may reclaim them.
139 */
140#define MIN_PARTIAL 5
141
142/*
143 * Maximum number of desirable partial slabs.
144 * The existence of more partial slabs makes kmem_cache_shrink
145 * sort the partial list by the number of objects in the.
146 */
147#define MAX_PARTIAL 10
148
149#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
150				SLAB_POISON | SLAB_STORE_USER)
151
152/*
153 * Debugging flags that require metadata to be stored in the slab.  These get
154 * disabled when slub_debug=O is used and a cache's min order increases with
155 * metadata.
156 */
157#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
158
159/*
160 * Set of flags that will prevent slab merging
161 */
162#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
163		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
164		SLAB_FAILSLAB)
165
166#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
167		SLAB_CACHE_DMA | SLAB_NOTRACK)
168
169#define OO_SHIFT	16
170#define OO_MASK		((1 << OO_SHIFT) - 1)
171#define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
172
173/* Internal SLUB flags */
174#define __OBJECT_POISON		0x80000000UL /* Poison object */
175#define __SYSFS_ADD_DEFERRED	0x40000000UL /* Not yet visible via sysfs */
176
177static int kmem_size = sizeof(struct kmem_cache);
178
179#ifdef CONFIG_SMP
180static struct notifier_block slab_notifier;
181#endif
182
183static enum {
184	DOWN,		/* No slab functionality available */
185	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
186	UP,		/* Everything works but does not show up in sysfs */
187	SYSFS		/* Sysfs up */
188} slab_state = DOWN;
189
190/* A list of all slab caches on the system */
191static DECLARE_RWSEM(slub_lock);
192static LIST_HEAD(slab_caches);
193
194/*
195 * Tracking user of a slab.
196 */
197struct track {
198	unsigned long addr;	/* Called from address */
199	int cpu;		/* Was running on cpu */
200	int pid;		/* Pid context */
201	unsigned long when;	/* When did the operation occur */
202};
203
204enum track_item { TRACK_ALLOC, TRACK_FREE };
205
206#ifdef CONFIG_SLUB_DEBUG
207static int sysfs_slab_add(struct kmem_cache *);
208static int sysfs_slab_alias(struct kmem_cache *, const char *);
209static void sysfs_slab_remove(struct kmem_cache *);
210
211#else
212static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
213static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
214							{ return 0; }
215static inline void sysfs_slab_remove(struct kmem_cache *s)
216{
217	kfree(s);
218}
219
220#endif
221
222static inline void stat(struct kmem_cache *s, enum stat_item si)
223{
224#ifdef CONFIG_SLUB_STATS
225	__this_cpu_inc(s->cpu_slab->stat[si]);
226#endif
227}
228
229/********************************************************************
230 * 			Core slab cache functions
231 *******************************************************************/
232
233int slab_is_available(void)
234{
235	return slab_state >= UP;
236}
237
238static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
239{
240#ifdef CONFIG_NUMA
241	return s->node[node];
242#else
243	return &s->local_node;
244#endif
245}
246
247/* Verify that a pointer has an address that is valid within a slab page */
248static inline int check_valid_pointer(struct kmem_cache *s,
249				struct page *page, const void *object)
250{
251	void *base;
252
253	if (!object)
254		return 1;
255
256	base = page_address(page);
257	if (object < base || object >= base + page->objects * s->size ||
258		(object - base) % s->size) {
259		return 0;
260	}
261
262	return 1;
263}
264
265static inline void *get_freepointer(struct kmem_cache *s, void *object)
266{
267	return *(void **)(object + s->offset);
268}
269
270static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271{
272	*(void **)(object + s->offset) = fp;
273}
274
275/* Loop over all objects in a slab */
276#define for_each_object(__p, __s, __addr, __objects) \
277	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
278			__p += (__s)->size)
279
280/* Scan freelist */
281#define for_each_free_object(__p, __s, __free) \
282	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
283
284/* Determine object index from a given position */
285static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
286{
287	return (p - addr) / s->size;
288}
289
290static inline struct kmem_cache_order_objects oo_make(int order,
291						unsigned long size)
292{
293	struct kmem_cache_order_objects x = {
294		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
295	};
296
297	return x;
298}
299
300static inline int oo_order(struct kmem_cache_order_objects x)
301{
302	return x.x >> OO_SHIFT;
303}
304
305static inline int oo_objects(struct kmem_cache_order_objects x)
306{
307	return x.x & OO_MASK;
308}
309
310#ifdef CONFIG_SLUB_DEBUG
311/*
312 * Debug settings:
313 */
314#ifdef CONFIG_SLUB_DEBUG_ON
315static int slub_debug = DEBUG_DEFAULT_FLAGS;
316#else
317static int slub_debug;
318#endif
319
320static char *slub_debug_slabs;
321static int disable_higher_order_debug;
322
323/*
324 * Object debugging
325 */
326static void print_section(char *text, u8 *addr, unsigned int length)
327{
328	int i, offset;
329	int newline = 1;
330	char ascii[17];
331
332	ascii[16] = 0;
333
334	for (i = 0; i < length; i++) {
335		if (newline) {
336			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
337			newline = 0;
338		}
339		printk(KERN_CONT " %02x", addr[i]);
340		offset = i % 16;
341		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
342		if (offset == 15) {
343			printk(KERN_CONT " %s\n", ascii);
344			newline = 1;
345		}
346	}
347	if (!newline) {
348		i %= 16;
349		while (i < 16) {
350			printk(KERN_CONT "   ");
351			ascii[i] = ' ';
352			i++;
353		}
354		printk(KERN_CONT " %s\n", ascii);
355	}
356}
357
358static struct track *get_track(struct kmem_cache *s, void *object,
359	enum track_item alloc)
360{
361	struct track *p;
362
363	if (s->offset)
364		p = object + s->offset + sizeof(void *);
365	else
366		p = object + s->inuse;
367
368	return p + alloc;
369}
370
371static void set_track(struct kmem_cache *s, void *object,
372			enum track_item alloc, unsigned long addr)
373{
374	struct track *p = get_track(s, object, alloc);
375
376	if (addr) {
377		p->addr = addr;
378		p->cpu = smp_processor_id();
379		p->pid = current->pid;
380		p->when = jiffies;
381	} else
382		memset(p, 0, sizeof(struct track));
383}
384
385static void init_tracking(struct kmem_cache *s, void *object)
386{
387	if (!(s->flags & SLAB_STORE_USER))
388		return;
389
390	set_track(s, object, TRACK_FREE, 0UL);
391	set_track(s, object, TRACK_ALLOC, 0UL);
392}
393
394static void print_track(const char *s, struct track *t)
395{
396	if (!t->addr)
397		return;
398
399	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
400		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
401}
402
403static void print_tracking(struct kmem_cache *s, void *object)
404{
405	if (!(s->flags & SLAB_STORE_USER))
406		return;
407
408	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
409	print_track("Freed", get_track(s, object, TRACK_FREE));
410}
411
412static void print_page_info(struct page *page)
413{
414	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
415		page, page->objects, page->inuse, page->freelist, page->flags);
416
417}
418
419static void slab_bug(struct kmem_cache *s, char *fmt, ...)
420{
421	va_list args;
422	char buf[100];
423
424	va_start(args, fmt);
425	vsnprintf(buf, sizeof(buf), fmt, args);
426	va_end(args);
427	printk(KERN_ERR "========================================"
428			"=====================================\n");
429	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
430	printk(KERN_ERR "----------------------------------------"
431			"-------------------------------------\n\n");
432}
433
434static void slab_fix(struct kmem_cache *s, char *fmt, ...)
435{
436	va_list args;
437	char buf[100];
438
439	va_start(args, fmt);
440	vsnprintf(buf, sizeof(buf), fmt, args);
441	va_end(args);
442	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
443}
444
445static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
446{
447	unsigned int off;	/* Offset of last byte */
448	u8 *addr = page_address(page);
449
450	print_tracking(s, p);
451
452	print_page_info(page);
453
454	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
455			p, p - addr, get_freepointer(s, p));
456
457	if (p > addr + 16)
458		print_section("Bytes b4", p - 16, 16);
459
460	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
461
462	if (s->flags & SLAB_RED_ZONE)
463		print_section("Redzone", p + s->objsize,
464			s->inuse - s->objsize);
465
466	if (s->offset)
467		off = s->offset + sizeof(void *);
468	else
469		off = s->inuse;
470
471	if (s->flags & SLAB_STORE_USER)
472		off += 2 * sizeof(struct track);
473
474	if (off != s->size)
475		/* Beginning of the filler is the free pointer */
476		print_section("Padding", p + off, s->size - off);
477
478	dump_stack();
479}
480
481static void object_err(struct kmem_cache *s, struct page *page,
482			u8 *object, char *reason)
483{
484	slab_bug(s, "%s", reason);
485	print_trailer(s, page, object);
486}
487
488static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
489{
490	va_list args;
491	char buf[100];
492
493	va_start(args, fmt);
494	vsnprintf(buf, sizeof(buf), fmt, args);
495	va_end(args);
496	slab_bug(s, "%s", buf);
497	print_page_info(page);
498	dump_stack();
499}
500
501static void init_object(struct kmem_cache *s, void *object, int active)
502{
503	u8 *p = object;
504
505	if (s->flags & __OBJECT_POISON) {
506		memset(p, POISON_FREE, s->objsize - 1);
507		p[s->objsize - 1] = POISON_END;
508	}
509
510	if (s->flags & SLAB_RED_ZONE)
511		memset(p + s->objsize,
512			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
513			s->inuse - s->objsize);
514}
515
516static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
517{
518	while (bytes) {
519		if (*start != (u8)value)
520			return start;
521		start++;
522		bytes--;
523	}
524	return NULL;
525}
526
527static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
528						void *from, void *to)
529{
530	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
531	memset(from, data, to - from);
532}
533
534static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
535			u8 *object, char *what,
536			u8 *start, unsigned int value, unsigned int bytes)
537{
538	u8 *fault;
539	u8 *end;
540
541	fault = check_bytes(start, value, bytes);
542	if (!fault)
543		return 1;
544
545	end = start + bytes;
546	while (end > fault && end[-1] == value)
547		end--;
548
549	slab_bug(s, "%s overwritten", what);
550	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
551					fault, end - 1, fault[0], value);
552	print_trailer(s, page, object);
553
554	restore_bytes(s, what, value, fault, end);
555	return 0;
556}
557
558/*
559 * Object layout:
560 *
561 * object address
562 * 	Bytes of the object to be managed.
563 * 	If the freepointer may overlay the object then the free
564 * 	pointer is the first word of the object.
565 *
566 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
567 * 	0xa5 (POISON_END)
568 *
569 * object + s->objsize
570 * 	Padding to reach word boundary. This is also used for Redzoning.
571 * 	Padding is extended by another word if Redzoning is enabled and
572 * 	objsize == inuse.
573 *
574 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
575 * 	0xcc (RED_ACTIVE) for objects in use.
576 *
577 * object + s->inuse
578 * 	Meta data starts here.
579 *
580 * 	A. Free pointer (if we cannot overwrite object on free)
581 * 	B. Tracking data for SLAB_STORE_USER
582 * 	C. Padding to reach required alignment boundary or at mininum
583 * 		one word if debugging is on to be able to detect writes
584 * 		before the word boundary.
585 *
586 *	Padding is done using 0x5a (POISON_INUSE)
587 *
588 * object + s->size
589 * 	Nothing is used beyond s->size.
590 *
591 * If slabcaches are merged then the objsize and inuse boundaries are mostly
592 * ignored. And therefore no slab options that rely on these boundaries
593 * may be used with merged slabcaches.
594 */
595
596static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
597{
598	unsigned long off = s->inuse;	/* The end of info */
599
600	if (s->offset)
601		/* Freepointer is placed after the object. */
602		off += sizeof(void *);
603
604	if (s->flags & SLAB_STORE_USER)
605		/* We also have user information there */
606		off += 2 * sizeof(struct track);
607
608	if (s->size == off)
609		return 1;
610
611	return check_bytes_and_report(s, page, p, "Object padding",
612				p + off, POISON_INUSE, s->size - off);
613}
614
615/* Check the pad bytes at the end of a slab page */
616static int slab_pad_check(struct kmem_cache *s, struct page *page)
617{
618	u8 *start;
619	u8 *fault;
620	u8 *end;
621	int length;
622	int remainder;
623
624	if (!(s->flags & SLAB_POISON))
625		return 1;
626
627	start = page_address(page);
628	length = (PAGE_SIZE << compound_order(page));
629	end = start + length;
630	remainder = length % s->size;
631	if (!remainder)
632		return 1;
633
634	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
635	if (!fault)
636		return 1;
637	while (end > fault && end[-1] == POISON_INUSE)
638		end--;
639
640	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
641	print_section("Padding", end - remainder, remainder);
642
643	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
644	return 0;
645}
646
647static int check_object(struct kmem_cache *s, struct page *page,
648					void *object, int active)
649{
650	u8 *p = object;
651	u8 *endobject = object + s->objsize;
652
653	if (s->flags & SLAB_RED_ZONE) {
654		unsigned int red =
655			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
656
657		if (!check_bytes_and_report(s, page, object, "Redzone",
658			endobject, red, s->inuse - s->objsize))
659			return 0;
660	} else {
661		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
662			check_bytes_and_report(s, page, p, "Alignment padding",
663				endobject, POISON_INUSE, s->inuse - s->objsize);
664		}
665	}
666
667	if (s->flags & SLAB_POISON) {
668		if (!active && (s->flags & __OBJECT_POISON) &&
669			(!check_bytes_and_report(s, page, p, "Poison", p,
670					POISON_FREE, s->objsize - 1) ||
671			 !check_bytes_and_report(s, page, p, "Poison",
672				p + s->objsize - 1, POISON_END, 1)))
673			return 0;
674		/*
675		 * check_pad_bytes cleans up on its own.
676		 */
677		check_pad_bytes(s, page, p);
678	}
679
680	if (!s->offset && active)
681		/*
682		 * Object and freepointer overlap. Cannot check
683		 * freepointer while object is allocated.
684		 */
685		return 1;
686
687	/* Check free pointer validity */
688	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
689		object_err(s, page, p, "Freepointer corrupt");
690		/*
691		 * No choice but to zap it and thus lose the remainder
692		 * of the free objects in this slab. May cause
693		 * another error because the object count is now wrong.
694		 */
695		set_freepointer(s, p, NULL);
696		return 0;
697	}
698	return 1;
699}
700
701static int check_slab(struct kmem_cache *s, struct page *page)
702{
703	int maxobj;
704
705	VM_BUG_ON(!irqs_disabled());
706
707	if (!PageSlab(page)) {
708		slab_err(s, page, "Not a valid slab page");
709		return 0;
710	}
711
712	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
713	if (page->objects > maxobj) {
714		slab_err(s, page, "objects %u > max %u",
715			s->name, page->objects, maxobj);
716		return 0;
717	}
718	if (page->inuse > page->objects) {
719		slab_err(s, page, "inuse %u > max %u",
720			s->name, page->inuse, page->objects);
721		return 0;
722	}
723	/* Slab_pad_check fixes things up after itself */
724	slab_pad_check(s, page);
725	return 1;
726}
727
728/*
729 * Determine if a certain object on a page is on the freelist. Must hold the
730 * slab lock to guarantee that the chains are in a consistent state.
