1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2/*
3 * mm/percpu.c - percpu memory allocator
4 *
5 * Copyright (C) 2009		SUSE Linux Products GmbH
6 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 *
10 * This is percpu allocator which can handle both static and dynamic
11 * areas.  Percpu areas are allocated in chunks.  Each chunk is
12 * consisted of boot-time determined number of units and the first
13 * chunk is used for static percpu variables in the kernel image
14 * (special boot time alloc/init handling necessary as these areas
15 * need to be brought up before allocation services are running).
16 * Unit grows as necessary and all units grow or shrink in unison.
17 * When a chunk is filled up, another chunk is allocated.
18 *
19 *  c0                           c1                         c2
20 *  -------------------          -------------------        ------------
21 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22 *  -------------------  ......  -------------------  ....  ------------
23 *
24 * Allocation is done in offset-size areas of single unit space.  Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
27 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes.  The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk.  This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map.  A positive value in the map represents a free
41 * region and negative allocated.  Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 *   regular address to percpu pointer and back if they need to be
51 *   different from the default
52 *
53 * - use pcpu_setup_first_chunk() during percpu area initialization to
54 *   setup the first chunk containing the kernel static percpu area
55 */
56
57#include <linux/bitmap.h>
58#include <linux/bootmem.h>
59#include <linux/err.h>
60#include <linux/list.h>
61#include <linux/log2.h>
62#include <linux/mm.h>
63#include <linux/module.h>
64#include <linux/mutex.h>
65#include <linux/percpu.h>
66#include <linux/pfn.h>
67#include <linux/slab.h>
68#include <linux/spinlock.h>
69#include <linux/vmalloc.h>
70#include <linux/workqueue.h>
71
72#include <asm/cacheflush.h>
73#include <asm/sections.h>
74#include <asm/tlbflush.h>
75#include <asm/io.h>
76
77#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79
80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81#ifndef __addr_to_pcpu_ptr
82#define __addr_to_pcpu_ptr(addr)					\
83	(void __percpu *)((unsigned long)(addr) -			\
84			  (unsigned long)pcpu_base_addr	+		\
85			  (unsigned long)__per_cpu_start)
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr)						\
89	(void __force *)((unsigned long)(ptr) +				\
90			 (unsigned long)pcpu_base_addr -		\
91			 (unsigned long)__per_cpu_start)
92#endif
93
94struct pcpu_chunk {
95	struct list_head	list;		/* linked to pcpu_slot lists */
96	int			free_size;	/* free bytes in the chunk */
97	int			contig_hint;	/* max contiguous size hint */
98	void			*base_addr;	/* base address of this chunk */
99	int			map_used;	/* # of map entries used */
100	int			map_alloc;	/* # of map entries allocated */
101	int			*map;		/* allocation map */
102	void			*data;		/* chunk data */
103	bool			immutable;	/* no [de]population allowed */
104	unsigned long		populated[];	/* populated bitmap */
105};
106
107static int pcpu_unit_pages __read_mostly;
108static int pcpu_unit_size __read_mostly;
109static int pcpu_nr_units __read_mostly;
110static int pcpu_atom_size __read_mostly;
111static int pcpu_nr_slots __read_mostly;
112static size_t pcpu_chunk_struct_size __read_mostly;
113
114/* cpus with the lowest and highest unit numbers */
115static unsigned int pcpu_first_unit_cpu __read_mostly;
116static unsigned int pcpu_last_unit_cpu __read_mostly;
117
118/* the address of the first chunk which starts with the kernel static area */
119void *pcpu_base_addr __read_mostly;
120EXPORT_SYMBOL_GPL(pcpu_base_addr);
121
122static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
123const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
124
125/* group information, used for vm allocation */
126static int pcpu_nr_groups __read_mostly;
127static const unsigned long *pcpu_group_offsets __read_mostly;
128static const size_t *pcpu_group_sizes __read_mostly;
129
130/*
131 * The first chunk which always exists.  Note that unlike other
132 * chunks, this one can be allocated and mapped in several different
133 * ways and thus often doesn't live in the vmalloc area.
134 */
135static struct pcpu_chunk *pcpu_first_chunk;
136
137/*
138 * Optional reserved chunk.  This chunk reserves part of the first
139 * chunk and serves it for reserved allocations.  The amount of
140 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
141 * area doesn't exist, the following variables contain NULL and 0
142 * respectively.
143 */
144static struct pcpu_chunk *pcpu_reserved_chunk;
145static int pcpu_reserved_chunk_limit;
146
147/*
148 * Synchronization rules.
149 *
150 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
151 * protects allocation/reclaim paths, chunks, populated bitmap and
152 * vmalloc mapping.  The latter is a spinlock and protects the index
153 * data structures - chunk slots, chunks and area maps in chunks.
154 *
155 * During allocation, pcpu_alloc_mutex is kept locked all the time and
156 * pcpu_lock is grabbed and released as necessary.  All actual memory
157 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
158 * general, percpu memory can't be allocated with irq off but
159 * irqsave/restore are still used in alloc path so that it can be used
160 * from early init path - sched_init() specifically.
161 *
162 * Free path accesses and alters only the index data structures, so it
163 * can be safely called from atomic context.  When memory needs to be
164 * returned to the system, free path schedules reclaim_work which
165 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166 * reclaimed, release both locks and frees the chunks.  Note that it's
167 * necessary to grab both locks to remove a chunk from circulation as
168 * allocation path might be referencing the chunk with only
169 * pcpu_alloc_mutex locked.
170 */
171static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
172static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
173
174static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
175
176/* reclaim work to release fully free chunks, scheduled from free path */
177static void pcpu_reclaim(struct work_struct *work);
178static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
179
180static bool pcpu_addr_in_first_chunk(void *addr)
181{
182	void *first_start = pcpu_first_chunk->base_addr;
183
184	return addr >= first_start && addr < first_start + pcpu_unit_size;
185}
186
187static bool pcpu_addr_in_reserved_chunk(void *addr)
188{
189	void *first_start = pcpu_first_chunk->base_addr;
190
191	return addr >= first_start &&
192		addr < first_start + pcpu_reserved_chunk_limit;
193}
194
195static int __pcpu_size_to_slot(int size)
196{
197	int highbit = fls(size);	/* size is in bytes */
198	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
199}
200
201static int pcpu_size_to_slot(int size)
202{
203	if (size == pcpu_unit_size)
204		return pcpu_nr_slots - 1;
205	return __pcpu_size_to_slot(size);
206}
207
208static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
209{
210	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
211		return 0;
212
213	return pcpu_size_to_slot(chunk->free_size);
214}
215
216/* set the pointer to a chunk in a page struct */
217static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
218{
219	page->index = (unsigned long)pcpu;
220}
221
222/* obtain pointer to a chunk from a page struct */
223static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
224{
225	return (struct pcpu_chunk *)page->index;
226}
227
228static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
229{
230	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
231}
232
233static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
234				     unsigned int cpu, int page_idx)
235{
236	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
237		(page_idx << PAGE_SHIFT);
238}
239
240static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
241					   int *rs, int *re, int end)
242{
243	*rs = find_next_zero_bit(chunk->populated, end, *rs);
244	*re = find_next_bit(chunk->populated, end, *rs + 1);
245}
246
247static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
248					 int *rs, int *re, int end)
249{
250	*rs = find_next_bit(chunk->populated, end, *rs);
251	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
252}
253
254/*
255 * (Un)populated page region iterators.  Iterate over (un)populated
256 * page regions betwen @start and @end in @chunk.  @rs and @re should
257 * be integer variables and will be set to start and end page index of
258 * the current region.