731 */
732static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
733{
734	int nr = 0;
735	void *fp = page->freelist;
736	void *object = NULL;
737	unsigned long max_objects;
738
739	while (fp && nr <= page->objects) {
740		if (fp == search)
741			return 1;
742		if (!check_valid_pointer(s, page, fp)) {
743			if (object) {
744				object_err(s, page, object,
745					"Freechain corrupt");
746				set_freepointer(s, object, NULL);
747				break;
748			} else {
749				slab_err(s, page, "Freepointer corrupt");
750				page->freelist = NULL;
751				page->inuse = page->objects;
752				slab_fix(s, "Freelist cleared");
753				return 0;
754			}
755			break;
756		}
757		object = fp;
758		fp = get_freepointer(s, object);
759		nr++;
760	}
761
762	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
763	if (max_objects > MAX_OBJS_PER_PAGE)
764		max_objects = MAX_OBJS_PER_PAGE;
765
766	if (page->objects != max_objects) {
767		slab_err(s, page, "Wrong number of objects. Found %d but "
768			"should be %d", page->objects, max_objects);
769		page->objects = max_objects;
770		slab_fix(s, "Number of objects adjusted.");
771	}
772	if (page->inuse != page->objects - nr) {
773		slab_err(s, page, "Wrong object count. Counter is %d but "
774			"counted were %d", page->inuse, page->objects - nr);
775		page->inuse = page->objects - nr;
776		slab_fix(s, "Object count adjusted.");
777	}
778	return search == NULL;
779}
780
781static void trace(struct kmem_cache *s, struct page *page, void *object,
782								int alloc)
783{
784	if (s->flags & SLAB_TRACE) {
785		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
786			s->name,
787			alloc ? "alloc" : "free",
788			object, page->inuse,
789			page->freelist);
790
791		if (!alloc)
792			print_section("Object", (void *)object, s->objsize);
793
794		dump_stack();
795	}
796}
797
798/*
799 * Tracking of fully allocated slabs for debugging purposes.
800 */
801static void add_full(struct kmem_cache_node *n, struct page *page)
802{
803	spin_lock(&n->list_lock);
804	list_add(&page->lru, &n->full);
805	spin_unlock(&n->list_lock);
806}
807
808static void remove_full(struct kmem_cache *s, struct page *page)
809{
810	struct kmem_cache_node *n;
811
812	if (!(s->flags & SLAB_STORE_USER))
813		return;
814
815	n = get_node(s, page_to_nid(page));
816
817	spin_lock(&n->list_lock);
818	list_del(&page->lru);
819	spin_unlock(&n->list_lock);
820}
821
822/* Tracking of the number of slabs for debugging purposes */
823static inline unsigned long slabs_node(struct kmem_cache *s, int node)
824{
825	struct kmem_cache_node *n = get_node(s, node);
826
827	return atomic_long_read(&n->nr_slabs);
828}
829
830static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
831{
832	return atomic_long_read(&n->nr_slabs);
833}
834
835static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
836{
837	struct kmem_cache_node *n = get_node(s, node);
838
839	/*
840	 * May be called early in order to allocate a slab for the
841	 * kmem_cache_node structure. Solve the chicken-egg
842	 * dilemma by deferring the increment of the count during
843	 * bootstrap (see early_kmem_cache_node_alloc).
844	 */
845	if (!NUMA_BUILD || n) {
846		atomic_long_inc(&n->nr_slabs);
847		atomic_long_add(objects, &n->total_objects);
848	}
849}
850static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
851{
852	struct kmem_cache_node *n = get_node(s, node);
853
854	atomic_long_dec(&n->nr_slabs);
855	atomic_long_sub(objects, &n->total_objects);
856}
857
858/* Object debug checks for alloc/free paths */
859static void setup_object_debug(struct kmem_cache *s, struct page *page,
860								void *object)
861{
862	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
863		return;
864
865	init_object(s, object, 0);
866	init_tracking(s, object);
867}
868
869static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
870					void *object, unsigned long addr)
871{
872	if (!check_slab(s, page))
873		goto bad;
874
875	if (!on_freelist(s, page, object)) {
876		object_err(s, page, object, "Object already allocated");
877		goto bad;
878	}
879
880	if (!check_valid_pointer(s, page, object)) {
881		object_err(s, page, object, "Freelist Pointer check fails");
882		goto bad;
883	}
884
885	if (!check_object(s, page, object, 0))
886		goto bad;
887
888	/* Success perform special debug activities for allocs */
889	if (s->flags & SLAB_STORE_USER)
890		set_track(s, object, TRACK_ALLOC, addr);
891	trace(s, page, object, 1);
892	init_object(s, object, 1);
893	return 1;
894
895bad:
896	if (PageSlab(page)) {
897		/*
898		 * If this is a slab page then lets do the best we can
899		 * to avoid issues in the future. Marking all objects
900		 * as used avoids touching the remaining objects.
901		 */
902		slab_fix(s, "Marking all objects used");
903		page->inuse = page->objects;
904		page->freelist = NULL;
905	}
906	return 0;
907}
908
909static int free_debug_processing(struct kmem_cache *s, struct page *page,
910					void *object, unsigned long addr)
911{
912	if (!check_slab(s, page))
913		goto fail;
914
915	if (!check_valid_pointer(s, page, object)) {
916		slab_err(s, page, "Invalid object pointer 0x%p", object);
917		goto fail;
918	}
919
920	if (on_freelist(s, page, object)) {
921		object_err(s, page, object, "Object already free");
922		goto fail;
923	}
924
925	if (!check_object(s, page, object, 1))
926		return 0;
927
928	if (unlikely(s != page->slab)) {
929		if (!PageSlab(page)) {
930			slab_err(s, page, "Attempt to free object(0x%p) "
931				"outside of slab", object);
932		} else if (!page->slab) {
933			printk(KERN_ERR
934				"SLUB <none>: no slab for object 0x%p.\n",
935						object);
936			dump_stack();
937		} else
938			object_err(s, page, object,
939					"page slab pointer corrupt.");
940		goto fail;
941	}
942
943	/* Special debug activities for freeing objects */
944	if (!PageSlubFrozen(page) && !page->freelist)
945		remove_full(s, page);
946	if (s->flags & SLAB_STORE_USER)
947		set_track(s, object, TRACK_FREE, addr);
948	trace(s, page, object, 0);
949	init_object(s, object, 0);
950	return 1;
951
952fail:
953	slab_fix(s, "Object at 0x%p not freed", object);
954	return 0;
955}
956
957static int __init setup_slub_debug(char *str)
958{
959	slub_debug = DEBUG_DEFAULT_FLAGS;
960	if (*str++ != '=' || !*str)
961		/*
962		 * No options specified. Switch on full debugging.
963		 */
964		goto out;
965
966	if (*str == ',')
967		/*
968		 * No options but restriction on slabs. This means full
969		 * debugging for slabs matching a pattern.
970		 */
971		goto check_slabs;
972
973	if (tolower(*str) == 'o') {
974		/*
975		 * Avoid enabling debugging on caches if its minimum order
976		 * would increase as a result.
977		 */
978		disable_higher_order_debug = 1;
979		goto out;
980	}
981
982	slub_debug = 0;
983	if (*str == '-')
984		/*
985		 * Switch off all debugging measures.
986		 */
987		goto out;
988
989	/*
990	 * Determine which debug features should be switched on
991	 */
992	for (; *str && *str != ','; str++) {
993		switch (tolower(*str)) {
994		case 'f':
995			slub_debug |= SLAB_DEBUG_FREE;
996			break;
997		case 'z':
998			slub_debug |= SLAB_RED_ZONE;
999			break;
1000		case 'p':
1001			slub_debug |= SLAB_POISON;
1002			break;
1003		case 'u':
1004			slub_debug |= SLAB_STORE_USER;
1005			break;
1006		case 't':
1007			slub_debug |= SLAB_TRACE;
1008			break;
1009		case 'a':
1010			slub_debug |= SLAB_FAILSLAB;
1011			break;
1012		default:
1013			printk(KERN_ERR "slub_debug option '%c' "
1014				"unknown. skipped\n", *str);
1015		}
1016	}
1017
1018check_slabs:
1019	if (*str == ',')
1020		slub_debug_slabs = str + 1;
1021out:
1022	return 1;
1023}
1024
1025__setup("slub_debug", setup_slub_debug);
1026
1027static unsigned long kmem_cache_flags(unsigned long objsize,
1028	unsigned long flags, const char *name,
1029	void (*ctor)(void *))
1030{
1031	/*
1032	 * Enable debugging if selected on the kernel commandline.
1033	 */
1034	if (slub_debug && (!slub_debug_slabs ||
1035		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1036		flags |= slub_debug;
1037
1038	return flags;
1039}
1040#else
1041static inline void setup_object_debug(struct kmem_cache *s,
1042			struct page *page, void *object) {}
1043
1044static inline int alloc_debug_processing(struct kmem_cache *s,
1045	struct page *page, void *object, unsigned long addr) { return 0; }
1046
1047static inline int free_debug_processing(struct kmem_cache *s,
1048	struct page *page, void *object, unsigned long addr) { return 0; }
1049
1050static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1051			{ return 1; }
1052static inline int check_object(struct kmem_cache *s, struct page *page,
1053			void *object, int active) { return 1; }
1054static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1055static inline unsigned long kmem_cache_flags(unsigned long objsize,
1056	unsigned long flags, const char *name,
1057	void (*ctor)(void *))
1058{
1059	return flags;
1060}
1061#define slub_debug 0
1062
1063#define disable_higher_order_debug 0
1064
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066							{ return 0; }
1067static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1068							{ return 0; }
1069static inline void inc_slabs_node(struct kmem_cache *s, int node,
1070							int objects) {}
1071static inline void dec_slabs_node(struct kmem_cache *s, int node,
1072							int objects) {}
1073#endif
1074
1075/*
1076 * Slab allocation and freeing
1077 */
1078static inline struct page *alloc_slab_page(gfp_t flags, int node,
1079					struct kmem_cache_order_objects oo)
1080{
1081	int order = oo_order(oo);
1082
1083	flags |= __GFP_NOTRACK;
1084
1085	if (node == NUMA_NO_NODE)
1086		return alloc_pages(flags, order);
1087	else
1088		return alloc_pages_exact_node(node, flags, order);
1089}
1090
1091static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1092{
1093	struct page *page;
1094	struct kmem_cache_order_objects oo = s->oo;
1095	gfp_t alloc_gfp;
1096
1097	flags |= s->allocflags;
1098
1099	/*
1100	 * Let the initial higher-order allocation fail under memory pressure
1101	 * so we fall-back to the minimum order allocation.
1102	 */
1103	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1104
1105	page = alloc_slab_page(alloc_gfp, node, oo);
1106	if (unlikely(!page)) {
1107		oo = s->min;
1108		/*
1109		 * Allocation may have failed due to fragmentation.
1110		 * Try a lower order alloc if possible
1111		 */
1112		page = alloc_slab_page(flags, node, oo);
1113		if (!page)
1114			return NULL;
1115
1116		stat(s, ORDER_FALLBACK);
1117	}
1118
1119	if (kmemcheck_enabled
1120		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1121		int pages = 1 << oo_order(oo);
1122
1123		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1124
1125		/*
1126		 * Objects from caches that have a constructor don't get
1127		 * cleared when they're allocated, so we need to do it here.
1128		 */
1129		if (s->ctor)
1130			kmemcheck_mark_uninitialized_pages(page, pages);
1131		else
1132			kmemcheck_mark_unallocated_pages(page, pages);
1133	}
1134
1135	page->objects = oo_objects(oo);
1136	mod_zone_page_state(page_zone(page),
1137		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1138		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1139		1 << oo_order(oo));
1140
1141	return page;
1142}
1143
1144static void setup_object(struct kmem_cache *s, struct page *page,
1145				void *object)
1146{
1147	setup_object_debug(s, page, object);
1148	if (unlikely(s->ctor))
1149		s->ctor(object);
1150}
1151
1152static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1153{
1154	struct page *page;
1155	void *start;
1156	void *last;
1157	void *p;
1158
1159	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1160
1161	page = allocate_slab(s,
1162		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1163	if (!page)
1164		goto out;
1165
1166	inc_slabs_node(s, page_to_nid(page), page->objects);
1167	page->slab = s;
1168	page->flags |= 1 << PG_slab;
1169
1170	start = page_address(page);
1171
1172	if (unlikely(s->flags & SLAB_POISON))
1173		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1174
1175	last = start;
1176	for_each_object(p, s, start, page->objects) {
1177		setup_object(s, page, last);
1178		set_freepointer(s, last, p);
1179		last = p;
1180	}
1181	setup_object(s, page, last);
1182	set_freepointer(s, last, NULL);
1183
1184	page->freelist = start;
1185	page->inuse = 0;
1186out:
1187	return page;
1188}
1189
1190static void __free_slab(struct kmem_cache *s, struct page *page)
1191{
1192	int order = compound_order(page);
1193	int pages = 1 << order;
1194
1195	if (kmem_cache_debug(s)) {
1196		void *p;
1197
1198		slab_pad_check(s, page);
1199		for_each_object(p, s, page_address(page),
1200						page->objects)
1201			check_object(s, page, p, 0);
1202	}
1203
1204	kmemcheck_free_shadow(page, compound_order(page));
1205
1206	mod_zone_page_state(page_zone(page),
1207		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1209		-pages);
1210
1211	__ClearPageSlab(page);
1212	reset_page_mapcount(page);
1213	if (current->reclaim_state)
1214		current->reclaim_state->reclaimed_slab += pages;
1215	__free_pages(page, order);
1216}
1217
1218static void rcu_free_slab(struct rcu_head *h)
1219{
1220	struct page *page;
1221
1222	page = container_of((struct list_head *)h, struct page, lru);
1223	__free_slab(page->slab, page);
1224}
1225
1226static void free_slab(struct kmem_cache *s, struct page *page)
1227{
1228	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1229		/*
1230		 * RCU free overloads the RCU head over the LRU
1231		 */
1232		struct rcu_head *head = (void *)&page->lru;
1233
1234		call_rcu(head, rcu_free_slab);
1235	} else
1236		__free_slab(s, page);
1237}
1238
1239static void discard_slab(struct kmem_cache *s, struct page *page)
1240{
1241	dec_slabs_node(s, page_to_nid(page), page->objects);
1242	free_slab(s, page);
1243}
1244
1245/*
1246 * Per slab locking using the pagelock
1247 */
1248static __always_inline void slab_lock(struct page *page)
1249{
1250	bit_spin_lock(PG_locked, &page->flags);
1251}
1252
1253static __always_inline void slab_unlock(struct page *page)
1254{
1255	__bit_spin_unlock(PG_locked, &page->flags);
1256}
1257
1258static __always_inline int slab_trylock(struct page *page)
1259{
1260	int rc = 1;
1261
1262	rc = bit_spin_trylock(PG_locked, &page->flags);
1263	return rc;
1264}
1265
1266/*
1267 * Management of partially allocated slabs
1268 */
1269static void add_partial(struct kmem_cache_node *n,
1270				struct page *page, int tail)
1271{
1272	spin_lock(&n->list_lock);
1273	n->nr_partial++;
1274	if (tail)
1275		list_add_tail(&page->lru, &n->partial);
1276	else
1277		list_add(&page->lru, &n->partial);
1278	spin_unlock(&n->list_lock);
1279}
1280
1281static void remove_partial(struct kmem_cache *s, struct page *page)
1282{
1283	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1284
1285	spin_lock(&n->list_lock);
1286	list_del(&page->lru);
1287	n->nr_partial--;
1288	spin_unlock(&n->list_lock);
1289}
1290
1291/*
1292 * Lock slab and remove from the partial list.
1293 *
1294 * Must hold list_lock.
1295 */
1296static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1297							struct page *page)
1298{
1299	if (slab_trylock(page)) {
1300		list_del(&page->lru);
1301		n->nr_partial--;
1302		__SetPageSlubFrozen(page);
1303		return 1;
1304	}
1305	return 0;
1306}
1307
1308/*
1309 * Try to allocate a partial slab from a specific node.
1310 */
1311static struct page *get_partial_node(struct kmem_cache_node *n)
1312{
1313	struct page *page;
1314
1315	/*
1316	 * Racy check. If we mistakenly see no partial slabs then we
1317	 * just allocate an empty slab. If we mistakenly try to get a
1318	 * partial slab and there is none available then get_partials()
1319	 * will return NULL.
1320	 */
1321	if (!n || !n->nr_partial)
1322		return NULL;
1323
1324	spin_lock(&n->list_lock);
1325	list_for_each_entry(page, &n->partial, lru)
1326		if (lock_and_freeze_slab(n, page))
1327			goto out;
1328	page = NULL;
1329out:
1330	spin_unlock(&n->list_lock);
1331	return page;
1332}
1333
1334/*
1335 * Get a page from somewhere. Search in increasing NUMA distances.
1336 */
1337static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1338{
1339#ifdef CONFIG_NUMA
1340	struct zonelist *zonelist;
1341	struct zoneref *z;
1342	struct zone *zone;
1343	enum zone_type high_zoneidx = gfp_zone(flags);
1344	struct page *page;
1345
1346	/*
1347	 * The defrag ratio allows a configuration of the tradeoffs between
1348	 * inter node defragmentation and node local allocations. A lower
1349	 * defrag_ratio increases the tendency to do local allocations
1350	 * instead of attempting to obtain partial slabs from other nodes.
1351	 *
1352	 * If the defrag_ratio is set to 0 then kmalloc() always
1353	 * returns node local objects. If the ratio is higher then kmalloc()
1354	 * may return off node objects because partial slabs are obtained
1355	 * from other nodes and filled up.
1356	 *
1357	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1358	 * defrag_ratio = 1000) then every (well almost) allocation will
1359	 * first attempt to defrag slab caches on other nodes. This means
1360	 * scanning over all nodes to look for partial slabs which may be
1361	 * expensive if we do it every time we are trying to find a slab
1362	 * with available objects.
1363	 */
1364	if (!s->remote_node_defrag_ratio ||
1365			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1366		return NULL;
1367
1368	get_mems_allowed();
1369	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1370	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1371		struct kmem_cache_node *n;
1372
1373		n = get_node(s, zone_to_nid(zone));
1374
1375		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1376				n->nr_partial > s->min_partial) {
1377			page = get_partial_node(n);
1378			if (page) {
1379				put_mems_allowed();
1380				return page;
1381			}
1382		}
1383	}
1384	put_mems_allowed();
1385#endif
1386	return NULL;
1387}
1388
1389/*
1390 * Get a partial page, lock it and return it.
1391 */
1392static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1393{
1394	struct page *page;
1395	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1396
1397	page = get_partial_node(get_node(s, searchnode));
1398	if (page || node != -1)
1399		return page;
1400
1401	return get_any_partial(s, flags);
1402}
1403
1404/*
1405 * Move a page back to the lists.
1406 *
1407 * Must be called with the slab lock held.
1408 *
1409 * On exit the slab lock will have been dropped.
1410 */
1411static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1412{
1413	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1414
1415	__ClearPageSlubFrozen(page);
1416	if (page->inuse) {
1417
1418		if (page->freelist) {
1419			add_partial(n, page, tail);
1420			stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1421		} else {
1422			stat(s, DEACTIVATE_FULL);
1423			if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1424				add_full(n, page);
1425		}
1426		slab_unlock(page);
1427	} else {
1428		stat(s, DEACTIVATE_EMPTY);
1429		if (n->nr_partial < s->min_partial) {
1430			/*
1431			 * Adding an empty slab to the partial slabs in order
1432			 * to avoid page allocator overhead. This slab needs
1433			 * to come after the other slabs with objects in
1434			 * so that the others get filled first. That way the
1435			 * size of the partial list stays small.
1436			 *
1437			 * kmem_cache_shrink can reclaim any empty slabs from
1438			 * the partial list.
1439			 */
1440			add_partial(n, page, 1);
1441			slab_unlock(page);
1442		} else {
1443			slab_unlock(page);
1444			stat(s, FREE_SLAB);
1445			discard_slab(s, page);
1446		}
1447	}
1448}
1449
1450/*
1451 * Remove the cpu slab
1452 */
1453static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1454{
1455	struct page *page = c->page;
1456	int tail = 1;
1457
1458	if (page->freelist)
1459		stat(s, DEACTIVATE_REMOTE_FREES);
1460	/*
1461	 * Merge cpu freelist into slab freelist. Typically we get here
1462	 * because both freelists are empty. So this is unlikely
1463	 * to occur.
1464	 */
1465	while (unlikely(c->freelist)) {
1466		void **object;
1467
1468		tail = 0;	/* Hot objects. Put the slab first */
1469
1470		/* Retrieve object from cpu_freelist */
1471		object = c->freelist;
1472		c->freelist = get_freepointer(s, c->freelist);
1473
1474		/* And put onto the regular freelist */
1475		set_freepointer(s, object, page->freelist);
1476		page->freelist = object;
1477		page->inuse--;
1478	}
1479	c->page = NULL;
1480	unfreeze_slab(s, page, tail);
1481}
1482
1483static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1484{
1485	stat(s, CPUSLAB_FLUSH);
1486	slab_lock(c->page);
1487	deactivate_slab(s, c);
1488}
1489
1490/*
1491 * Flush cpu slab.
1492 *
1493 * Called from IPI handler with interrupts disabled.
1494 */
1495static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1496{
1497	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1498
1499	if (likely(c && c->page))
1500		flush_slab(s, c);
1501}
1502
1503static void flush_cpu_slab(void *d)
1504{
1505	struct kmem_cache *s = d;
1506
1507	__flush_cpu_slab(s, smp_processor_id());
1508}
1509
1510static void flush_all(struct kmem_cache *s)
1511{
1512	on_each_cpu(flush_cpu_slab, s, 1);
1513}
1514
1515/*
1516 * Check if the objects in a per cpu structure fit numa
1517 * locality expectations.
1518 */
1519static inline int node_match(struct kmem_cache_cpu *c, int node)
1520{
1521#ifdef CONFIG_NUMA
1522	if (node != NUMA_NO_NODE && c->node != node)
1523		return 0;
1524#endif
1525	return 1;
1526}
1527
1528static int count_free(struct page *page)
1529{
1530	return page->objects - page->inuse;
1531}
1532
1533static unsigned long count_partial(struct kmem_cache_node *n,
1534					int (*get_count)(struct page *))
1535{
1536	unsigned long flags;
1537	unsigned long x = 0;
1538	struct page *page;
1539
1540	spin_lock_irqsave(&n->list_lock, flags);
1541	list_for_each_entry(page, &n->partial, lru)
1542		x += get_count(page);
1543	spin_unlock_irqrestore(&n->list_lock, flags);
1544	return x;
1545}
1546
1547static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1548{
1549#ifdef CONFIG_SLUB_DEBUG
1550	return atomic_long_read(&n->total_objects);
1551#else
1552	return 0;
1553#endif
1554}
1555
1556static noinline void
1557slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558{
1559	int node;
1560
1561	printk(KERN_WARNING
1562		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1563		nid, gfpflags);
1564	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
1565		"default order: %d, min order: %d\n", s->name, s->objsize,
1566		s->size, oo_order(s->oo), oo_order(s->min));
1567
1568	if (oo_order(s->min) > get_order(s->objsize))
1569		printk(KERN_WARNING "  %s debugging increased min order, use "
1570		       "slub_debug=O to disable.\n", s->name);
1571
1572	for_each_online_node(node) {
1573		struct kmem_cache_node *n = get_node(s, node);
1574		unsigned long nr_slabs;
1575		unsigned long nr_objs;
1576		unsigned long nr_free;
1577
1578		if (!n)
1579			continue;
1580
1581		nr_free  = count_partial(n, count_free);
1582		nr_slabs = node_nr_slabs(n);
1583		nr_objs  = node_nr_objs(n);
1584
1585		printk(KERN_WARNING
1586			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
1587			node, nr_slabs, nr_objs, nr_free);
1588	}
1589}
1590
1591/*
1592 * Slow path. The lockless freelist is empty or we need to perform
1593 * debugging duties.
1594 *
1595 * Interrupts are disabled.
1596 *
1597 * Processing is still very fast if new objects have been freed to the
1598 * regular freelist. In that case we simply take over the regular freelist
1599 * as the lockless freelist and zap the regular freelist.
1600 *
1601 * If that is not working then we fall back to the partial lists. We take the
1602 * first element of the freelist as the object to allocate now and move the
1603 * rest of the freelist to the lockless freelist.
1604 *
1605 * And if we were unable to get a new slab from the partial slab lists then
1606 * we need to allocate a new slab. This is the slowest path since it involves
1607 * a call to the page allocator and the setup of a new slab.
1608 */
1609static void * BCMFASTPATH_HOST __slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1610			  unsigned long addr, struct kmem_cache_cpu *c)
1611{
1612	void **object;
1613	struct page *new;
1614
1615	/* We handle __GFP_ZERO in the caller */
1616	gfpflags &= ~__GFP_ZERO;
1617
1618	if (!c->page)
1619		goto new_slab;
1620
1621	slab_lock(c->page);
1622	if (unlikely(!node_match(c, node)))
1623		goto another_slab;
1624
1625	stat(s, ALLOC_REFILL);
1626
1627load_freelist:
1628	object = c->page->freelist;
1629	if (unlikely(!object))
1630		goto another_slab;
1631	if (kmem_cache_debug(s))
1632		goto debug;
1633
1634	c->freelist = get_freepointer(s, object);
1635	c->page->inuse = c->page->objects;
1636	c->page->freelist = NULL;
1637	c->node = page_to_nid(c->page);
1638unlock_out:
1639	slab_unlock(c->page);
1640	stat(s, ALLOC_SLOWPATH);
1641	return object;
1642
1643another_slab:
1644	deactivate_slab(s, c);
1645
1646new_slab:
1647	new = get_partial(s, gfpflags, node);
1648	if (new) {
1649		c->page = new;
1650		stat(s, ALLOC_FROM_PARTIAL);
1651		goto load_freelist;
1652	}
1653
1654	if (gfpflags & __GFP_WAIT)
1655		local_irq_enable();
1656
1657	new = new_slab(s, gfpflags, node);
1658
1659	if (gfpflags & __GFP_WAIT)
1660		local_irq_disable();
1661
1662	if (new) {
1663		c = __this_cpu_ptr(s->cpu_slab);
1664		stat(s, ALLOC_SLAB);
1665		if (c->page)
1666			flush_slab(s, c);
1667		slab_lock(new);
1668		__SetPageSlubFrozen(new);
1669		c->page = new;
1670		goto load_freelist;
1671	}
1672	if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1673		slab_out_of_memory(s, gfpflags, node);
1674	return NULL;
1675debug:
1676	if (!alloc_debug_processing(s, c->page, object, addr))
1677		goto another_slab;
1678
1679	c->page->inuse++;
1680	c->page->freelist = get_freepointer(s, object);
1681	c->node = -1;
1682	goto unlock_out;
1683}
1684
1685/*
1686 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1687 * have the fastpath folded into their functions. So no function call
1688 * overhead for requests that can be satisfied on the fastpath.
1689 *
1690 * The fastpath works by first checking if the lockless freelist can be used.
1691 * If not then __slab_alloc is called for slow processing.
1692 *
1693 * Otherwise we can simply pick the next object from the lockless free list.
1694 */
1695static __always_inline void *slab_alloc(struct kmem_cache *s,
1696		gfp_t gfpflags, int node, unsigned long addr)
1697{
1698	void **object;
1699	struct kmem_cache_cpu *c;
1700	unsigned long flags;
1701
1702	gfpflags &= gfp_allowed_mask;
1703
1704	lockdep_trace_alloc(gfpflags);
1705	might_sleep_if(gfpflags & __GFP_WAIT);
1706
1707	if (should_failslab(s->objsize, gfpflags, s->flags))
1708		return NULL;
1709
1710	local_irq_save(flags);
1711	c = __this_cpu_ptr(s->cpu_slab);
1712	object = c->freelist;
1713	if (unlikely(!object || !node_match(c, node)))
1714
1715		object = __slab_alloc(s, gfpflags, node, addr, c);
1716
1717	else {
1718		c->freelist = get_freepointer(s, object);
1719		stat(s, ALLOC_FASTPATH);
1720	}
1721	local_irq_restore(flags);
1722
1723	if (unlikely(gfpflags & __GFP_ZERO) && object)
1724		memset(object, 0, s->objsize);
1725
1726	kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1727	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1728
1729	return object;
1730}
1731
1732void * BCMFASTPATH_HOST kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1733{
1734	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1735
1736	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1737
1738	return ret;
1739}
1740EXPORT_SYMBOL(kmem_cache_alloc);
1741
1742#ifdef CONFIG_TRACING
1743void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1744{
1745	return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1746}
1747EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1748#endif
1749
1750#ifdef CONFIG_NUMA
1751void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1752{
1753	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1754
1755	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1756				    s->objsize, s->size, gfpflags, node);
1757
1758	return ret;
1759}
1760EXPORT_SYMBOL(kmem_cache_alloc_node);
1761#endif
1762
1763#ifdef CONFIG_TRACING
1764void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1765				    gfp_t gfpflags,
1766				    int node)
1767{
1768	return slab_alloc(s, gfpflags, node, _RET_IP_);
1769}
1770EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1771#endif
1772
1773/*
1774 * Slow patch handling. This may still be called frequently since objects
1775 * have a longer lifetime than the cpu slabs in most processing loads.
1776 *
1777 * So we still attempt to reduce cache line usage. Just take the slab
1778 * lock and free the item. If there is no additional partial page
1779 * handling required then we can return immediately.
1780 */
1781static void BCMFASTPATH_HOST __slab_free(struct kmem_cache *s, struct page *page,
1782			void *x, unsigned long addr)
1783{
1784	void *prior;
1785	void **object = (void *)x;
1786
1787	stat(s, FREE_SLOWPATH);
1788	slab_lock(page);
1789
1790	if (kmem_cache_debug(s))
1791		goto debug;
1792
1793checks_ok:
1794	prior = page->freelist;
1795	set_freepointer(s, object, prior);
1796	page->freelist = object;
1797	page->inuse--;
1798
1799	if (unlikely(PageSlubFrozen(page))) {
1800		stat(s, FREE_FROZEN);
1801		goto out_unlock;
1802	}
1803
1804	if (unlikely(!page->inuse))
1805		goto slab_empty;
1806
1807	/*
1808	 * Objects left in the slab. If it was not on the partial list before
1809	 * then add it.
1810	 */
1811	if (unlikely(!prior)) {
1812		add_partial(get_node(s, page_to_nid(page)), page, 1);
1813		stat(s, FREE_ADD_PARTIAL);
1814	}
1815
1816out_unlock:
1817	slab_unlock(page);
1818	return;
1819
1820slab_empty:
1821	if (prior) {
1822		/*
1823		 * Slab still on the partial list.
1824		 */
1825		remove_partial(s, page);
1826		stat(s, FREE_REMOVE_PARTIAL);
1827	}
1828	slab_unlock(page);
1829	stat(s, FREE_SLAB);
1830	discard_slab(s, page);
1831	return;
1832
1833debug:
1834	if (!free_debug_processing(s, page, x, addr))
1835		goto out_unlock;
1836	goto checks_ok;
1837}
1838
1839/*
1840 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1841 * can perform fastpath freeing without additional function calls.
1842 *
1843 * The fastpath is only possible if we are freeing to the current cpu slab
1844 * of this processor. This typically the case if we have just allocated
1845 * the item before.
1846 *
1847 * If fastpath is not possible then fall back to __slab_free where we deal
1848 * with all sorts of special processing.
1849 */
1850static __always_inline void slab_free(struct kmem_cache *s,
1851			struct page *page, void *x, unsigned long addr)
1852{
1853	void **object = (void *)x;
1854	struct kmem_cache_cpu *c;
1855	unsigned long flags;
1856
1857	kmemleak_free_recursive(x, s->flags);
1858	local_irq_save(flags);
1859	c = __this_cpu_ptr(s->cpu_slab);
1860	kmemcheck_slab_free(s, object, s->objsize);
1861	debug_check_no_locks_freed(object, s->objsize);
1862	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1863		debug_check_no_obj_freed(object, s->objsize);
1864	if (likely(page == c->page && c->node >= 0)) {
1865		set_freepointer(s, object, c->freelist);
1866		c->freelist = object;
1867		stat(s, FREE_FASTPATH);
1868	} else
1869		__slab_free(s, page, x, addr);
1870
1871	local_irq_restore(flags);
1872}
1873
1874void BCMFASTPATH_HOST kmem_cache_free(struct kmem_cache *s, void *x)
1875{
1876	struct page *page;
1877
1878	page = virt_to_head_page(x);
1879
1880	slab_free(s, page, x, _RET_IP_);
1881
1882	trace_kmem_cache_free(_RET_IP_, x);
1883}
1884EXPORT_SYMBOL(kmem_cache_free);
1885
1886/* Figure out on which slab page the object resides */
1887static struct page *get_object_page(const void *x)
1888{
1889	struct page *page = virt_to_head_page(x);
1890
1891	if (!PageSlab(page))
1892		return NULL;
1893
1894	return page;
1895}
1896
1897/*
1898 * Object placement in a slab is made very easy because we always start at
1899 * offset 0. If we tune the size of the object to the alignment then we can
1900 * get the required alignment by putting one properly sized object after
1901 * another.