259 */
260#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
261	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
262	     (rs) < (re);						    \
263	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
264
265#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
266	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
267	     (rs) < (re);						    \
268	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
269
270/**
271 * pcpu_mem_alloc - allocate memory
272 * @size: bytes to allocate
273 *
274 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
275 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
276 * memory is always zeroed.
277 *
278 * CONTEXT:
279 * Does GFP_KERNEL allocation.
280 *
281 * RETURNS:
282 * Pointer to the allocated area on success, NULL on failure.
283 */
284static void *pcpu_mem_alloc(size_t size)
285{
286	if (WARN_ON_ONCE(!slab_is_available()))
287		return NULL;
288
289	if (size <= PAGE_SIZE)
290		return kzalloc(size, GFP_KERNEL);
291	else {
292		void *ptr = vmalloc(size);
293		if (ptr)
294			memset(ptr, 0, size);
295		return ptr;
296	}
297}
298
299/**
300 * pcpu_mem_free - free memory
301 * @ptr: memory to free
302 * @size: size of the area
303 *
304 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
305 */
306static void pcpu_mem_free(void *ptr, size_t size)
307{
308	if (size <= PAGE_SIZE)
309		kfree(ptr);
310	else
311		vfree(ptr);
312}
313
314/**
315 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
316 * @chunk: chunk of interest
317 * @oslot: the previous slot it was on
318 *
319 * This function is called after an allocation or free changed @chunk.
320 * New slot according to the changed state is determined and @chunk is
321 * moved to the slot.  Note that the reserved chunk is never put on
322 * chunk slots.
323 *
324 * CONTEXT:
325 * pcpu_lock.
326 */
327static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
328{
329	int nslot = pcpu_chunk_slot(chunk);
330
331	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
332		if (oslot < nslot)
333			list_move(&chunk->list, &pcpu_slot[nslot]);
334		else
335			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
336	}
337}
338
339/**
340 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
341 * @chunk: chunk of interest
342 *
343 * Determine whether area map of @chunk needs to be extended to
344 * accomodate a new allocation.
345 *
346 * CONTEXT:
347 * pcpu_lock.
348 *
349 * RETURNS:
350 * New target map allocation length if extension is necessary, 0
351 * otherwise.
352 */
353static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
354{
355	int new_alloc;
356
357	if (chunk->map_alloc >= chunk->map_used + 2)
358		return 0;
359
360	new_alloc = PCPU_DFL_MAP_ALLOC;
361	while (new_alloc < chunk->map_used + 2)
362		new_alloc *= 2;
363
364	return new_alloc;
365}
366
367/**
368 * pcpu_extend_area_map - extend area map of a chunk
369 * @chunk: chunk of interest
370 * @new_alloc: new target allocation length of the area map
371 *
372 * Extend area map of @chunk to have @new_alloc entries.
373 *
374 * CONTEXT:
375 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
376 *
377 * RETURNS:
378 * 0 on success, -errno on failure.
379 */
380static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
381{
382	int *old = NULL, *new = NULL;
383	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
384	unsigned long flags;
385
386	new = pcpu_mem_alloc(new_size);
387	if (!new)
388		return -ENOMEM;
389
390	/* acquire pcpu_lock and switch to new area map */
391	spin_lock_irqsave(&pcpu_lock, flags);
392
393	if (new_alloc <= chunk->map_alloc)
394		goto out_unlock;
395
396	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
397	old = chunk->map;
398
399	memcpy(new, old, old_size);
400
401	chunk->map_alloc = new_alloc;
402	chunk->map = new;
403	new = NULL;
404
405out_unlock:
406	spin_unlock_irqrestore(&pcpu_lock, flags);
407
408	/*
409	 * pcpu_mem_free() might end up calling vfree() which uses
410	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
411	 */
412	pcpu_mem_free(old, old_size);
413	pcpu_mem_free(new, new_size);
414
415	return 0;
416}
417
418/**
419 * pcpu_split_block - split a map block
420 * @chunk: chunk of interest
421 * @i: index of map block to split
422 * @head: head size in bytes (can be 0)
423 * @tail: tail size in bytes (can be 0)
424 *
425 * Split the @i'th map block into two or three blocks.  If @head is
426 * non-zero, @head bytes block is inserted before block @i moving it
427 * to @i+1 and reducing its size by @head bytes.
428 *
429 * If @tail is non-zero, the target block, which can be @i or @i+1
430 * depending on @head, is reduced by @tail bytes and @tail byte block
431 * is inserted after the target block.
432 *
433 * @chunk->map must have enough free slots to accomodate the split.
434 *
435 * CONTEXT:
436 * pcpu_lock.
437 */
438static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
439			     int head, int tail)
440{
441	int nr_extra = !!head + !!tail;
442
443	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
444
445	/* insert new subblocks */
446	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
447		sizeof(chunk->map[0]) * (chunk->map_used - i));
448	chunk->map_used += nr_extra;
449
450	if (head) {
451		chunk->map[i + 1] = chunk->map[i] - head;
452		chunk->map[i++] = head;
453	}
454	if (tail) {
455		chunk->map[i++] -= tail;
456		chunk->map[i] = tail;
457	}
458}
459
460/**
461 * pcpu_alloc_area - allocate area from a pcpu_chunk
462 * @chunk: chunk of interest
463 * @size: wanted size in bytes
464 * @align: wanted align
465 *
466 * Try to allocate @size bytes area aligned at @align from @chunk.
467 * Note that this function only allocates the offset.  It doesn't
468 * populate or map the area.
469 *
470 * @chunk->map must have at least two free slots.
471 *
472 * CONTEXT:
473 * pcpu_lock.
474 *
475 * RETURNS:
476 * Allocated offset in @chunk on success, -1 if no matching area is
477 * found.