1902 *
1903 * Notice that the allocation order determines the sizes of the per cpu
1904 * caches. Each processor has always one slab available for allocations.
1905 * Increasing the allocation order reduces the number of times that slabs
1906 * must be moved on and off the partial lists and is therefore a factor in
1907 * locking overhead.
1908 */
1909
1910/*
1911 * Mininum / Maximum order of slab pages. This influences locking overhead
1912 * and slab fragmentation. A higher order reduces the number of partial slabs
1913 * and increases the number of allocations possible without having to
1914 * take the list_lock.
1915 */
1916static int slub_min_order;
1917static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1918static int slub_min_objects;
1919
1920/*
1921 * Merge control. If this is set then no merging of slab caches will occur.
1922 * (Could be removed. This was introduced to pacify the merge skeptics.)
1923 */
1924static int slub_nomerge;
1925
1926/*
1927 * Calculate the order of allocation given an slab object size.
1928 *
1929 * The order of allocation has significant impact on performance and other
1930 * system components. Generally order 0 allocations should be preferred since
1931 * order 0 does not cause fragmentation in the page allocator. Larger objects
1932 * be problematic to put into order 0 slabs because there may be too much
1933 * unused space left. We go to a higher order if more than 1/16th of the slab
1934 * would be wasted.
1935 *
1936 * In order to reach satisfactory performance we must ensure that a minimum
1937 * number of objects is in one slab. Otherwise we may generate too much
1938 * activity on the partial lists which requires taking the list_lock. This is
1939 * less a concern for large slabs though which are rarely used.
1940 *
1941 * slub_max_order specifies the order where we begin to stop considering the
1942 * number of objects in a slab as critical. If we reach slub_max_order then
1943 * we try to keep the page order as low as possible. So we accept more waste
1944 * of space in favor of a small page order.
1945 *
1946 * Higher order allocations also allow the placement of more objects in a
1947 * slab and thereby reduce object handling overhead. If the user has
1948 * requested a higher mininum order then we start with that one instead of
1949 * the smallest order which will fit the object.
1950 */
1951static inline int slab_order(int size, int min_objects,
1952				int max_order, int fract_leftover)
1953{
1954	int order;
1955	int rem;
1956	int min_order = slub_min_order;
1957
1958	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1959		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1960
1961	for (order = max(min_order,
1962				fls(min_objects * size - 1) - PAGE_SHIFT);
1963			order <= max_order; order++) {
1964
1965		unsigned long slab_size = PAGE_SIZE << order;
1966
1967		if (slab_size < min_objects * size)
1968			continue;
1969
1970		rem = slab_size % size;
1971
1972		if (rem <= slab_size / fract_leftover)
1973			break;
1974
1975	}
1976
1977	return order;
1978}
1979
1980static inline int calculate_order(int size)
1981{
1982	int order;
1983	int min_objects;
1984	int fraction;
1985	int max_objects;
1986
1987	/*
1988	 * Attempt to find best configuration for a slab. This
1989	 * works by first attempting to generate a layout with
1990	 * the best configuration and backing off gradually.
1991	 *
1992	 * First we reduce the acceptable waste in a slab. Then
1993	 * we reduce the minimum objects required in a slab.
1994	 */
1995	min_objects = slub_min_objects;
1996	if (!min_objects)
1997		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1998	max_objects = (PAGE_SIZE << slub_max_order)/size;
1999	min_objects = min(min_objects, max_objects);
2000
2001	while (min_objects > 1) {
2002		fraction = 16;
2003		while (fraction >= 4) {
2004			order = slab_order(size, min_objects,
2005						slub_max_order, fraction);
2006			if (order <= slub_max_order)
2007				return order;
2008			fraction /= 2;
2009		}
2010		min_objects--;
2011	}
2012
2013	/*
2014	 * We were unable to place multiple objects in a slab. Now
2015	 * lets see if we can place a single object there.
2016	 */
2017	order = slab_order(size, 1, slub_max_order, 1);
2018	if (order <= slub_max_order)
2019		return order;
2020
2021	/*
2022	 * Doh this slab cannot be placed using slub_max_order.
2023	 */
2024	order = slab_order(size, 1, MAX_ORDER, 1);
2025	if (order < MAX_ORDER)
2026		return order;
2027	return -ENOSYS;
2028}
2029
2030/*
2031 * Figure out what the alignment of the objects will be.
2032 */
2033static unsigned long calculate_alignment(unsigned long flags,
2034		unsigned long align, unsigned long size)
2035{
2036	/*
2037	 * If the user wants hardware cache aligned objects then follow that
2038	 * suggestion if the object is sufficiently large.
2039	 *
2040	 * The hardware cache alignment cannot override the specified
2041	 * alignment though. If that is greater then use it.
2042	 */
2043	if (flags & SLAB_HWCACHE_ALIGN) {
2044		unsigned long ralign = cache_line_size();
2045		while (size <= ralign / 2)
2046			ralign /= 2;
2047		align = max(align, ralign);
2048	}
2049
2050	if (align < ARCH_SLAB_MINALIGN)
2051		align = ARCH_SLAB_MINALIGN;
2052
2053	return ALIGN(align, sizeof(void *));
2054}
2055
2056static void
2057init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2058{
2059	n->nr_partial = 0;
2060	spin_lock_init(&n->list_lock);
2061	INIT_LIST_HEAD(&n->partial);
2062#ifdef CONFIG_SLUB_DEBUG
2063	atomic_long_set(&n->nr_slabs, 0);
2064	atomic_long_set(&n->total_objects, 0);
2065	INIT_LIST_HEAD(&n->full);
2066#endif
2067}
2068
2069static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2070
2071static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2072{
2073	if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2074		/*
2075		 * Boot time creation of the kmalloc array. Use static per cpu data
2076		 * since the per cpu allocator is not available yet.
2077		 */
2078		s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2079	else
2080		s->cpu_slab =  alloc_percpu(struct kmem_cache_cpu);
2081
2082	if (!s->cpu_slab)
2083		return 0;
2084
2085	return 1;
2086}
2087
2088#ifdef CONFIG_NUMA
2089/*
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2092 * possible.
2093 *
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2097 */
2098static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2099{
2100	struct page *page;
2101	struct kmem_cache_node *n;
2102	unsigned long flags;
2103
2104	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2105
2106	page = new_slab(kmalloc_caches, gfpflags, node);
2107
2108	BUG_ON(!page);
2109	if (page_to_nid(page) != node) {
2110		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2111				"node %d\n", node);
2112		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2113				"in order to be able to continue\n");
2114	}
2115
2116	n = page->freelist;
2117	BUG_ON(!n);
2118	page->freelist = get_freepointer(kmalloc_caches, n);
2119	page->inuse++;
2120	kmalloc_caches->node[node] = n;
2121#ifdef CONFIG_SLUB_DEBUG
2122	init_object(kmalloc_caches, n, 1);
2123	init_tracking(kmalloc_caches, n);
2124#endif
2125	init_kmem_cache_node(n, kmalloc_caches);
2126	inc_slabs_node(kmalloc_caches, node, page->objects);
2127
2128	/*
2129	 * lockdep requires consistent irq usage for each lock
2130	 * so even though there cannot be a race this early in
2131	 * the boot sequence, we still disable irqs.
2132	 */
2133	local_irq_save(flags);
2134	add_partial(n, page, 0);
2135	local_irq_restore(flags);
2136}
2137
2138static void free_kmem_cache_nodes(struct kmem_cache *s)
2139{
2140	int node;
2141
2142	for_each_node_state(node, N_NORMAL_MEMORY) {
2143		struct kmem_cache_node *n = s->node[node];
2144		if (n)
2145			kmem_cache_free(kmalloc_caches, n);
2146		s->node[node] = NULL;
2147	}
2148}
2149
2150static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2151{
2152	int node;
2153
2154	for_each_node_state(node, N_NORMAL_MEMORY) {
2155		struct kmem_cache_node *n;
2156
2157		if (slab_state == DOWN) {
2158			early_kmem_cache_node_alloc(gfpflags, node);
2159			continue;
2160		}
2161		n = kmem_cache_alloc_node(kmalloc_caches,
2162						gfpflags, node);
2163
2164		if (!n) {
2165			free_kmem_cache_nodes(s);
2166			return 0;
2167		}
2168
2169		s->node[node] = n;
2170		init_kmem_cache_node(n, s);
2171	}
2172	return 1;
2173}
2174#else
2175static void free_kmem_cache_nodes(struct kmem_cache *s)
2176{
2177}
2178
2179static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2180{
2181	init_kmem_cache_node(&s->local_node, s);
2182	return 1;
2183}
2184#endif
2185
2186static void set_min_partial(struct kmem_cache *s, unsigned long min)
2187{
2188	if (min < MIN_PARTIAL)
2189		min = MIN_PARTIAL;
2190	else if (min > MAX_PARTIAL)
2191		min = MAX_PARTIAL;
2192	s->min_partial = min;
2193}
2194
2195/*
2196 * calculate_sizes() determines the order and the distribution of data within
2197 * a slab object.
2198 */
2199static int calculate_sizes(struct kmem_cache *s, int forced_order)
2200{
2201	unsigned long flags = s->flags;
2202	unsigned long size = s->objsize;
2203	unsigned long align = s->align;
2204	int order;
2205
2206	/*
2207	 * Round up object size to the next word boundary. We can only
2208	 * place the free pointer at word boundaries and this determines
2209	 * the possible location of the free pointer.
2210	 */
2211	size = ALIGN(size, sizeof(void *));
2212
2213#ifdef CONFIG_SLUB_DEBUG
2214	/*
2215	 * Determine if we can poison the object itself. If the user of
2216	 * the slab may touch the object after free or before allocation
2217	 * then we should never poison the object itself.
2218	 */
2219	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2220			!s->ctor)
2221		s->flags |= __OBJECT_POISON;
2222	else
2223		s->flags &= ~__OBJECT_POISON;
2224
2225
2226	/*
2227	 * If we are Redzoning then check if there is some space between the
2228	 * end of the object and the free pointer. If not then add an
2229	 * additional word to have some bytes to store Redzone information.
2230	 */
2231	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2232		size += sizeof(void *);
2233#endif
2234
2235	/*
2236	 * With that we have determined the number of bytes in actual use
2237	 * by the object. This is the potential offset to the free pointer.
2238	 */
2239	s->inuse = size;
2240
2241	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2242		s->ctor)) {
2243		/*
2244		 * Relocate free pointer after the object if it is not
2245		 * permitted to overwrite the first word of the object on
2246		 * kmem_cache_free.
2247		 *
2248		 * This is the case if we do RCU, have a constructor or
2249		 * destructor or are poisoning the objects.
2250		 */
2251		s->offset = size;
2252		size += sizeof(void *);
2253	}
2254
2255#ifdef CONFIG_SLUB_DEBUG
2256	if (flags & SLAB_STORE_USER)
2257		/*
2258		 * Need to store information about allocs and frees after
2259		 * the object.
2260		 */
2261		size += 2 * sizeof(struct track);
2262
2263	if (flags & SLAB_RED_ZONE)
2264		/*
2265		 * Add some empty padding so that we can catch
2266		 * overwrites from earlier objects rather than let
2267		 * tracking information or the free pointer be
2268		 * corrupted if a user writes before the start
2269		 * of the object.
2270		 */
2271		size += sizeof(void *);
2272#endif
2273
2274	/*
2275	 * Determine the alignment based on various parameters that the
2276	 * user specified and the dynamic determination of cache line size
2277	 * on bootup.
2278	 */
2279	align = calculate_alignment(flags, align, s->objsize);
2280	s->align = align;
2281
2282	/*
2283	 * SLUB stores one object immediately after another beginning from
2284	 * offset 0. In order to align the objects we have to simply size
2285	 * each object to conform to the alignment.
2286	 */
2287	size = ALIGN(size, align);
2288	s->size = size;
2289	if (forced_order >= 0)
2290		order = forced_order;
2291	else
2292		order = calculate_order(size);
2293
2294	if (order < 0)
2295		return 0;
2296
2297	s->allocflags = 0;
2298	if (order)
2299		s->allocflags |= __GFP_COMP;
2300
2301	if (s->flags & SLAB_CACHE_DMA)
2302		s->allocflags |= SLUB_DMA;
2303
2304	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2305		s->allocflags |= __GFP_RECLAIMABLE;
2306
2307	/*
2308	 * Determine the number of objects per slab
2309	 */
2310	s->oo = oo_make(order, size);
2311	s->min = oo_make(get_order(size), size);
2312	if (oo_objects(s->oo) > oo_objects(s->max))
2313		s->max = s->oo;
2314
2315	return !!oo_objects(s->oo);
2316
2317}
2318
2319static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2320		const char *name, size_t size,
2321		size_t align, unsigned long flags,
2322		void (*ctor)(void *))
2323{
2324	memset(s, 0, kmem_size);
2325	s->name = name;
2326	s->ctor = ctor;
2327	s->objsize = size;
2328	s->align = align;
2329	s->flags = kmem_cache_flags(size, flags, name, ctor);
2330
2331	if (!calculate_sizes(s, -1))
2332		goto error;
2333	if (disable_higher_order_debug) {
2334		/*
2335		 * Disable debugging flags that store metadata if the min slab
2336		 * order increased.
2337		 */
2338		if (get_order(s->size) > get_order(s->objsize)) {
2339			s->flags &= ~DEBUG_METADATA_FLAGS;
2340			s->offset = 0;
2341			if (!calculate_sizes(s, -1))
2342				goto error;
2343		}
2344	}
2345
2346	/*
2347	 * The larger the object size is, the more pages we want on the partial
2348	 * list to avoid pounding the page allocator excessively.
2349	 */
2350	set_min_partial(s, ilog2(s->size));
2351	s->refcount = 1;
2352#ifdef CONFIG_NUMA
2353	s->remote_node_defrag_ratio = 1000;
2354#endif
2355	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2356		goto error;
2357
2358	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2359		return 1;
2360
2361	free_kmem_cache_nodes(s);
2362error:
2363	if (flags & SLAB_PANIC)
2364		panic("Cannot create slab %s size=%lu realsize=%u "
2365			"order=%u offset=%u flags=%lx\n",
2366			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2367			s->offset, flags);
2368	return 0;
2369}
2370
2371/*
2372 * Check if a given pointer is valid
2373 */
2374int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2375{
2376	struct page *page;
2377
2378	if (!kern_ptr_validate(object, s->size))
2379		return 0;
2380
2381	page = get_object_page(object);
2382
2383	if (!page || s != page->slab)
2384		/* No slab or wrong slab */
2385		return 0;
2386
2387	if (!check_valid_pointer(s, page, object))
2388		return 0;
2389
2390	/*
2391	 * We could also check if the object is on the slabs freelist.
2392	 * But this would be too expensive and it seems that the main
2393	 * purpose of kmem_ptr_valid() is to check if the object belongs
2394	 * to a certain slab.
2395	 */
2396	return 1;
2397}
2398EXPORT_SYMBOL(kmem_ptr_validate);
2399
2400/*
2401 * Determine the size of a slab object
2402 */
2403unsigned int kmem_cache_size(struct kmem_cache *s)
2404{
2405	return s->objsize;
2406}
2407EXPORT_SYMBOL(kmem_cache_size);
2408
2409const char *kmem_cache_name(struct kmem_cache *s)
2410{
2411	return s->name;
2412}
2413EXPORT_SYMBOL(kmem_cache_name);
2414
2415static void list_slab_objects(struct kmem_cache *s, struct page *page,
2416							const char *text)
2417{
2418#ifdef CONFIG_SLUB_DEBUG
2419	void *addr = page_address(page);
2420	void *p;
2421	long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2422			    GFP_ATOMIC);
2423
2424	if (!map)
2425		return;
2426	slab_err(s, page, "%s", text);
2427	slab_lock(page);
2428	for_each_free_object(p, s, page->freelist)
2429		set_bit(slab_index(p, s, addr), map);
2430
2431	for_each_object(p, s, addr, page->objects) {
2432
2433		if (!test_bit(slab_index(p, s, addr), map)) {
2434			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2435							p, p - addr);
2436			print_tracking(s, p);
2437		}
2438	}
2439	slab_unlock(page);
2440	kfree(map);
2441#endif
2442}
2443
2444/*
2445 * Attempt to free all partial slabs on a node.