478 */
479static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
480{
481	int oslot = pcpu_chunk_slot(chunk);
482	int max_contig = 0;
483	int i, off;
484
485	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
486		bool is_last = i + 1 == chunk->map_used;
487		int head, tail;
488
489		/* extra for alignment requirement */
490		head = ALIGN(off, align) - off;
491		BUG_ON(i == 0 && head != 0);
492
493		if (chunk->map[i] < 0)
494			continue;
495		if (chunk->map[i] < head + size) {
496			max_contig = max(chunk->map[i], max_contig);
497			continue;
498		}
499
500		/*
501		 * If head is small or the previous block is free,
502		 * merge'em.  Note that 'small' is defined as smaller
503		 * than sizeof(int), which is very small but isn't too
504		 * uncommon for percpu allocations.
505		 */
506		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
507			if (chunk->map[i - 1] > 0)
508				chunk->map[i - 1] += head;
509			else {
510				chunk->map[i - 1] -= head;
511				chunk->free_size -= head;
512			}
513			chunk->map[i] -= head;
514			off += head;
515			head = 0;
516		}
517
518		/* if tail is small, just keep it around */
519		tail = chunk->map[i] - head - size;
520		if (tail < sizeof(int))
521			tail = 0;
522
523		/* split if warranted */
524		if (head || tail) {
525			pcpu_split_block(chunk, i, head, tail);
526			if (head) {
527				i++;
528				off += head;
529				max_contig = max(chunk->map[i - 1], max_contig);
530			}
531			if (tail)
532				max_contig = max(chunk->map[i + 1], max_contig);
533		}
534
535		/* update hint and mark allocated */
536		if (is_last)
537			chunk->contig_hint = max_contig; /* fully scanned */
538		else
539			chunk->contig_hint = max(chunk->contig_hint,
540						 max_contig);
541
542		chunk->free_size -= chunk->map[i];
543		chunk->map[i] = -chunk->map[i];
544
545		pcpu_chunk_relocate(chunk, oslot);
546		return off;
547	}
548
549	chunk->contig_hint = max_contig;	/* fully scanned */
550	pcpu_chunk_relocate(chunk, oslot);
551
552	/* tell the upper layer that this chunk has no matching area */
553	return -1;
554}
555
556/**
557 * pcpu_free_area - free area to a pcpu_chunk
558 * @chunk: chunk of interest
559 * @freeme: offset of area to free
560 *
561 * Free area starting from @freeme to @chunk.  Note that this function
562 * only modifies the allocation map.  It doesn't depopulate or unmap
563 * the area.
564 *
565 * CONTEXT:
566 * pcpu_lock.
567 */
568static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
569{
570	int oslot = pcpu_chunk_slot(chunk);
571	int i, off;
572
573	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
574		if (off == freeme)
575			break;
576	BUG_ON(off != freeme);
577	BUG_ON(chunk->map[i] > 0);
578
579	chunk->map[i] = -chunk->map[i];
580	chunk->free_size += chunk->map[i];
581
582	/* merge with previous? */
583	if (i > 0 && chunk->map[i - 1] >= 0) {
584		chunk->map[i - 1] += chunk->map[i];
585		chunk->map_used--;
586		memmove(&chunk->map[i], &chunk->map[i + 1],
587			(chunk->map_used - i) * sizeof(chunk->map[0]));
588		i--;
589	}
590	/* merge with next? */
591	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
592		chunk->map[i] += chunk->map[i + 1];
593		chunk->map_used--;
594		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
595			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
596	}
597
598	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
599	pcpu_chunk_relocate(chunk, oslot);
600}
601
602static struct pcpu_chunk *pcpu_alloc_chunk(void)
603{
604	struct pcpu_chunk *chunk;
605
606	chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
607	if (!chunk)
608		return NULL;
609
610	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
611	if (!chunk->map) {
612		kfree(chunk);
613		return NULL;
614	}
615
616	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
617	chunk->map[chunk->map_used++] = pcpu_unit_size;
618
619	INIT_LIST_HEAD(&chunk->list);
620	chunk->free_size = pcpu_unit_size;
621	chunk->contig_hint = pcpu_unit_size;
622
623	return chunk;
624}
625
626static void pcpu_free_chunk(struct pcpu_chunk *chunk)
627{
628	if (!chunk)
629		return;
630	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
631	kfree(chunk);
632}
633
634/*
635 * Chunk management implementation.
636 *
637 * To allow different implementations, chunk alloc/free and
638 * [de]population are implemented in a separate file which is pulled
639 * into this file and compiled together.  The following functions
640 * should be implemented.
641 *
642 * pcpu_populate_chunk		- populate the specified range of a chunk
643 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
644 * pcpu_create_chunk		- create a new chunk
645 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
646 * pcpu_addr_to_page		- translate address to physical address
647 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
648 */
649static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
650static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
651static struct pcpu_chunk *pcpu_create_chunk(void);
652static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
653static struct page *pcpu_addr_to_page(void *addr);
654static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
655
656#ifdef CONFIG_NEED_PER_CPU_KM
657#include "percpu-km.c"
658#else
659#include "percpu-vm.c"
660#endif
661
662/**
663 * pcpu_chunk_addr_search - determine chunk containing specified address
664 * @addr: address for which the chunk needs to be determined.
665 *
666 * RETURNS:
667 * The address of the found chunk.
668 */
669static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
670{
671	/* is it in the first chunk? */
672	if (pcpu_addr_in_first_chunk(addr)) {
673		/* is it in the reserved area? */
674		if (pcpu_addr_in_reserved_chunk(addr))
675			return pcpu_reserved_chunk;
676		return pcpu_first_chunk;
677	}
678
679	/*
680	 * The address is relative to unit0 which might be unused and
681	 * thus unmapped.  Offset the address to the unit space of the
682	 * current processor before looking it up in the vmalloc
683	 * space.  Note that any possible cpu id can be used here, so
684	 * there's no need to worry about preemption or cpu hotplug.
685	 */
686	addr += pcpu_unit_offsets[raw_smp_processor_id()];
687	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
688}
689
690/**
691 * pcpu_alloc - the percpu allocator
692 * @size: size of area to allocate in bytes
693 * @align: alignment of area (max PAGE_SIZE)
694 * @reserved: allocate from the reserved chunk if available
695 *
696 * Allocate percpu area of @size bytes aligned at @align.
697 *
698 * CONTEXT:
699 * Does GFP_KERNEL allocation.
700 *
701 * RETURNS:
702 * Percpu pointer to the allocated area on success, NULL on failure.
703 */
704static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
705{
706	static int warn_limit = 10;
707	struct pcpu_chunk *chunk;
708	const char *err;
709	int slot, off, new_alloc;
710	unsigned long flags;
711
712	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
713		WARN(true, "illegal size (%zu) or align (%zu) for "
714		     "percpu allocation\n", size, align);
715		return NULL;
716	}
717
718	mutex_lock(&pcpu_alloc_mutex);
719	spin_lock_irqsave(&pcpu_lock, flags);
720
721	/* serve reserved allocations from the reserved chunk if available */
722	if (reserved && pcpu_reserved_chunk) {
723		chunk = pcpu_reserved_chunk;
724
725		if (size > chunk->contig_hint) {
726			err = "alloc from reserved chunk failed";
727			goto fail_unlock;
728		}
729
730		while ((new_alloc = pcpu_need_to_extend(chunk))) {
731			spin_unlock_irqrestore(&pcpu_lock, flags);
732			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
733				err = "failed to extend area map of reserved chunk";
734				goto fail_unlock_mutex;
735			}
736			spin_lock_irqsave(&pcpu_lock, flags);
737		}
738
739		off = pcpu_alloc_area(chunk, size, align);
740		if (off >= 0)
741			goto area_found;
742
743		err = "alloc from reserved chunk failed";
744		goto fail_unlock;
745	}
746
747restart:
748	/* search through normal chunks */
749	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
750		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
751			if (size > chunk->contig_hint)
752				continue;
753
754			new_alloc = pcpu_need_to_extend(chunk);
755			if (new_alloc) {
756				spin_unlock_irqrestore(&pcpu_lock, flags);
757				if (pcpu_extend_area_map(chunk,
758							 new_alloc) < 0) {
759					err = "failed to extend area map";
760					goto fail_unlock_mutex;
761				}
762				spin_lock_irqsave(&pcpu_lock, flags);
763				/*
764				 * pcpu_lock has been dropped, need to
765				 * restart cpu_slot list walking.
766				 */
767				goto restart;
768			}
769
770			off = pcpu_alloc_area(chunk, size, align);
771			if (off >= 0)
772				goto area_found;
773		}
774	}
775
776	/* hmmm... no space left, create a new chunk */
777	spin_unlock_irqrestore(&pcpu_lock, flags);
778
779	chunk = pcpu_create_chunk();
780	if (!chunk) {
781		err = "failed to allocate new chunk";
782		goto fail_unlock_mutex;
783	}
784
785	spin_lock_irqsave(&pcpu_lock, flags);
786	pcpu_chunk_relocate(chunk, -1);
787	goto restart;
788
789area_found:
790	spin_unlock_irqrestore(&pcpu_lock, flags);
791
792	/* populate, map and clear the area */
793	if (pcpu_populate_chunk(chunk, off, size)) {
794		spin_lock_irqsave(&pcpu_lock, flags);
795		pcpu_free_area(chunk, off);
796		err = "failed to populate";
797		goto fail_unlock;
798	}
799
800	mutex_unlock(&pcpu_alloc_mutex);
801
802	/* return address relative to base address */
803	return __addr_to_pcpu_ptr(chunk->base_addr + off);
804
805fail_unlock:
806	spin_unlock_irqrestore(&pcpu_lock, flags);
807fail_unlock_mutex:
808	mutex_unlock(&pcpu_alloc_mutex);
809	if (warn_limit) {
810		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
811			   "%s\n", size, align, err);
812		dump_stack();
813		if (!--warn_limit)
814			pr_info("PERCPU: limit reached, disable warning\n");
815	}
816	return NULL;
817}
818
819/**
820 * __alloc_percpu - allocate dynamic percpu area
821 * @size: size of area to allocate in bytes
822 * @align: alignment of area (max PAGE_SIZE)
823 *
824 * Allocate percpu area of @size bytes aligned at @align.  Might
825 * sleep.  Might trigger writeouts.
826 *
827 * CONTEXT:
828 * Does GFP_KERNEL allocation.
829 *
830 * RETURNS:
831 * Percpu pointer to the allocated area on success, NULL on failure.
832 */
833void __percpu *__alloc_percpu(size_t size, size_t align)
834{
835	return pcpu_alloc(size, align, false);
836}
837EXPORT_SYMBOL_GPL(__alloc_percpu);
838
839/**
840 * __alloc_reserved_percpu - allocate reserved percpu area
841 * @size: size of area to allocate in bytes
842 * @align: alignment of area (max PAGE_SIZE)
843 *
844 * Allocate percpu area of @size bytes aligned at @align from reserved
845 * percpu area if arch has set it up; otherwise, allocation is served
846 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
847 *
848 * CONTEXT:
849 * Does GFP_KERNEL allocation.
850 *
851 * RETURNS:
852 * Percpu pointer to the allocated area on success, NULL on failure.
853 */
854void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
855{
856	return pcpu_alloc(size, align, true);
857}
858
859/**
860 * pcpu_reclaim - reclaim fully free chunks, workqueue function
861 * @work: unused
862 *
863 * Reclaim all fully free chunks except for the first one.
864 *
865 * CONTEXT:
866 * workqueue context.
867 */
868static void pcpu_reclaim(struct work_struct *work)
869{
870	LIST_HEAD(todo);
871	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
872	struct pcpu_chunk *chunk, *next;
873
874	mutex_lock(&pcpu_alloc_mutex);
875	spin_lock_irq(&pcpu_lock);
876
877	list_for_each_entry_safe(chunk, next, head, list) {
878		WARN_ON(chunk->immutable);
879
880		/* spare the first one */
881		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
882			continue;
883
884		list_move(&chunk->list, &todo);
885	}
886
887	spin_unlock_irq(&pcpu_lock);
888
889	list_for_each_entry_safe(chunk, next, &todo, list) {
890		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
891		pcpu_destroy_chunk(chunk);
892	}
893
894	mutex_unlock(&pcpu_alloc_mutex);
895}
896
897/**
898 * free_percpu - free percpu area
899 * @ptr: pointer to area to free
900 *
901 * Free percpu area @ptr.
902 *
903 * CONTEXT:
904 * Can be called from atomic context.
905 */
906void free_percpu(void __percpu *ptr)
907{
908	void *addr;
909	struct pcpu_chunk *chunk;
910	unsigned long flags;
911	int off;
912
913	if (!ptr)
914		return;
915
916	addr = __pcpu_ptr_to_addr(ptr);
917
918	spin_lock_irqsave(&pcpu_lock, flags);
919
920	chunk = pcpu_chunk_addr_search(addr);
921	off = addr - chunk->base_addr;
922
923	pcpu_free_area(chunk, off);
924
925	/* if there are more than one fully free chunks, wake up grim reaper */
926	if (chunk->free_size == pcpu_unit_size) {
927		struct pcpu_chunk *pos;
928
929		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
930			if (pos != chunk) {
931				schedule_work(&pcpu_reclaim_work);
932				break;
933			}
934	}
935
936	spin_unlock_irqrestore(&pcpu_lock, flags);
937}
938EXPORT_SYMBOL_GPL(free_percpu);
939
940/**
941 * is_kernel_percpu_address - test whether address is from static percpu area
942 * @addr: address to test
943 *
944 * Test whether @addr belongs to in-kernel static percpu area.  Module
945 * static percpu areas are not considered.  For those, use
946 * is_module_percpu_address().