2446 */
2447static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2448{
2449	unsigned long flags;
2450	struct page *page, *h;
2451
2452	spin_lock_irqsave(&n->list_lock, flags);
2453	list_for_each_entry_safe(page, h, &n->partial, lru) {
2454		if (!page->inuse) {
2455			list_del(&page->lru);
2456			discard_slab(s, page);
2457			n->nr_partial--;
2458		} else {
2459			list_slab_objects(s, page,
2460				"Objects remaining on kmem_cache_close()");
2461		}
2462	}
2463	spin_unlock_irqrestore(&n->list_lock, flags);
2464}
2465
2466/*
2467 * Release all resources used by a slab cache.
2468 */
2469static inline int kmem_cache_close(struct kmem_cache *s)
2470{
2471	int node;
2472
2473	flush_all(s);
2474	free_percpu(s->cpu_slab);
2475	/* Attempt to free all objects */
2476	for_each_node_state(node, N_NORMAL_MEMORY) {
2477		struct kmem_cache_node *n = get_node(s, node);
2478
2479		free_partial(s, n);
2480		if (n->nr_partial || slabs_node(s, node))
2481			return 1;
2482	}
2483	free_kmem_cache_nodes(s);
2484	return 0;
2485}
2486
2487/*
2488 * Close a cache and release the kmem_cache structure
2489 * (must be used for caches created using kmem_cache_create)
2490 */
2491void kmem_cache_destroy(struct kmem_cache *s)
2492{
2493	down_write(&slub_lock);
2494	s->refcount--;
2495	if (!s->refcount) {
2496		list_del(&s->list);
2497		if (kmem_cache_close(s)) {
2498			printk(KERN_ERR "SLUB %s: %s called for cache that "
2499				"still has objects.\n", s->name, __func__);
2500			dump_stack();
2501		}
2502		if (s->flags & SLAB_DESTROY_BY_RCU)
2503			rcu_barrier();
2504		sysfs_slab_remove(s);
2505	}
2506	up_write(&slub_lock);
2507}
2508EXPORT_SYMBOL(kmem_cache_destroy);
2509
2510/********************************************************************
2511 *		Kmalloc subsystem
2512 *******************************************************************/
2513
2514struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2515EXPORT_SYMBOL(kmalloc_caches);
2516
2517static int __init setup_slub_min_order(char *str)
2518{
2519	get_option(&str, &slub_min_order);
2520
2521	return 1;
2522}
2523
2524__setup("slub_min_order=", setup_slub_min_order);
2525
2526static int __init setup_slub_max_order(char *str)
2527{
2528	get_option(&str, &slub_max_order);
2529	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2530
2531	return 1;
2532}
2533
2534__setup("slub_max_order=", setup_slub_max_order);
2535
2536static int __init setup_slub_min_objects(char *str)
2537{
2538	get_option(&str, &slub_min_objects);
2539
2540	return 1;
2541}
2542
2543__setup("slub_min_objects=", setup_slub_min_objects);
2544
2545static int __init setup_slub_nomerge(char *str)
2546{
2547	slub_nomerge = 1;
2548	return 1;
2549}
2550
2551__setup("slub_nomerge", setup_slub_nomerge);
2552
2553static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2554		const char *name, int size, gfp_t gfp_flags)
2555{
2556	unsigned int flags = 0;
2557
2558	if (gfp_flags & SLUB_DMA)
2559		flags = SLAB_CACHE_DMA;
2560
2561	/*
2562	 * This function is called with IRQs disabled during early-boot on
2563	 * single CPU so there's no need to take slub_lock here.
2564	 */
2565	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2566								flags, NULL))
2567		goto panic;
2568
2569	list_add(&s->list, &slab_caches);
2570
2571	if (sysfs_slab_add(s))
2572		goto panic;
2573	return s;
2574
2575panic:
2576	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2577}
2578
2579#ifdef CONFIG_ZONE_DMA
2580static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2581
2582static void sysfs_add_func(struct work_struct *w)
2583{
2584	struct kmem_cache *s;
2585
2586	down_write(&slub_lock);
2587	list_for_each_entry(s, &slab_caches, list) {
2588		if (s->flags & __SYSFS_ADD_DEFERRED) {
2589			s->flags &= ~__SYSFS_ADD_DEFERRED;
2590			sysfs_slab_add(s);
2591		}
2592	}
2593	up_write(&slub_lock);
2594}
2595
2596static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2597
2598static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2599{
2600	struct kmem_cache *s;
2601	char *text;
2602	size_t realsize;
2603	unsigned long slabflags;
2604	int i;
2605
2606	s = kmalloc_caches_dma[index];
2607	if (s)
2608		return s;
2609
2610	/* Dynamically create dma cache */
2611	if (flags & __GFP_WAIT)
2612		down_write(&slub_lock);
2613	else {
2614		if (!down_write_trylock(&slub_lock))
2615			goto out;
2616	}
2617
2618	if (kmalloc_caches_dma[index])
2619		goto unlock_out;
2620
2621	realsize = kmalloc_caches[index].objsize;
2622	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2623			 (unsigned int)realsize);
2624
2625	s = NULL;
2626	for (i = 0; i < KMALLOC_CACHES; i++)
2627		if (!kmalloc_caches[i].size)
2628			break;
2629
2630	BUG_ON(i >= KMALLOC_CACHES);
2631	s = kmalloc_caches + i;
2632
2633	/*
2634	 * Must defer sysfs creation to a workqueue because we don't know
2635	 * what context we are called from. Before sysfs comes up, we don't
2636	 * need to do anything because our sysfs initcall will start by
2637	 * adding all existing slabs to sysfs.
2638	 */
2639	slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2640	if (slab_state >= SYSFS)
2641		slabflags |= __SYSFS_ADD_DEFERRED;
2642
2643	if (!text || !kmem_cache_open(s, flags, text,
2644			realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2645		s->size = 0;
2646		kfree(text);
2647		goto unlock_out;
2648	}
2649
2650	list_add(&s->list, &slab_caches);
2651	kmalloc_caches_dma[index] = s;
2652
2653	if (slab_state >= SYSFS)
2654		schedule_work(&sysfs_add_work);
2655
2656unlock_out:
2657	up_write(&slub_lock);
2658out:
2659	return kmalloc_caches_dma[index];
2660}
2661#endif
2662
2663/*
2664 * Conversion table for small slabs sizes / 8 to the index in the
2665 * kmalloc array. This is necessary for slabs < 192 since we have non power
2666 * of two cache sizes there. The size of larger slabs can be determined using
2667 * fls.
2668 */
2669static s8 size_index[24] = {
2670	3,	/* 8 */
2671	4,	/* 16 */
2672	5,	/* 24 */
2673	5,	/* 32 */
2674	6,	/* 40 */
2675	6,	/* 48 */
2676	6,	/* 56 */
2677	6,	/* 64 */
2678	1,	/* 72 */
2679	1,	/* 80 */
2680	1,	/* 88 */
2681	1,	/* 96 */
2682	7,	/* 104 */
2683	7,	/* 112 */
2684	7,	/* 120 */
2685	7,	/* 128 */
2686	2,	/* 136 */
2687	2,	/* 144 */
2688	2,	/* 152 */
2689	2,	/* 160 */
2690	2,	/* 168 */
2691	2,	/* 176 */
2692	2,	/* 184 */
2693	2	/* 192 */
2694};
2695
2696static inline int size_index_elem(size_t bytes)
2697{
2698	return (bytes - 1) / 8;
2699}
2700
2701static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2702{
2703	int index;
2704
2705	if (size <= 192) {
2706		if (!size)
2707			return ZERO_SIZE_PTR;
2708
2709		index = size_index[size_index_elem(size)];
2710	} else
2711		index = fls(size - 1);
2712
2713#ifdef CONFIG_ZONE_DMA
2714	if (unlikely((flags & SLUB_DMA)))
2715		return dma_kmalloc_cache(index, flags);
2716
2717#endif
2718	return &kmalloc_caches[index];
2719}
2720
2721void *__kmalloc(size_t size, gfp_t flags)
2722{
2723	struct kmem_cache *s;
2724	void *ret;
2725
2726	if (unlikely(size > SLUB_MAX_SIZE))
2727		return kmalloc_large(size, flags);
2728
2729	s = get_slab(size, flags);
2730
2731	if (unlikely(ZERO_OR_NULL_PTR(s)))
2732		return s;
2733
2734	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2735
2736	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2737
2738	return ret;
2739}
2740EXPORT_SYMBOL(__kmalloc);
2741
2742static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2743{
2744	struct page *page;
2745	void *ptr = NULL;
2746
2747	flags |= __GFP_COMP | __GFP_NOTRACK;
2748	page = alloc_pages_node(node, flags, get_order(size));
2749	if (page)
2750		ptr = page_address(page);
2751
2752	kmemleak_alloc(ptr, size, 1, flags);
2753	return ptr;
2754}
2755
2756#ifdef CONFIG_NUMA
2757void *__kmalloc_node(size_t size, gfp_t flags, int node)
2758{
2759	struct kmem_cache *s;
2760	void *ret;
2761
2762	if (unlikely(size > SLUB_MAX_SIZE)) {
2763		ret = kmalloc_large_node(size, flags, node);
2764
2765		trace_kmalloc_node(_RET_IP_, ret,
2766				   size, PAGE_SIZE << get_order(size),
2767				   flags, node);
2768
2769		return ret;
2770	}
2771
2772	s = get_slab(size, flags);
2773
2774	if (unlikely(ZERO_OR_NULL_PTR(s)))
2775		return s;
2776
2777	ret = slab_alloc(s, flags, node, _RET_IP_);
2778
2779	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2780
2781	return ret;
2782}
2783EXPORT_SYMBOL(__kmalloc_node);
2784#endif
2785
2786size_t ksize(const void *object)
2787{
2788	struct page *page;
2789	struct kmem_cache *s;
2790
2791	if (unlikely(object == ZERO_SIZE_PTR))
2792		return 0;
2793
2794	page = virt_to_head_page(object);
2795
2796	if (unlikely(!PageSlab(page))) {
2797		WARN_ON(!PageCompound(page));
2798		return PAGE_SIZE << compound_order(page);
2799	}
2800	s = page->slab;
2801
2802#ifdef CONFIG_SLUB_DEBUG
2803	/*
2804	 * Debugging requires use of the padding between object
2805	 * and whatever may come after it.
2806	 */
2807	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2808		return s->objsize;
2809
2810#endif
2811	/*
2812	 * If we have the need to store the freelist pointer
2813	 * back there or track user information then we can
2814	 * only use the space before that information.
2815	 */
2816	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2817		return s->inuse;
2818	/*
2819	 * Else we can use all the padding etc for the allocation
2820	 */
2821	return s->size;
2822}
2823EXPORT_SYMBOL(ksize);
2824
2825void BCMFASTPATH_HOST kfree(const void *x)
2826{
2827	struct page *page;
2828	void *object = (void *)x;
2829
2830	trace_kfree(_RET_IP_, x);
2831
2832	if (unlikely(ZERO_OR_NULL_PTR(x)))
2833		return;
2834
2835	page = virt_to_head_page(x);
2836	if (unlikely(!PageSlab(page))) {
2837		BUG_ON(!PageCompound(page));
2838		kmemleak_free(x);
2839		put_page(page);
2840		return;
2841	}
2842	slab_free(page->slab, page, object, _RET_IP_);
2843}
2844EXPORT_SYMBOL(kfree);
2845
2846/*
2847 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2848 * the remaining slabs by the number of items in use. The slabs with the
2849 * most items in use come first. New allocations will then fill those up
2850 * and thus they can be removed from the partial lists.
2851 *
2852 * The slabs with the least items are placed last. This results in them
2853 * being allocated from last increasing the chance that the last objects
2854 * are freed in them.
2855 */
2856int kmem_cache_shrink(struct kmem_cache *s)
2857{
2858	int node;
2859	int i;
2860	struct kmem_cache_node *n;
2861	struct page *page;
2862	struct page *t;
2863	int objects = oo_objects(s->max);
2864	struct list_head *slabs_by_inuse =
2865		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2866	unsigned long flags;
2867
2868	if (!slabs_by_inuse)
2869		return -ENOMEM;
2870
2871	flush_all(s);
2872	for_each_node_state(node, N_NORMAL_MEMORY) {
2873		n = get_node(s, node);
2874
2875		if (!n->nr_partial)
2876			continue;
2877
2878		for (i = 0; i < objects; i++)
2879			INIT_LIST_HEAD(slabs_by_inuse + i);
2880
2881		spin_lock_irqsave(&n->list_lock, flags);
2882
2883		/*
2884		 * Build lists indexed by the items in use in each slab.
2885		 *
2886		 * Note that concurrent frees may occur while we hold the
2887		 * list_lock. page->inuse here is the upper limit.
2888		 */
2889		list_for_each_entry_safe(page, t, &n->partial, lru) {
2890			if (!page->inuse && slab_trylock(page)) {
2891				/*
2892				 * Must hold slab lock here because slab_free
2893				 * may have freed the last object and be
2894				 * waiting to release the slab.
2895				 */
2896				list_del(&page->lru);
2897				n->nr_partial--;
2898				slab_unlock(page);
2899				discard_slab(s, page);
2900			} else {
2901				list_move(&page->lru,
2902				slabs_by_inuse + page->inuse);
2903			}
2904		}
2905
2906		/*
2907		 * Rebuild the partial list with the slabs filled up most
2908		 * first and the least used slabs at the end.
2909		 */
2910		for (i = objects - 1; i >= 0; i--)
2911			list_splice(slabs_by_inuse + i, n->partial.prev);
2912
2913		spin_unlock_irqrestore(&n->list_lock, flags);
2914	}
2915
2916	kfree(slabs_by_inuse);
2917	return 0;
2918}
2919EXPORT_SYMBOL(kmem_cache_shrink);
2920
2921#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2922static int slab_mem_going_offline_callback(void *arg)
2923{
2924	struct kmem_cache *s;
2925
2926	down_read(&slub_lock);
2927	list_for_each_entry(s, &slab_caches, list)
2928		kmem_cache_shrink(s);
2929	up_read(&slub_lock);
2930
2931	return 0;
2932}
2933
2934static void slab_mem_offline_callback(void *arg)
2935{
2936	struct kmem_cache_node *n;
2937	struct kmem_cache *s;
2938	struct memory_notify *marg = arg;
2939	int offline_node;
2940
2941	offline_node = marg->status_change_nid;
2942
2943	/*
2944	 * If the node still has available memory. we need kmem_cache_node
2945	 * for it yet.
2946	 */
2947	if (offline_node < 0)
2948		return;
2949
2950	down_read(&slub_lock);
2951	list_for_each_entry(s, &slab_caches, list) {
2952		n = get_node(s, offline_node);
2953		if (n) {
2954			/*
2955			 * if n->nr_slabs > 0, slabs still exist on the node
2956			 * that is going down. We were unable to free them,
2957			 * and offline_pages() function shouldn't call this
2958			 * callback. So, we must fail.
2959			 */
2960			BUG_ON(slabs_node(s, offline_node));
2961
2962			s->node[offline_node] = NULL;
2963			kmem_cache_free(kmalloc_caches, n);
2964		}
2965	}
2966	up_read(&slub_lock);
2967}
2968
2969static int slab_mem_going_online_callback(void *arg)
2970{
2971	struct kmem_cache_node *n;
2972	struct kmem_cache *s;
2973	struct memory_notify *marg = arg;
2974	int nid = marg->status_change_nid;
2975	int ret = 0;
2976
2977	/*
2978	 * If the node's memory is already available, then kmem_cache_node is
2979	 * already created. Nothing to do.