947 *
948 * RETURNS:
949 * %true if @addr is from in-kernel static percpu area, %false otherwise.
950 */
951bool is_kernel_percpu_address(unsigned long addr)
952{
953	const size_t static_size = __per_cpu_end - __per_cpu_start;
954	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
955	unsigned int cpu;
956
957	for_each_possible_cpu(cpu) {
958		void *start = per_cpu_ptr(base, cpu);
959
960		if ((void *)addr >= start && (void *)addr < start + static_size)
961			return true;
962        }
963	return false;
964}
965
966/**
967 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
968 * @addr: the address to be converted to physical address
969 *
970 * Given @addr which is dereferenceable address obtained via one of
971 * percpu access macros, this function translates it into its physical
972 * address.  The caller is responsible for ensuring @addr stays valid
973 * until this function finishes.
974 *
975 * RETURNS:
976 * The physical address for @addr.
977 */
978phys_addr_t per_cpu_ptr_to_phys(void *addr)
979{
980	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
981	bool in_first_chunk = false;
982	unsigned long first_start, first_end;
983	unsigned int cpu;
984
985	/*
986	 * The following test on first_start/end isn't strictly
987	 * necessary but will speed up lookups of addresses which
988	 * aren't in the first chunk.
989	 */
990	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
991	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
992				    pcpu_unit_pages);
993	if ((unsigned long)addr >= first_start &&
994	    (unsigned long)addr < first_end) {
995		for_each_possible_cpu(cpu) {
996			void *start = per_cpu_ptr(base, cpu);
997
998			if (addr >= start && addr < start + pcpu_unit_size) {
999				in_first_chunk = true;
1000				break;
1001			}
1002		}
1003	}
1004
1005	if (in_first_chunk) {
1006		if ((unsigned long)addr < VMALLOC_START ||
1007		    (unsigned long)addr >= VMALLOC_END)
1008			return __pa(addr);
1009		else
1010			return page_to_phys(vmalloc_to_page(addr));
1011	} else
1012		return page_to_phys(pcpu_addr_to_page(addr));
1013}
1014
1015/**
1016 * pcpu_alloc_alloc_info - allocate percpu allocation info
1017 * @nr_groups: the number of groups
1018 * @nr_units: the number of units
1019 *
1020 * Allocate ai which is large enough for @nr_groups groups containing
1021 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1022 * cpu_map array which is long enough for @nr_units and filled with
1023 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1024 * pointer of other groups.
1025 *
1026 * RETURNS:
1027 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1028 * failure.
1029 */
1030struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1031						      int nr_units)
1032{
1033	struct pcpu_alloc_info *ai;
1034	size_t base_size, ai_size;
1035	void *ptr;
1036	int unit;
1037
1038	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1039			  __alignof__(ai->groups[0].cpu_map[0]));
1040	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1041
1042	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1043	if (!ptr)
1044		return NULL;
1045	ai = ptr;
1046	ptr += base_size;
1047
1048	ai->groups[0].cpu_map = ptr;
1049
1050	for (unit = 0; unit < nr_units; unit++)
1051		ai->groups[0].cpu_map[unit] = NR_CPUS;
1052
1053	ai->nr_groups = nr_groups;
1054	ai->__ai_size = PFN_ALIGN(ai_size);
1055
1056	return ai;
1057}
1058
1059/**
1060 * pcpu_free_alloc_info - free percpu allocation info
1061 * @ai: pcpu_alloc_info to free
1062 *
1063 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1064 */
1065void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1066{
1067	free_bootmem(__pa(ai), ai->__ai_size);
1068}
1069
1070/**
1071 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1072 * @reserved_size: the size of reserved percpu area in bytes
1073 * @dyn_size: minimum free size for dynamic allocation in bytes
1074 * @atom_size: allocation atom size
1075 * @cpu_distance_fn: callback to determine distance between cpus, optional
1076 *
1077 * This function determines grouping of units, their mappings to cpus
1078 * and other parameters considering needed percpu size, allocation
1079 * atom size and distances between CPUs.
1080 *
1081 * Groups are always mutliples of atom size and CPUs which are of
1082 * LOCAL_DISTANCE both ways are grouped together and share space for
1083 * units in the same group.  The returned configuration is guaranteed
1084 * to have CPUs on different nodes on different groups and >=75% usage
1085 * of allocated virtual address space.
1086 *
1087 * RETURNS:
1088 * On success, pointer to the new allocation_info is returned.  On
1089 * failure, ERR_PTR value is returned.
1090 */
1091static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1092				size_t reserved_size, size_t dyn_size,
1093				size_t atom_size,
1094				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1095{
1096	static int group_map[NR_CPUS] __initdata;
1097	static int group_cnt[NR_CPUS] __initdata;
1098	const size_t static_size = __per_cpu_end - __per_cpu_start;
1099	int nr_groups = 1, nr_units = 0;
1100	size_t size_sum, min_unit_size, alloc_size;
1101	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1102	int last_allocs, group, unit;
1103	unsigned int cpu, tcpu;
1104	struct pcpu_alloc_info *ai;
1105	unsigned int *cpu_map;
1106
1107	/* this function may be called multiple times */
1108	memset(group_map, 0, sizeof(group_map));
1109	memset(group_cnt, 0, sizeof(group_cnt));
1110
1111	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1112	size_sum = PFN_ALIGN(static_size + reserved_size +
1113			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1114	dyn_size = size_sum - static_size - reserved_size;
1115
1116	/*
1117	 * Determine min_unit_size, alloc_size and max_upa such that
1118	 * alloc_size is multiple of atom_size and is the smallest
1119	 * which can accomodate 4k aligned segments which are equal to
1120	 * or larger than min_unit_size.
1121	 */
1122	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1123
1124	alloc_size = roundup(min_unit_size, atom_size);
1125	upa = alloc_size / min_unit_size;
1126	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1127		upa--;
1128	max_upa = upa;
1129
1130	/* group cpus according to their proximity */
1131	for_each_possible_cpu(cpu) {
1132		group = 0;
1133	next_group:
1134		for_each_possible_cpu(tcpu) {
1135			if (cpu == tcpu)
1136				break;
1137			if (group_map[tcpu] == group && cpu_distance_fn &&
1138			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1139			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1140				group++;
1141				nr_groups = max(nr_groups, group + 1);
1142				goto next_group;
1143			}
1144		}
1145		group_map[cpu] = group;
1146		group_cnt[group]++;
1147	}
1148
1149	/*
1150	 * Expand unit size until address space usage goes over 75%
1151	 * and then as much as possible without using more address
1152	 * space.