2980	 */
2981	if (nid < 0)
2982		return 0;
2983
2984	/*
2985	 * We are bringing a node online. No memory is available yet. We must
2986	 * allocate a kmem_cache_node structure in order to bring the node
2987	 * online.
2988	 */
2989	down_read(&slub_lock);
2990	list_for_each_entry(s, &slab_caches, list) {
2991		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2992		if (!n) {
2993			ret = -ENOMEM;
2994			goto out;
2995		}
2996		init_kmem_cache_node(n, s);
2997		s->node[nid] = n;
2998	}
2999out:
3000	up_read(&slub_lock);
3001	return ret;
3002}
3003
3004static int slab_memory_callback(struct notifier_block *self,
3005				unsigned long action, void *arg)
3006{
3007	int ret = 0;
3008
3009	switch (action) {
3010	case MEM_GOING_ONLINE:
3011		ret = slab_mem_going_online_callback(arg);
3012		break;
3013	case MEM_GOING_OFFLINE:
3014		ret = slab_mem_going_offline_callback(arg);
3015		break;
3016	case MEM_OFFLINE:
3017	case MEM_CANCEL_ONLINE:
3018		slab_mem_offline_callback(arg);
3019		break;
3020	case MEM_ONLINE:
3021	case MEM_CANCEL_OFFLINE:
3022		break;
3023	}
3024	if (ret)
3025		ret = notifier_from_errno(ret);
3026	else
3027		ret = NOTIFY_OK;
3028	return ret;
3029}
3030
3031#endif /* CONFIG_MEMORY_HOTPLUG */
3032
3033/********************************************************************
3034 *			Basic setup of slabs
3035 *******************************************************************/
3036
3037void __init kmem_cache_init(void)
3038{
3039	int i;
3040	int caches = 0;
3041
3042#ifdef CONFIG_NUMA
3043	/*
3044	 * Must first have the slab cache available for the allocations of the
3045	 * struct kmem_cache_node's. There is special bootstrap code in
3046	 * kmem_cache_open for slab_state == DOWN.
3047	 */
3048	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3049		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3050	kmalloc_caches[0].refcount = -1;
3051	caches++;
3052
3053	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3054#endif
3055
3056	/* Able to allocate the per node structures */
3057	slab_state = PARTIAL;
3058
3059	/* Caches that are not of the two-to-the-power-of size */
3060	if (KMALLOC_MIN_SIZE <= 32) {
3061		create_kmalloc_cache(&kmalloc_caches[1],
3062				"kmalloc-96", 96, GFP_NOWAIT);
3063		caches++;
3064	}
3065	if (KMALLOC_MIN_SIZE <= 64) {
3066		create_kmalloc_cache(&kmalloc_caches[2],
3067				"kmalloc-192", 192, GFP_NOWAIT);
3068		caches++;
3069	}
3070
3071	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3072		create_kmalloc_cache(&kmalloc_caches[i],
3073			"kmalloc", 1 << i, GFP_NOWAIT);
3074		caches++;
3075	}
3076
3077
3078	/*
3079	 * Patch up the size_index table if we have strange large alignment
3080	 * requirements for the kmalloc array. This is only the case for
3081	 * MIPS it seems. The standard arches will not generate any code here.
3082	 *
3083	 * Largest permitted alignment is 256 bytes due to the way we
3084	 * handle the index determination for the smaller caches.
3085	 *
3086	 * Make sure that nothing crazy happens if someone starts tinkering
3087	 * around with ARCH_KMALLOC_MINALIGN
3088	 */
3089	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3090		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3091
3092	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3093		int elem = size_index_elem(i);
3094		if (elem >= ARRAY_SIZE(size_index))
3095			break;
3096		size_index[elem] = KMALLOC_SHIFT_LOW;
3097	}
3098
3099	if (KMALLOC_MIN_SIZE == 64) {
3100		/*
3101		 * The 96 byte size cache is not used if the alignment
3102		 * is 64 byte.
3103		 */
3104		for (i = 64 + 8; i <= 96; i += 8)
3105			size_index[size_index_elem(i)] = 7;
3106	} else if (KMALLOC_MIN_SIZE == 128) {
3107		/*
3108		 * The 192 byte sized cache is not used if the alignment
3109		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3110		 * instead.
3111		 */
3112		for (i = 128 + 8; i <= 192; i += 8)
3113			size_index[size_index_elem(i)] = 8;
3114	}
3115
3116	slab_state = UP;
3117
3118	/* Provide the correct kmalloc names now that the caches are up */
3119	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3120		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3121
3122		BUG_ON(!s);
3123		kmalloc_caches[i].name = s;
3124	}
3125
3126#ifdef CONFIG_SMP
3127	register_cpu_notifier(&slab_notifier);
3128#endif
3129#ifdef CONFIG_NUMA
3130	kmem_size = offsetof(struct kmem_cache, node) +
3131				nr_node_ids * sizeof(struct kmem_cache_node *);
3132#else
3133	kmem_size = sizeof(struct kmem_cache);
3134#endif
3135
3136	printk(KERN_INFO
3137		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3138		" CPUs=%d, Nodes=%d\n",
3139		caches, cache_line_size(),
3140		slub_min_order, slub_max_order, slub_min_objects,
3141		nr_cpu_ids, nr_node_ids);
3142}
3143
3144void __init kmem_cache_init_late(void)
3145{
3146}
3147
3148/*
3149 * Find a mergeable slab cache
3150 */
3151static int slab_unmergeable(struct kmem_cache *s)
3152{
3153	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3154		return 1;
3155
3156	if (s->ctor)
3157		return 1;
3158
3159	/*
3160	 * We may have set a slab to be unmergeable during bootstrap.
3161	 */
3162	if (s->refcount < 0)
3163		return 1;
3164
3165	return 0;
3166}
3167
3168static struct kmem_cache *find_mergeable(size_t size,
3169		size_t align, unsigned long flags, const char *name,
3170		void (*ctor)(void *))
3171{
3172	struct kmem_cache *s;
3173
3174	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3175		return NULL;
3176
3177	if (ctor)
3178		return NULL;
3179
3180	size = ALIGN(size, sizeof(void *));
3181	align = calculate_alignment(flags, align, size);
3182	size = ALIGN(size, align);
3183	flags = kmem_cache_flags(size, flags, name, NULL);
3184
3185	list_for_each_entry(s, &slab_caches, list) {
3186		if (slab_unmergeable(s))
3187			continue;
3188
3189		if (size > s->size)
3190			continue;
3191
3192		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3193				continue;
3194		/*
3195		 * Check if alignment is compatible.
3196		 * Courtesy of Adrian Drzewiecki
3197		 */
3198		if ((s->size & ~(align - 1)) != s->size)
3199			continue;
3200
3201		if (s->size - size >= sizeof(void *))
3202			continue;
3203
3204		return s;
3205	}
3206	return NULL;
3207}
3208
3209struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3210		size_t align, unsigned long flags, void (*ctor)(void *))
3211{
3212	struct kmem_cache *s;
3213
3214	if (WARN_ON(!name))
3215		return NULL;
3216
3217	down_write(&slub_lock);
3218	s = find_mergeable(size, align, flags, name, ctor);
3219	if (s) {
3220		s->refcount++;
3221		/*
3222		 * Adjust the object sizes so that we clear
3223		 * the complete object on kzalloc.
3224		 */
3225		s->objsize = max(s->objsize, (int)size);
3226		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3227
3228		if (sysfs_slab_alias(s, name)) {
3229			s->refcount--;
3230			goto err;
3231		}
3232		up_write(&slub_lock);
3233		return s;
3234	}
3235
3236	s = kmalloc(kmem_size, GFP_KERNEL);
3237	if (s) {
3238		if (kmem_cache_open(s, GFP_KERNEL, name,
3239				size, align, flags, ctor)) {
3240			list_add(&s->list, &slab_caches);
3241			if (sysfs_slab_add(s)) {
3242				list_del(&s->list);
3243				kfree(s);
3244				goto err;
3245			}
3246			up_write(&slub_lock);
3247			return s;
3248		}
3249		kfree(s);
3250	}
3251	up_write(&slub_lock);
3252
3253err:
3254	if (flags & SLAB_PANIC)
3255		panic("Cannot create slabcache %s\n", name);
3256	else
3257		s = NULL;
3258	return s;
3259}
3260EXPORT_SYMBOL(kmem_cache_create);
3261
3262#ifdef CONFIG_SMP
3263/*
3264 * Use the cpu notifier to insure that the cpu slabs are flushed when
3265 * necessary.
3266 */
3267static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3268		unsigned long action, void *hcpu)
3269{
3270	long cpu = (long)hcpu;
3271	struct kmem_cache *s;
3272	unsigned long flags;
3273
3274	switch (action) {
3275	case CPU_UP_CANCELED:
3276	case CPU_UP_CANCELED_FROZEN:
3277	case CPU_DEAD:
3278	case CPU_DEAD_FROZEN:
3279		down_read(&slub_lock);
3280		list_for_each_entry(s, &slab_caches, list) {
3281			local_irq_save(flags);
3282			__flush_cpu_slab(s, cpu);
3283			local_irq_restore(flags);
3284		}
3285		up_read(&slub_lock);
3286		break;
3287	default:
3288		break;
3289	}
3290	return NOTIFY_OK;
3291}
3292
3293static struct notifier_block __cpuinitdata slab_notifier = {
3294	.notifier_call = slab_cpuup_callback
3295};
3296
3297#endif
3298
3299void * BCMFASTPATH_HOST __kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3300{
3301	struct kmem_cache *s;
3302	void *ret;
3303
3304	if (unlikely(size > SLUB_MAX_SIZE))
3305		return kmalloc_large(size, gfpflags);
3306
3307	s = get_slab(size, gfpflags);
3308
3309	if (unlikely(ZERO_OR_NULL_PTR(s)))
3310		return s;
3311
3312	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3313
3314	/* Honor the call site pointer we recieved. */
3315	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3316
3317	return ret;
3318}
3319
3320void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3321					int node, unsigned long caller)
3322{
3323	struct kmem_cache *s;
3324	void *ret;
3325
3326	if (unlikely(size > SLUB_MAX_SIZE)) {
3327		ret = kmalloc_large_node(size, gfpflags, node);
3328
3329		trace_kmalloc_node(caller, ret,
3330				   size, PAGE_SIZE << get_order(size),
3331				   gfpflags, node);
3332
3333		return ret;
3334	}
3335
3336	s = get_slab(size, gfpflags);
3337
3338	if (unlikely(ZERO_OR_NULL_PTR(s)))
3339		return s;
3340
3341	ret = slab_alloc(s, gfpflags, node, caller);
3342
3343	/* Honor the call site pointer we recieved. */
3344	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3345
3346	return ret;
3347}
3348
3349#ifdef CONFIG_SLUB_DEBUG
3350static int count_inuse(struct page *page)
3351{
3352	return page->inuse;
3353}
3354
3355static int count_total(struct page *page)
3356{
3357	return page->objects;
3358}
3359
3360static int validate_slab(struct kmem_cache *s, struct page *page,
3361						unsigned long *map)
3362{
3363	void *p;
3364	void *addr = page_address(page);
3365
3366	if (!check_slab(s, page) ||
3367			!on_freelist(s, page, NULL))
3368		return 0;
3369
3370	/* Now we know that a valid freelist exists */
3371	bitmap_zero(map, page->objects);
3372
3373	for_each_free_object(p, s, page->freelist) {
3374		set_bit(slab_index(p, s, addr), map);
3375		if (!check_object(s, page, p, 0))
3376			return 0;
3377	}
3378
3379	for_each_object(p, s, addr, page->objects)
3380		if (!test_bit(slab_index(p, s, addr), map))
3381			if (!check_object(s, page, p, 1))
3382				return 0;
3383	return 1;
3384}
3385
3386static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3387						unsigned long *map)
3388{
3389	if (slab_trylock(page)) {
3390		validate_slab(s, page, map);
3391		slab_unlock(page);
3392	} else
3393		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3394			s->name, page);
3395}
3396
3397static int validate_slab_node(struct kmem_cache *s,
3398		struct kmem_cache_node *n, unsigned long *map)
3399{
3400	unsigned long count = 0;
3401	struct page *page;
3402	unsigned long flags;
3403
3404	spin_lock_irqsave(&n->list_lock, flags);
3405
3406	list_for_each_entry(page, &n->partial, lru) {
3407		validate_slab_slab(s, page, map);
3408		count++;
3409	}
3410	if (count != n->nr_partial)
3411		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3412			"counter=%ld\n", s->name, count, n->nr_partial);
3413
3414	if (!(s->flags & SLAB_STORE_USER))
3415		goto out;
3416
3417	list_for_each_entry(page, &n->full, lru) {
3418		validate_slab_slab(s, page, map);
3419		count++;
3420	}
3421	if (count != atomic_long_read(&n->nr_slabs))
3422		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3423			"counter=%ld\n", s->name, count,
3424			atomic_long_read(&n->nr_slabs));
3425
3426out:
3427	spin_unlock_irqrestore(&n->list_lock, flags);
3428	return count;
3429}
3430
3431static long validate_slab_cache(struct kmem_cache *s)
3432{
3433	int node;
3434	unsigned long count = 0;
3435	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3436				sizeof(unsigned long), GFP_KERNEL);
3437
3438	if (!map)
3439		return -ENOMEM;
3440
3441	flush_all(s);
3442	for_each_node_state(node, N_NORMAL_MEMORY) {
3443		struct kmem_cache_node *n = get_node(s, node);
3444
3445		count += validate_slab_node(s, n, map);
3446	}
3447	kfree(map);
3448	return count;
3449}
3450
3451#ifdef SLUB_RESILIENCY_TEST
3452static void resiliency_test(void)
3453{
3454	u8 *p;
3455
3456	printk(KERN_ERR "SLUB resiliency testing\n");
3457	printk(KERN_ERR "-----------------------\n");
3458	printk(KERN_ERR "A. Corruption after allocation\n");
3459
3460	p = kzalloc(16, GFP_KERNEL);
3461	p[16] = 0x12;
3462	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3463			" 0x12->0x%p\n\n", p + 16);
3464
3465	validate_slab_cache(kmalloc_caches + 4);
3466
3467	/* Hmmm... The next two are dangerous */
3468	p = kzalloc(32, GFP_KERNEL);
3469	p[32 + sizeof(void *)] = 0x34;
3470	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3471			" 0x34 -> -0x%p\n", p);
3472	printk(KERN_ERR
3473		"If allocated object is overwritten then not detectable\n\n");
3474
3475	validate_slab_cache(kmalloc_caches + 5);
3476	p = kzalloc(64, GFP_KERNEL);
3477	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3478	*p = 0x56;
3479	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3480									p);
3481	printk(KERN_ERR
3482		"If allocated object is overwritten then not detectable\n\n");
3483	validate_slab_cache(kmalloc_caches + 6);
3484
3485	printk(KERN_ERR "\nB. Corruption after free\n");
3486	p = kzalloc(128, GFP_KERNEL);
3487	kfree(p);
3488	*p = 0x78;
3489	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3490	validate_slab_cache(kmalloc_caches + 7);
3491
3492	p = kzalloc(256, GFP_KERNEL);
3493	kfree(p);
3494	p[50] = 0x9a;
3495	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3496			p);
3497	validate_slab_cache(kmalloc_caches + 8);
3498
3499	p = kzalloc(512, GFP_KERNEL);
3500	kfree(p);
3501	p[512] = 0xab;
3502	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3503	validate_slab_cache(kmalloc_caches + 9);
3504}
3505#else
3506static void resiliency_test(void) {};
3507#endif
3508
3509/*
3510 * Generate lists of code addresses where slabcache objects are allocated
3511 * and freed.
3512 */
3513
3514struct location {
3515	unsigned long count;
3516	unsigned long addr;
3517	long long sum_time;
3518	long min_time;
3519	long max_time;
3520	long min_pid;
3521	long max_pid;
3522	DECLARE_BITMAP(cpus, NR_CPUS);
3523	nodemask_t nodes;
3524};
3525
3526struct loc_track {
3527	unsigned long max;
3528	unsigned long count;
3529	struct location *loc;
3530};
3531
3532static void free_loc_track(struct loc_track *t)
3533{
3534	if (t->max)
3535		free_pages((unsigned long)t->loc,
3536			get_order(sizeof(struct location) * t->max));
3537}
3538
3539static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3540{
3541	struct location *l;
3542	int order;
3543
3544	order = get_order(sizeof(struct location) * max);
3545
3546	l = (void *)__get_free_pages(flags, order);
3547	if (!l)
3548		return 0;
3549
3550	if (t->count) {
3551		memcpy(l, t->loc, sizeof(struct location) * t->count);
3552		free_loc_track(t);
3553	}
3554	t->max = max;
3555	t->loc = l;
3556	return 1;
3557}
3558
3559static int add_location(struct loc_track *t, struct kmem_cache *s,
3560				const struct track *track)
3561{
3562	long start, end, pos;
3563	struct location *l;
3564	unsigned long caddr;
3565	unsigned long age = jiffies - track->when;
3566
3567	start = -1;
3568	end = t->count;
3569
3570	for ( ; ; ) {
3571		pos = start + (end - start + 1) / 2;
3572
3573		/*
3574		 * There is nothing at "end". If we end up there
3575		 * we need to add something to before end.
3576		 */
3577		if (pos == end)
3578			break;
3579
3580		caddr = t->loc[pos].addr;
3581		if (track->addr == caddr) {
3582
3583			l = &t->loc[pos];
3584			l->count++;
3585			if (track->when) {
3586				l->sum_time += age;
3587				if (age < l->min_time)
3588					l->min_time = age;
3589				if (age > l->max_time)
3590					l->max_time = age;
3591
3592				if (track->pid < l->min_pid)
3593					l->min_pid = track->pid;
3594				if (track->pid > l->max_pid)
3595					l->max_pid = track->pid;
3596
3597				cpumask_set_cpu(track->cpu,
3598						to_cpumask(l->cpus));
3599			}
3600			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3601			return 1;
3602		}
3603
3604		if (track->addr < caddr)
3605			end = pos;
3606		else
3607			start = pos;
3608	}
3609
3610	/*
3611	 * Not found. Insert new tracking element.
3612	 */
3613	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3614		return 0;
3615
3616	l = t->loc + pos;
3617	if (pos < t->count)
3618		memmove(l + 1, l,
3619			(t->count - pos) * sizeof(struct location));
3620	t->count++;
3621	l->count = 1;
3622	l->addr = track->addr;
3623	l->sum_time = age;
3624	l->min_time = age;
3625	l->max_time = age;
3626	l->min_pid = track->pid;
3627	l->max_pid = track->pid;
3628	cpumask_clear(to_cpumask(l->cpus));
3629	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3630	nodes_clear(l->nodes);
3631	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3632	return 1;
3633}
3634
3635static void process_slab(struct loc_track *t, struct kmem_cache *s,
3636		struct page *page, enum track_item alloc,
3637		long *map)
3638{
3639	void *addr = page_address(page);
3640	void *p;
3641
3642	bitmap_zero(map, page->objects);
3643	for_each_free_object(p, s, page->freelist)
3644		set_bit(slab_index(p, s, addr), map);
3645
3646	for_each_object(p, s, addr, page->objects)
3647		if (!test_bit(slab_index(p, s, addr), map))
3648			add_location(t, s, get_track(s, p, alloc));
3649}
3650
3651static int list_locations(struct kmem_cache *s, char *buf,
3652					enum track_item alloc)
3653{
3654	int len = 0;
3655	unsigned long i;
3656	struct loc_track t = { 0, 0, NULL };
3657	int node;
3658	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3659				     sizeof(unsigned long), GFP_KERNEL);
3660
3661	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3662				     GFP_TEMPORARY)) {
3663		kfree(map);
3664		return sprintf(buf, "Out of memory\n");
3665	}
3666	/* Push back cpu slabs */
3667	flush_all(s);
3668
3669	for_each_node_state(node, N_NORMAL_MEMORY) {
3670		struct kmem_cache_node *n = get_node(s, node);
3671		unsigned long flags;
3672		struct page *page;
3673
3674		if (!atomic_long_read(&n->nr_slabs))
3675			continue;
3676
3677		spin_lock_irqsave(&n->list_lock, flags);
3678		list_for_each_entry(page, &n->partial, lru)
3679			process_slab(&t, s, page, alloc, map);
3680		list_for_each_entry(page, &n->full, lru)
3681			process_slab(&t, s, page, alloc, map);
3682		spin_unlock_irqrestore(&n->list_lock, flags);
3683	}
3684
3685	for (i = 0; i < t.count; i++) {
3686		struct location *l = &t.loc[i];
3687
3688		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3689			break;
3690		len += sprintf(buf + len, "%7ld ", l->count);
3691
3692		if (l->addr)
3693			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3694		else
3695			len += sprintf(buf + len, "<not-available>");
3696
3697		if (l->sum_time != l->min_time) {
3698			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3699				l->min_time,
3700				(long)div_u64(l->sum_time, l->count),
3701				l->max_time);
3702		} else
3703			len += sprintf(buf + len, " age=%ld",
3704				l->min_time);
3705
3706		if (l->min_pid != l->max_pid)
3707			len += sprintf(buf + len, " pid=%ld-%ld",
3708				l->min_pid, l->max_pid);
3709		else
3710			len += sprintf(buf + len, " pid=%ld",
3711				l->min_pid);
3712
3713		if (num_online_cpus() > 1 &&
3714				!cpumask_empty(to_cpumask(l->cpus)) &&
3715				len < PAGE_SIZE - 60) {
3716			len += sprintf(buf + len, " cpus=");
3717			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3718						 to_cpumask(l->cpus));
3719		}
3720
3721		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3722				len < PAGE_SIZE - 60) {
3723			len += sprintf(buf + len, " nodes=");
3724			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3725					l->nodes);
3726		}
3727
3728		len += sprintf(buf + len, "\n");
3729	}
3730
3731	free_loc_track(&t);
3732	kfree(map);
3733	if (!t.count)
3734		len += sprintf(buf, "No data\n");
3735	return len;
3736}
3737
3738enum slab_stat_type {
3739	SL_ALL,			/* All slabs */
3740	SL_PARTIAL,		/* Only partially allocated slabs */
3741	SL_CPU,			/* Only slabs used for cpu caches */
3742	SL_OBJECTS,		/* Determine allocated objects not slabs */
3743	SL_TOTAL		/* Determine object capacity not slabs */
3744};
3745
3746#define SO_ALL		(1 << SL_ALL)
3747#define SO_PARTIAL	(1 << SL_PARTIAL)
3748#define SO_CPU		(1 << SL_CPU)
3749#define SO_OBJECTS	(1 << SL_OBJECTS)
3750#define SO_TOTAL	(1 << SL_TOTAL)
3751
3752static ssize_t show_slab_objects(struct kmem_cache *s,
3753			    char *buf, unsigned long flags)
3754{
3755	unsigned long total = 0;
3756	int node;
3757	int x;
3758	unsigned long *nodes;
3759	unsigned long *per_cpu;
3760
3761	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3762	if (!nodes)
3763		return -ENOMEM;
3764	per_cpu = nodes + nr_node_ids;
3765
3766	if (flags & SO_CPU) {
3767		int cpu;
3768
3769		for_each_possible_cpu(cpu) {
3770			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3771
3772			if (!c || c->node < 0)
3773				continue;
3774
3775			if (c->page) {
3776					if (flags & SO_TOTAL)
3777						x = c->page->objects;
3778				else if (flags & SO_OBJECTS)
3779					x = c->page->inuse;
3780				else
3781					x = 1;
3782
3783				total += x;
3784				nodes[c->node] += x;
3785			}
3786			per_cpu[c->node]++;
3787		}
3788	}
3789
3790	if (flags & SO_ALL) {
3791		for_each_node_state(node, N_NORMAL_MEMORY) {
3792			struct kmem_cache_node *n = get_node(s, node);
3793
3794		if (flags & SO_TOTAL)
3795			x = atomic_long_read(&n->total_objects);
3796		else if (flags & SO_OBJECTS)
3797			x = atomic_long_read(&n->total_objects) -
3798				count_partial(n, count_free);
3799
3800			else
3801				x = atomic_long_read(&n->nr_slabs);
3802			total += x;
3803			nodes[node] += x;
3804		}
3805
3806	} else if (flags & SO_PARTIAL) {
3807		for_each_node_state(node, N_NORMAL_MEMORY) {
3808			struct kmem_cache_node *n = get_node(s, node);
3809
3810			if (flags & SO_TOTAL)
3811				x = count_partial(n, count_total);
3812			else if (flags & SO_OBJECTS)
3813				x = count_partial(n, count_inuse);
3814			else
3815				x = n->nr_partial;
3816			total += x;
3817			nodes[node] += x;
3818		}
3819	}
3820	x = sprintf(buf, "%lu", total);
3821#ifdef CONFIG_NUMA
3822	for_each_node_state(node, N_NORMAL_MEMORY)
3823		if (nodes[node])
3824			x += sprintf(buf + x, " N%d=%lu",
3825					node, nodes[node]);
3826#endif
3827	kfree(nodes);
3828	return x + sprintf(buf + x, "\n");
3829}
3830
3831static int any_slab_objects(struct kmem_cache *s)
3832{
3833	int node;
3834
3835	for_each_online_node(node) {
3836		struct kmem_cache_node *n = get_node(s, node);
3837
3838		if (!n)
3839			continue;
3840
3841		if (atomic_long_read(&n->total_objects))
3842			return 1;
3843	}
3844	return 0;
3845}
3846
3847#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3848#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3849
3850struct slab_attribute {
3851	struct attribute attr;
3852	ssize_t (*show)(struct kmem_cache *s, char *buf);
3853	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3854};
3855
3856#define SLAB_ATTR_RO(_name) \
3857	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3858
3859#define SLAB_ATTR(_name) \
3860	static struct slab_attribute _name##_attr =  \
3861	__ATTR(_name, 0644, _name##_show, _name##_store)
3862
3863static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3864{
3865	return sprintf(buf, "%d\n", s->size);
3866}
3867SLAB_ATTR_RO(slab_size);
3868
3869static ssize_t align_show(struct kmem_cache *s, char *buf)
3870{
3871	return sprintf(buf, "%d\n", s->align);
3872}
3873SLAB_ATTR_RO(align);
3874
3875static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3876{
3877	return sprintf(buf, "%d\n", s->objsize);
3878}
3879SLAB_ATTR_RO(object_size);
3880
3881static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3882{
3883	return sprintf(buf, "%d\n", oo_objects(s->oo));
3884}
3885SLAB_ATTR_RO(objs_per_slab);
3886
3887static ssize_t order_store(struct kmem_cache *s,
3888				const char *buf, size_t length)
3889{
3890	unsigned long order;
3891	int err;
3892
3893	err = strict_strtoul(buf, 10, &order);
3894	if (err)
3895		return err;
3896
3897	if (order > slub_max_order || order < slub_min_order)
3898		return -EINVAL;
3899
3900	calculate_sizes(s, order);
3901	return length;
3902}
3903
3904static ssize_t order_show(struct kmem_cache *s, char *buf)
3905{
3906	return sprintf(buf, "%d\n", oo_order(s->oo));
3907}
3908SLAB_ATTR(order);
3909
3910static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3911{
3912	return sprintf(buf, "%lu\n", s->min_partial);
3913}
3914
3915static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3916				 size_t length)
3917{
3918	unsigned long min;
3919	int err;
3920
3921	err = strict_strtoul(buf, 10, &min);
3922	if (err)
3923		return err;
3924
3925	set_min_partial(s, min);
3926	return length;
3927}
3928SLAB_ATTR(min_partial);
3929
3930static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3931{
3932	if (s->ctor) {
3933		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3934
3935		return n + sprintf(buf + n, "\n");
3936	}
3937	return 0;
3938}
3939SLAB_ATTR_RO(ctor);
3940
3941static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3942{
3943	return sprintf(buf, "%d\n", s->refcount - 1);
3944}
3945SLAB_ATTR_RO(aliases);
3946
3947static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3948{
3949	return show_slab_objects(s, buf, SO_ALL);
3950}
3951SLAB_ATTR_RO(slabs);
3952
3953static ssize_t partial_show(struct kmem_cache *s, char *buf)
3954{
3955	return show_slab_objects(s, buf, SO_PARTIAL);
3956}
3957SLAB_ATTR_RO(partial);
3958
3959static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3960{
3961	return show_slab_objects(s, buf, SO_CPU);
3962}
3963SLAB_ATTR_RO(cpu_slabs);
3964
3965static ssize_t objects_show(struct kmem_cache *s, char *buf)
3966{
3967	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3968}
3969SLAB_ATTR_RO(objects);
3970
3971static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3972{
3973	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3974}
3975SLAB_ATTR_RO(objects_partial);
3976
3977static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3978{
3979	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3980}
3981SLAB_ATTR_RO(total_objects);
3982
3983static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3984{
3985	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3986}
3987
3988static ssize_t sanity_checks_store(struct kmem_cache *s,
3989				const char *buf, size_t length)
3990{
3991	s->flags &= ~SLAB_DEBUG_FREE;
3992	if (buf[0] == '1')
3993		s->flags |= SLAB_DEBUG_FREE;
3994	return length;
3995}
3996SLAB_ATTR(sanity_checks);
3997
3998static ssize_t trace_show(struct kmem_cache *s, char *buf)
3999{
4000	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4001}
4002
4003static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4004							size_t length)
4005{
4006	s->flags &= ~SLAB_TRACE;
4007	if (buf[0] == '1')
4008		s->flags |= SLAB_TRACE;
4009	return length;
4010}
4011SLAB_ATTR(trace);
4012
4013#ifdef CONFIG_FAILSLAB
4014static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4015{
4016	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4017}
4018
4019static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4020							size_t length)
4021{
4022	s->flags &= ~SLAB_FAILSLAB;
4023	if (buf[0] == '1')
4024		s->flags |= SLAB_FAILSLAB;
4025	return length;
4026}
4027SLAB_ATTR(failslab);
4028#endif
4029
4030static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4031{
4032	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4033}
4034
4035static ssize_t reclaim_account_store(struct kmem_cache *s,
4036				const char *buf, size_t length)
4037{
4038	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4039	if (buf[0] == '1')
4040		s->flags |= SLAB_RECLAIM_ACCOUNT;
4041	return length;
4042}
4043SLAB_ATTR(reclaim_account);
4044
4045static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4046{
4047	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4048}
4049SLAB_ATTR_RO(hwcache_align);
4050
4051#ifdef CONFIG_ZONE_DMA
4052static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4053{
4054	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4055}
4056SLAB_ATTR_RO(cache_dma);
4057#endif
4058
4059static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4060{
4061	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4062}
4063SLAB_ATTR_RO(destroy_by_rcu);
4064
4065static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4066{
4067	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4068}
4069
4070static ssize_t red_zone_store(struct kmem_cache *s,
4071				const char *buf, size_t length)
4072{
4073	if (any_slab_objects(s))
4074		return -EBUSY;
4075
4076	s->flags &= ~SLAB_RED_ZONE;
4077	if (buf[0] == '1')
4078		s->flags |= SLAB_RED_ZONE;
4079	calculate_sizes(s, -1);
4080	return length;
4081}
4082SLAB_ATTR(red_zone);
4083
4084static ssize_t poison_show(struct kmem_cache *s, char *buf)
4085{
4086	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4087}
4088
4089static ssize_t poison_store(struct kmem_cache *s,