1153	 */
1154	last_allocs = INT_MAX;
1155	for (upa = max_upa; upa; upa--) {
1156		int allocs = 0, wasted = 0;
1157
1158		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1159			continue;
1160
1161		for (group = 0; group < nr_groups; group++) {
1162			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1163			allocs += this_allocs;
1164			wasted += this_allocs * upa - group_cnt[group];
1165		}
1166
1167		/*
1168		 * Don't accept if wastage is over 1/3.  The
1169		 * greater-than comparison ensures upa==1 always
1170		 * passes the following check.
1171		 */
1172		if (wasted > num_possible_cpus() / 3)
1173			continue;
1174
1175		/* and then don't consume more memory */
1176		if (allocs > last_allocs)
1177			break;
1178		last_allocs = allocs;
1179		best_upa = upa;
1180	}
1181	upa = best_upa;
1182
1183	/* allocate and fill alloc_info */
1184	for (group = 0; group < nr_groups; group++)
1185		nr_units += roundup(group_cnt[group], upa);
1186
1187	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1188	if (!ai)
1189		return ERR_PTR(-ENOMEM);
1190	cpu_map = ai->groups[0].cpu_map;
1191
1192	for (group = 0; group < nr_groups; group++) {
1193		ai->groups[group].cpu_map = cpu_map;
1194		cpu_map += roundup(group_cnt[group], upa);
1195	}
1196
1197	ai->static_size = static_size;
1198	ai->reserved_size = reserved_size;
1199	ai->dyn_size = dyn_size;
1200	ai->unit_size = alloc_size / upa;
1201	ai->atom_size = atom_size;
1202	ai->alloc_size = alloc_size;
1203
1204	for (group = 0, unit = 0; group_cnt[group]; group++) {
1205		struct pcpu_group_info *gi = &ai->groups[group];
1206
1207		/*
1208		 * Initialize base_offset as if all groups are located
1209		 * back-to-back.  The caller should update this to
1210		 * reflect actual allocation.
1211		 */
1212		gi->base_offset = unit * ai->unit_size;
1213
1214		for_each_possible_cpu(cpu)
1215			if (group_map[cpu] == group)
1216				gi->cpu_map[gi->nr_units++] = cpu;
1217		gi->nr_units = roundup(gi->nr_units, upa);
1218		unit += gi->nr_units;
1219	}
1220	BUG_ON(unit != nr_units);
1221
1222	return ai;
1223}
1224
1225/**
1226 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1227 * @lvl: loglevel
1228 * @ai: allocation info to dump
1229 *
1230 * Print out information about @ai using loglevel @lvl.
1231 */
1232static void pcpu_dump_alloc_info(const char *lvl,
1233				 const struct pcpu_alloc_info *ai)
1234{
1235	int group_width = 1, cpu_width = 1, width;
1236	char * empty_str = "--------";
1237	int alloc = 0, alloc_end = 0;
1238	int group, v;
1239	int upa, apl;	/* units per alloc, allocs per line */
1240
1241	v = ai->nr_groups;
1242	while (v /= 10)
1243		group_width++;
1244
1245	v = num_possible_cpus();
1246	while (v /= 10)
1247		cpu_width++;
1248	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1249
1250	upa = ai->alloc_size / ai->unit_size;
1251	width = upa * (cpu_width + 1) + group_width + 3;
1252	apl = rounddown_pow_of_two(max(60 / width, 1));
1253
1254	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1255	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1256	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1257
1258	for (group = 0; group < ai->nr_groups; group++) {
1259		const struct pcpu_group_info *gi = &ai->groups[group];
1260		int unit = 0, unit_end = 0;
1261
1262		BUG_ON(gi->nr_units % upa);
1263		for (alloc_end += gi->nr_units / upa;
1264		     alloc < alloc_end; alloc++) {
1265			if (!(alloc % apl)) {
1266				printk("\n");
1267				printk("%spcpu-alloc: ", lvl);
1268			}
1269			printk("[%0*d] ", group_width, group);
1270
1271			for (unit_end += upa; unit < unit_end; unit++)
1272				if (gi->cpu_map[unit] != NR_CPUS)
1273					printk("%0*d ", cpu_width,
1274					       gi->cpu_map[unit]);
1275				else
1276					printk("%s ", empty_str);
1277		}
1278	}
1279	printk("\n");
1280}
1281
1282/**
1283 * pcpu_setup_first_chunk - initialize the first percpu chunk
1284 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1285 * @base_addr: mapped address
1286 *
1287 * Initialize the first percpu chunk which contains the kernel static
1288 * perpcu area.  This function is to be called from arch percpu area
1289 * setup path.
1290 *
1291 * @ai contains all information necessary to initialize the first
1292 * chunk and prime the dynamic percpu allocator.
1293 *
1294 * @ai->static_size is the size of static percpu area.
1295 *
1296 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1297 * reserve after the static area in the first chunk.  This reserves
1298 * the first chunk such that it's available only through reserved
1299 * percpu allocation.  This is primarily used to serve module percpu
1300 * static areas on architectures where the addressing model has
1301 * limited offset range for symbol relocations to guarantee module
1302 * percpu symbols fall inside the relocatable range.
1303 *
1304 * @ai->dyn_size determines the number of bytes available for dynamic
1305 * allocation in the first chunk.  The area between @ai->static_size +
1306 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1307 *
1308 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1309 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1310 * @ai->dyn_size.
1311 *
1312 * @ai->atom_size is the allocation atom size and used as alignment
1313 * for vm areas.
1314 *
1315 * @ai->alloc_size is the allocation size and always multiple of
1316 * @ai->atom_size.  This is larger than @ai->atom_size if
1317 * @ai->unit_size is larger than @ai->atom_size.
1318 *
1319 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1320 * percpu areas.  Units which should be colocated are put into the
1321 * same group.  Dynamic VM areas will be allocated according to these
1322 * groupings.  If @ai->nr_groups is zero, a single group containing
1323 * all units is assumed.
1324 *
1325 * The caller should have mapped the first chunk at @base_addr and
1326 * copied static data to each unit.
1327 *
1328 * If the first chunk ends up with both reserved and dynamic areas, it
1329 * is served by two chunks - one to serve the core static and reserved
1330 * areas and the other for the dynamic area.  They share the same vm
1331 * and page map but uses different area allocation map to stay away
1332 * from each other.  The latter chunk is circulated in the chunk slots
1333 * and available for dynamic allocation like any other chunks.
1334 *
1335 * RETURNS:
1336 * 0 on success, -errno on failure.
1337 */
1338int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1339				  void *base_addr)
1340{
1341	static char cpus_buf[4096] __initdata;
1342	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1343	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1344	size_t dyn_size = ai->dyn_size;
1345	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1346	struct pcpu_chunk *schunk, *dchunk = NULL;
1347	unsigned long *group_offsets;
1348	size_t *group_sizes;
1349	unsigned long *unit_off;
1350	unsigned int cpu;
1351	int *unit_map;
1352	int group, unit, i;
1353
1354	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1355
1356#define PCPU_SETUP_BUG_ON(cond)	do {					\
1357	if (unlikely(cond)) {						\
1358		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1359		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1360		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1361		BUG();							\
1362	}								\
1363} while (0)
1364
1365	/* sanity checks */
1366	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1367	PCPU_SETUP_BUG_ON(!ai->static_size);
1368	PCPU_SETUP_BUG_ON(!base_addr);
1369	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1370	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1371	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1372	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1373	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1374
1375	/* process group information and build config tables accordingly */
1376	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1377	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1378	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1379	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1380
1381	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1382		unit_map[cpu] = UINT_MAX;
1383	pcpu_first_unit_cpu = NR_CPUS;
1384
1385	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1386		const struct pcpu_group_info *gi = &ai->groups[group];
1387
1388		group_offsets[group] = gi->base_offset;
1389		group_sizes[group] = gi->nr_units * ai->unit_size;
1390
1391		for (i = 0; i < gi->nr_units; i++) {
1392			cpu = gi->cpu_map[i];
1393			if (cpu == NR_CPUS)
1394				continue;
1395
1396			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1397			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1398			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1399
1400			unit_map[cpu] = unit + i;
1401			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1402
1403			if (pcpu_first_unit_cpu == NR_CPUS)
1404				pcpu_first_unit_cpu = cpu;
1405			pcpu_last_unit_cpu = cpu;
1406		}
1407	}
1408	pcpu_nr_units = unit;
1409
1410	for_each_possible_cpu(cpu)
1411		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1412
1413	/* we're done parsing the input, undefine BUG macro and dump config */
1414#undef PCPU_SETUP_BUG_ON
1415	pcpu_dump_alloc_info(KERN_INFO, ai);
1416
1417	pcpu_nr_groups = ai->nr_groups;
1418	pcpu_group_offsets = group_offsets;
1419	pcpu_group_sizes = group_sizes;
1420	pcpu_unit_map = unit_map;
1421	pcpu_unit_offsets = unit_off;
1422
1423	/* determine basic parameters */
1424	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1425	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1426	pcpu_atom_size = ai->atom_size;
1427	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1428		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1429
1430	/*
1431	 * Allocate chunk slots.  The additional last slot is for
1432	 * empty chunks.
1433	 */
1434	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1435	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1436	for (i = 0; i < pcpu_nr_slots; i++)
1437		INIT_LIST_HEAD(&pcpu_slot[i]);
1438
1439	/*
1440	 * Initialize static chunk.  If reserved_size is zero, the
1441	 * static chunk covers static area + dynamic allocation area
1442	 * in the first chunk.  If reserved_size is not zero, it
1443	 * covers static area + reserved area (mostly used for module
1444	 * static percpu allocation).
1445	 */
1446	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1447	INIT_LIST_HEAD(&schunk->list);
1448	schunk->base_addr = base_addr;
1449	schunk->map = smap;
1450	schunk->map_alloc = ARRAY_SIZE(smap);
1451	schunk->immutable = true;
1452	bitmap_fill(schunk->populated, pcpu_unit_pages);
1453
1454	if (ai->reserved_size) {
1455		schunk->free_size = ai->reserved_size;
1456		pcpu_reserved_chunk = schunk;
1457		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1458	} else {
1459		schunk->free_size = dyn_size;
1460		dyn_size = 0;			/* dynamic area covered */
1461	}
1462	schunk->contig_hint = schunk->free_size;
1463
1464	schunk->map[schunk->map_used++] = -ai->static_size;
1465	if (schunk->free_size)
1466		schunk->map[schunk->map_used++] = schunk->free_size;
1467
1468	/* init dynamic chunk if necessary */
1469	if (dyn_size) {
1470		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1471		INIT_LIST_HEAD(&dchunk->list);
1472		dchunk->base_addr = base_addr;
1473		dchunk->map = dmap;
1474		dchunk->map_alloc = ARRAY_SIZE(dmap);
1475		dchunk->immutable = true;
1476		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1477
1478		dchunk->contig_hint = dchunk->free_size = dyn_size;
1479		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1480		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1481	}
1482
1483	/* link the first chunk in */
1484	pcpu_first_chunk = dchunk ?: schunk;
1485	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1486
1487	/* we're done */
1488	pcpu_base_addr = base_addr;
1489	return 0;
1490}
1491
1492const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1493	[PCPU_FC_AUTO]	= "auto",
1494	[PCPU_FC_EMBED]	= "embed",
1495	[PCPU_FC_PAGE]	= "page",
1496};
1497
1498enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1499
1500static int __init percpu_alloc_setup(char *str)
1501{
1502	if (0)
1503		/* nada */;
1504#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1505	else if (!strcmp(str, "embed"))
1506		pcpu_chosen_fc = PCPU_FC_EMBED;
1507#endif
1508#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1509	else if (!strcmp(str, "page"))
1510		pcpu_chosen_fc = PCPU_FC_PAGE;
1511#endif
1512	else
1513		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1514
1515	return 0;
1516}
1517early_param("percpu_alloc", percpu_alloc_setup);
1518
1519#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1520	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1521/**
1522 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1523 * @reserved_size: the size of reserved percpu area in bytes
1524 * @dyn_size: minimum free size for dynamic allocation in bytes
1525 * @atom_size: allocation atom size
1526 * @cpu_distance_fn: callback to determine distance between cpus, optional
1527 * @alloc_fn: function to allocate percpu page
1528 * @free_fn: funtion to free percpu page
1529 *
1530 * This is a helper to ease setting up embedded first percpu chunk and
1531 * can be called where pcpu_setup_first_chunk() is expected.
1532 *
1533 * If this function is used to setup the first chunk, it is allocated
1534 * by calling @alloc_fn and used as-is without being mapped into
1535 * vmalloc area.  Allocations are always whole multiples of @atom_size
1536 * aligned to @atom_size.
1537 *
1538 * This enables the first chunk to piggy back on the linear physical
1539 * mapping which often uses larger page size.  Please note that this
1540 * can result in very sparse cpu->unit mapping on NUMA machines thus
1541 * requiring large vmalloc address space.  Don't use this allocator if
1542 * vmalloc space is not orders of magnitude larger than distances
1543 * between node memory addresses (ie. 32bit NUMA machines).
1544 *
1545 * @dyn_size specifies the minimum dynamic area size.
1546 *
1547 * If the needed size is smaller than the minimum or specified unit
1548 * size, the leftover is returned using @free_fn.
1549 *
1550 * RETURNS:
1551 * 0 on success, -errno on failure.