4090				const char *buf, size_t length)
4091{
4092	if (any_slab_objects(s))
4093		return -EBUSY;
4094
4095	s->flags &= ~SLAB_POISON;
4096	if (buf[0] == '1')
4097		s->flags |= SLAB_POISON;
4098	calculate_sizes(s, -1);
4099	return length;
4100}
4101SLAB_ATTR(poison);
4102
4103static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4104{
4105	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4106}
4107
4108static ssize_t store_user_store(struct kmem_cache *s,
4109				const char *buf, size_t length)
4110{
4111	if (any_slab_objects(s))
4112		return -EBUSY;
4113
4114	s->flags &= ~SLAB_STORE_USER;
4115	if (buf[0] == '1')
4116		s->flags |= SLAB_STORE_USER;
4117	calculate_sizes(s, -1);
4118	return length;
4119}
4120SLAB_ATTR(store_user);
4121
4122static ssize_t validate_show(struct kmem_cache *s, char *buf)
4123{
4124	return 0;
4125}
4126
4127static ssize_t validate_store(struct kmem_cache *s,
4128			const char *buf, size_t length)
4129{
4130	int ret = -EINVAL;
4131
4132	if (buf[0] == '1') {
4133		ret = validate_slab_cache(s);
4134		if (ret >= 0)
4135			ret = length;
4136	}
4137	return ret;
4138}
4139SLAB_ATTR(validate);
4140
4141static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4142{
4143	return 0;
4144}
4145
4146static ssize_t shrink_store(struct kmem_cache *s,
4147			const char *buf, size_t length)
4148{
4149	if (buf[0] == '1') {
4150		int rc = kmem_cache_shrink(s);
4151
4152		if (rc)
4153			return rc;
4154	} else
4155		return -EINVAL;
4156	return length;
4157}
4158SLAB_ATTR(shrink);
4159
4160static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4161{
4162	if (!(s->flags & SLAB_STORE_USER))
4163		return -ENOSYS;
4164	return list_locations(s, buf, TRACK_ALLOC);
4165}
4166SLAB_ATTR_RO(alloc_calls);
4167
4168static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4169{
4170	if (!(s->flags & SLAB_STORE_USER))
4171		return -ENOSYS;
4172	return list_locations(s, buf, TRACK_FREE);
4173}
4174SLAB_ATTR_RO(free_calls);
4175
4176#ifdef CONFIG_NUMA
4177static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4178{
4179	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4180}
4181
4182static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4183				const char *buf, size_t length)
4184{
4185	unsigned long ratio;
4186	int err;
4187
4188	err = strict_strtoul(buf, 10, &ratio);
4189	if (err)
4190		return err;
4191
4192	if (ratio <= 100)
4193		s->remote_node_defrag_ratio = ratio * 10;
4194
4195	return length;
4196}
4197SLAB_ATTR(remote_node_defrag_ratio);
4198#endif
4199
4200#ifdef CONFIG_SLUB_STATS
4201static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4202{
4203	unsigned long sum  = 0;
4204	int cpu;
4205	int len;
4206	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4207
4208	if (!data)
4209		return -ENOMEM;
4210
4211	for_each_online_cpu(cpu) {
4212		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4213
4214		data[cpu] = x;
4215		sum += x;
4216	}
4217
4218	len = sprintf(buf, "%lu", sum);
4219
4220#ifdef CONFIG_SMP
4221	for_each_online_cpu(cpu) {
4222		if (data[cpu] && len < PAGE_SIZE - 20)
4223			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4224	}
4225#endif
4226	kfree(data);
4227	return len + sprintf(buf + len, "\n");
4228}
4229
4230static void clear_stat(struct kmem_cache *s, enum stat_item si)
4231{
4232	int cpu;
4233
4234	for_each_online_cpu(cpu)
4235		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4236}
4237
4238#define STAT_ATTR(si, text) 					\
4239static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4240{								\
4241	return show_stat(s, buf, si);				\
4242}								\
4243static ssize_t text##_store(struct kmem_cache *s,		\
4244				const char *buf, size_t length)	\
4245{								\
4246	if (buf[0] != '0')					\
4247		return -EINVAL;					\
4248	clear_stat(s, si);					\
4249	return length;						\
4250}								\
4251SLAB_ATTR(text);						\
4252
4253STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4254STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4255STAT_ATTR(FREE_FASTPATH, free_fastpath);
4256STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4257STAT_ATTR(FREE_FROZEN, free_frozen);
4258STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4259STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4260STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4261STAT_ATTR(ALLOC_SLAB, alloc_slab);
4262STAT_ATTR(ALLOC_REFILL, alloc_refill);
4263STAT_ATTR(FREE_SLAB, free_slab);
4264STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4265STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4266STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4267STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4268STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4269STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4270STAT_ATTR(ORDER_FALLBACK, order_fallback);
4271#endif
4272
4273static struct attribute *slab_attrs[] = {
4274	&slab_size_attr.attr,
4275	&object_size_attr.attr,
4276	&objs_per_slab_attr.attr,
4277	&order_attr.attr,
4278	&min_partial_attr.attr,
4279	&objects_attr.attr,
4280	&objects_partial_attr.attr,
4281	&total_objects_attr.attr,
4282	&slabs_attr.attr,
4283	&partial_attr.attr,
4284	&cpu_slabs_attr.attr,
4285	&ctor_attr.attr,
4286	&aliases_attr.attr,
4287	&align_attr.attr,
4288	&sanity_checks_attr.attr,
4289	&trace_attr.attr,
4290	&hwcache_align_attr.attr,
4291	&reclaim_account_attr.attr,
4292	&destroy_by_rcu_attr.attr,
4293	&red_zone_attr.attr,
4294	&poison_attr.attr,
4295	&store_user_attr.attr,
4296	&validate_attr.attr,
4297	&shrink_attr.attr,
4298	&alloc_calls_attr.attr,
4299	&free_calls_attr.attr,
4300#ifdef CONFIG_ZONE_DMA
4301	&cache_dma_attr.attr,
4302#endif
4303#ifdef CONFIG_NUMA
4304	&remote_node_defrag_ratio_attr.attr,
4305#endif
4306#ifdef CONFIG_SLUB_STATS
4307	&alloc_fastpath_attr.attr,
4308	&alloc_slowpath_attr.attr,
4309	&free_fastpath_attr.attr,
4310	&free_slowpath_attr.attr,
4311	&free_frozen_attr.attr,
4312	&free_add_partial_attr.attr,
4313	&free_remove_partial_attr.attr,
4314	&alloc_from_partial_attr.attr,
4315	&alloc_slab_attr.attr,
4316	&alloc_refill_attr.attr,
4317	&free_slab_attr.attr,
4318	&cpuslab_flush_attr.attr,
4319	&deactivate_full_attr.attr,
4320	&deactivate_empty_attr.attr,
4321	&deactivate_to_head_attr.attr,
4322	&deactivate_to_tail_attr.attr,
4323	&deactivate_remote_frees_attr.attr,
4324	&order_fallback_attr.attr,
4325#endif
4326#ifdef CONFIG_FAILSLAB
4327	&failslab_attr.attr,
4328#endif
4329
4330	NULL
4331};
4332
4333static struct attribute_group slab_attr_group = {
4334	.attrs = slab_attrs,
4335};
4336
4337static ssize_t slab_attr_show(struct kobject *kobj,
4338				struct attribute *attr,
4339				char *buf)
4340{
4341	struct slab_attribute *attribute;
4342	struct kmem_cache *s;
4343	int err;
4344
4345	attribute = to_slab_attr(attr);
4346	s = to_slab(kobj);
4347
4348	if (!attribute->show)
4349		return -EIO;
4350
4351	err = attribute->show(s, buf);
4352
4353	return err;
4354}
4355
4356static ssize_t slab_attr_store(struct kobject *kobj,
4357				struct attribute *attr,
4358				const char *buf, size_t len)
4359{
4360	struct slab_attribute *attribute;
4361	struct kmem_cache *s;
4362	int err;
4363
4364	attribute = to_slab_attr(attr);
4365	s = to_slab(kobj);
4366
4367	if (!attribute->store)
4368		return -EIO;
4369
4370	err = attribute->store(s, buf, len);
4371
4372	return err;
4373}
4374
4375static void kmem_cache_release(struct kobject *kobj)
4376{
4377	struct kmem_cache *s = to_slab(kobj);
4378
4379	kfree(s);
4380}
4381
4382static const struct sysfs_ops slab_sysfs_ops = {
4383	.show = slab_attr_show,
4384	.store = slab_attr_store,
4385};
4386
4387static struct kobj_type slab_ktype = {
4388	.sysfs_ops = &slab_sysfs_ops,
4389	.release = kmem_cache_release
4390};
4391
4392static int uevent_filter(struct kset *kset, struct kobject *kobj)
4393{
4394	struct kobj_type *ktype = get_ktype(kobj);
4395
4396	if (ktype == &slab_ktype)
4397		return 1;
4398	return 0;
4399}
4400
4401static const struct kset_uevent_ops slab_uevent_ops = {
4402	.filter = uevent_filter,
4403};
4404
4405static struct kset *slab_kset;
4406
4407#define ID_STR_LENGTH 64
4408
4409/* Create a unique string id for a slab cache:
4410 *
4411 * Format	:[flags-]size
4412 */
4413static char *create_unique_id(struct kmem_cache *s)
4414{
4415	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4416	char *p = name;
4417
4418	BUG_ON(!name);
4419
4420	*p++ = ':';
4421	/*
4422	 * First flags affecting slabcache operations. We will only
4423	 * get here for aliasable slabs so we do not need to support
4424	 * too many flags. The flags here must cover all flags that
4425	 * are matched during merging to guarantee that the id is
4426	 * unique.
4427	 */
4428	if (s->flags & SLAB_CACHE_DMA)
4429		*p++ = 'd';
4430	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4431		*p++ = 'a';
4432	if (s->flags & SLAB_DEBUG_FREE)
4433		*p++ = 'F';
4434	if (!(s->flags & SLAB_NOTRACK))
4435		*p++ = 't';
4436	if (p != name + 1)
4437		*p++ = '-';
4438	p += sprintf(p, "%07d", s->size);
4439	BUG_ON(p > name + ID_STR_LENGTH - 1);
4440	return name;
4441}
4442
4443static int sysfs_slab_add(struct kmem_cache *s)
4444{
4445	int err;
4446	const char *name;
4447	int unmergeable;
4448
4449	if (slab_state < SYSFS)
4450		/* Defer until later */
4451		return 0;
4452
4453	unmergeable = slab_unmergeable(s);
4454	if (unmergeable) {
4455		/*
4456		 * Slabcache can never be merged so we can use the name proper.
4457		 * This is typically the case for debug situations. In that
4458		 * case we can catch duplicate names easily.
4459		 */
4460		sysfs_remove_link(&slab_kset->kobj, s->name);
4461		name = s->name;
4462	} else {
4463		/*
4464		 * Create a unique name for the slab as a target
4465		 * for the symlinks.
4466		 */
4467		name = create_unique_id(s);
4468	}
4469
4470	s->kobj.kset = slab_kset;
4471	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4472	if (err) {
4473		kobject_put(&s->kobj);
4474		return err;
4475	}
4476
4477	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4478	if (err) {
4479		kobject_del(&s->kobj);
4480		kobject_put(&s->kobj);
4481		return err;
4482	}
4483	kobject_uevent(&s->kobj, KOBJ_ADD);
4484	if (!unmergeable) {
4485		/* Setup first alias */
4486		sysfs_slab_alias(s, s->name);
4487		kfree(name);
4488	}
4489	return 0;
4490}
4491
4492static void sysfs_slab_remove(struct kmem_cache *s)
4493{
4494	if (slab_state < SYSFS)
4495		/*
4496		 * Sysfs has not been setup yet so no need to remove the
4497		 * cache from sysfs.
4498		 */
4499		return;
4500
4501	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4502	kobject_del(&s->kobj);
4503	kobject_put(&s->kobj);
4504}
4505
4506/*
4507 * Need to buffer aliases during bootup until sysfs becomes
4508 * available lest we lose that information.
4509 */
4510struct saved_alias {
4511	struct kmem_cache *s;
4512	const char *name;
4513	struct saved_alias *next;
4514};
4515
4516static struct saved_alias *alias_list;
4517
4518static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4519{
4520	struct saved_alias *al;
4521
4522	if (slab_state == SYSFS) {
4523		/*
4524		 * If we have a leftover link then remove it.
4525		 */
4526		sysfs_remove_link(&slab_kset->kobj, name);
4527		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4528	}
4529
4530	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4531	if (!al)
4532		return -ENOMEM;
4533
4534	al->s = s;
4535	al->name = name;
4536	al->next = alias_list;
4537	alias_list = al;
4538	return 0;
4539}
4540
4541static int __init slab_sysfs_init(void)
4542{
4543	struct kmem_cache *s;
4544	int err;
4545
4546	down_write(&slub_lock);
4547
4548	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4549	if (!slab_kset) {
4550		up_write(&slub_lock);
4551		printk(KERN_ERR "Cannot register slab subsystem.\n");
4552		return -ENOSYS;
4553	}
4554
4555	slab_state = SYSFS;
4556
4557	list_for_each_entry(s, &slab_caches, list) {
4558		err = sysfs_slab_add(s);
4559		if (err)
4560			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4561						" to sysfs\n", s->name);
4562	}
4563
4564	while (alias_list) {
4565		struct saved_alias *al = alias_list;
4566
4567		alias_list = alias_list->next;
4568		err = sysfs_slab_alias(al->s, al->name);
4569		if (err)
4570			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4571					" %s to sysfs\n", s->name);
4572		kfree(al);
4573	}
4574
4575	up_write(&slub_lock);
4576	resiliency_test();
4577	return 0;
4578}
4579
4580__initcall(slab_sysfs_init);
4581#endif
4582
4583/*
4584 * The /proc/slabinfo ABI
4585 */
4586#ifdef CONFIG_SLABINFO
4587static void print_slabinfo_header(struct seq_file *m)
4588{
4589	seq_puts(m, "slabinfo - version: 2.1\n");
4590	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4591		 "<objperslab> <pagesperslab>");
4592	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4593	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4594	seq_putc(m, '\n');
4595}
4596
4597static void *s_start(struct seq_file *m, loff_t *pos)
4598{
4599	loff_t n = *pos;
4600
4601	down_read(&slub_lock);
4602	if (!n)
4603		print_slabinfo_header(m);
4604
4605	return seq_list_start(&slab_caches, *pos);
4606}
4607
4608static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4609{
4610	return seq_list_next(p, &slab_caches, pos);
4611}
4612
4613static void s_stop(struct seq_file *m, void *p)
4614{
4615	up_read(&slub_lock);
4616}
4617
4618static int s_show(struct seq_file *m, void *p)
4619{
4620	unsigned long nr_partials = 0;
4621	unsigned long nr_slabs = 0;
4622	unsigned long nr_inuse = 0;
4623	unsigned long nr_objs = 0;
4624	unsigned long nr_free = 0;
4625	struct kmem_cache *s;
4626	int node;
4627
4628	s = list_entry(p, struct kmem_cache, list);
4629
4630	for_each_online_node(node) {
4631		struct kmem_cache_node *n = get_node(s, node);
4632
4633		if (!n)
4634			continue;
4635
4636		nr_partials += n->nr_partial;
4637		nr_slabs += atomic_long_read(&n->nr_slabs);
4638		nr_objs += atomic_long_read(&n->total_objects);
4639		nr_free += count_partial(n, count_free);
4640	}
4641
4642	nr_inuse = nr_objs - nr_free;
4643
4644	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4645		   nr_objs, s->size, oo_objects(s->oo),
4646		   (1 << oo_order(s->oo)));
4647	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4648	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4649		   0UL);
4650	seq_putc(m, '\n');
4651	return 0;
4652}
4653
4654static const struct seq_operations slabinfo_op = {
4655	.start = s_start,
4656	.next = s_next,
4657	.stop = s_stop,
4658	.show = s_show,
4659};
4660
4661static int slabinfo_open(struct inode *inode, struct file *file)
4662{
4663	return seq_open(file, &slabinfo_op);
4664}
4665
4666static const struct file_operations proc_slabinfo_operations = {
4667	.open		= slabinfo_open,
4668	.read		= seq_read,
4669	.llseek		= seq_lseek,
4670	.release	= seq_release,
4671};
4672
4673static int __init slab_proc_init(void)
4674{
4675	proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4676	return 0;
4677}
4678module_init(slab_proc_init);
4679#endif /* CONFIG_SLABINFO */
4680