1552 */
1553int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1554				  size_t atom_size,
1555				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1556				  pcpu_fc_alloc_fn_t alloc_fn,
1557				  pcpu_fc_free_fn_t free_fn)
1558{
1559	void *base = (void *)ULONG_MAX;
1560	void **areas = NULL;
1561	struct pcpu_alloc_info *ai;
1562	size_t size_sum, areas_size, max_distance;
1563	int group, i, rc;
1564
1565	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1566				   cpu_distance_fn);
1567	if (IS_ERR(ai))
1568		return PTR_ERR(ai);
1569
1570	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1571	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1572
1573	areas = alloc_bootmem_nopanic(areas_size);
1574	if (!areas) {
1575		rc = -ENOMEM;
1576		goto out_free;
1577	}
1578
1579	/* allocate, copy and determine base address */
1580	for (group = 0; group < ai->nr_groups; group++) {
1581		struct pcpu_group_info *gi = &ai->groups[group];
1582		unsigned int cpu = NR_CPUS;
1583		void *ptr;
1584
1585		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1586			cpu = gi->cpu_map[i];
1587		BUG_ON(cpu == NR_CPUS);
1588
1589		/* allocate space for the whole group */
1590		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1591		if (!ptr) {
1592			rc = -ENOMEM;
1593			goto out_free_areas;
1594		}
1595		areas[group] = ptr;
1596
1597		base = min(ptr, base);
1598
1599		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1600			if (gi->cpu_map[i] == NR_CPUS) {
1601				/* unused unit, free whole */
1602				free_fn(ptr, ai->unit_size);
1603				continue;
1604			}
1605			/* copy and return the unused part */
1606			memcpy(ptr, __per_cpu_load, ai->static_size);
1607			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1608		}
1609	}
1610
1611	/* base address is now known, determine group base offsets */
1612	max_distance = 0;
1613	for (group = 0; group < ai->nr_groups; group++) {
1614		ai->groups[group].base_offset = areas[group] - base;
1615		max_distance = max_t(size_t, max_distance,
1616				     ai->groups[group].base_offset);
1617	}
1618	max_distance += ai->unit_size;
1619
1620	/* warn if maximum distance is further than 75% of vmalloc space */
1621	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1622		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1623			   "space 0x%lx\n",
1624			   max_distance, VMALLOC_END - VMALLOC_START);
1625#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1626		/* and fail if we have fallback */
1627		rc = -EINVAL;
1628		goto out_free;
1629#endif
1630	}
1631
1632	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1633		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1634		ai->dyn_size, ai->unit_size);
1635
1636	rc = pcpu_setup_first_chunk(ai, base);
1637	goto out_free;
1638
1639out_free_areas:
1640	for (group = 0; group < ai->nr_groups; group++)
1641		free_fn(areas[group],
1642			ai->groups[group].nr_units * ai->unit_size);
1643out_free:
1644	pcpu_free_alloc_info(ai);
1645	if (areas)
1646		free_bootmem(__pa(areas), areas_size);
1647	return rc;
1648}
1649#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1650	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1651
1652#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1653/**
1654 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1655 * @reserved_size: the size of reserved percpu area in bytes
1656 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1657 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1658 * @populate_pte_fn: function to populate pte
1659 *
1660 * This is a helper to ease setting up page-remapped first percpu
1661 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1662 *
1663 * This is the basic allocator.  Static percpu area is allocated
1664 * page-by-page into vmalloc area.
1665 *
1666 * RETURNS:
1667 * 0 on success, -errno on failure.
1668 */
1669int __init pcpu_page_first_chunk(size_t reserved_size,
1670				 pcpu_fc_alloc_fn_t alloc_fn,
1671				 pcpu_fc_free_fn_t free_fn,
1672				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1673{
1674	static struct vm_struct vm;
1675	struct pcpu_alloc_info *ai;
1676	char psize_str[16];
1677	int unit_pages;
1678	size_t pages_size;
1679	struct page **pages;
1680	int unit, i, j, rc;
1681
1682	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1683
1684	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1685	if (IS_ERR(ai))
1686		return PTR_ERR(ai);
1687	BUG_ON(ai->nr_groups != 1);
1688	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1689
1690	unit_pages = ai->unit_size >> PAGE_SHIFT;
1691
1692	/* unaligned allocations can't be freed, round up to page size */
1693	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1694			       sizeof(pages[0]));
1695	pages = alloc_bootmem(pages_size);
1696
1697	/* allocate pages */
1698	j = 0;
1699	for (unit = 0; unit < num_possible_cpus(); unit++)
1700		for (i = 0; i < unit_pages; i++) {
1701			unsigned int cpu = ai->groups[0].cpu_map[unit];
1702			void *ptr;
1703
1704			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1705			if (!ptr) {
1706				pr_warning("PERCPU: failed to allocate %s page "
1707					   "for cpu%u\n", psize_str, cpu);
1708				goto enomem;
1709			}
1710			pages[j++] = virt_to_page(ptr);
1711		}
1712
1713	/* allocate vm area, map the pages and copy static data */
1714	vm.flags = VM_ALLOC;
1715	vm.size = num_possible_cpus() * ai->unit_size;
1716	vm_area_register_early(&vm, PAGE_SIZE);
1717
1718	for (unit = 0; unit < num_possible_cpus(); unit++) {
1719		unsigned long unit_addr =
1720			(unsigned long)vm.addr + unit * ai->unit_size;
1721
1722		for (i = 0; i < unit_pages; i++)
1723			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1724
1725		/* pte already populated, the following shouldn't fail */
1726		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1727				      unit_pages);
1728		if (rc < 0)
1729			panic("failed to map percpu area, err=%d\n", rc);
1730
1731
1732		/* copy static data */
1733		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1734	}
1735
1736	/* we're ready, commit */
1737	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1738		unit_pages, psize_str, vm.addr, ai->static_size,
1739		ai->reserved_size, ai->dyn_size);
1740
1741	rc = pcpu_setup_first_chunk(ai, vm.addr);
1742	goto out_free_ar;
1743
1744enomem:
1745	while (--j >= 0)
1746		free_fn(page_address(pages[j]), PAGE_SIZE);
1747	rc = -ENOMEM;
1748out_free_ar:
1749	free_bootmem(__pa(pages), pages_size);
1750	pcpu_free_alloc_info(ai);
1751	return rc;
1752}
1753#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1754
1755/*
1756 * Generic percpu area setup.
1757 *
1758 * The embedding helper is used because its behavior closely resembles
1759 * the original non-dynamic generic percpu area setup.  This is
1760 * important because many archs have addressing restrictions and might
1761 * fail if the percpu area is located far away from the previous
1762 * location.  As an added bonus, in non-NUMA cases, embedding is
1763 * generally a good idea TLB-wise because percpu area can piggy back
1764 * on the physical linear memory mapping which uses large page
1765 * mappings on applicable archs.
1766 */
1767#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1768unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1769EXPORT_SYMBOL(__per_cpu_offset);
1770
1771static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1772				       size_t align)
1773{
1774	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
1775}
1776
1777static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1778{
1779	free_bootmem(__pa(ptr), size);
1780}
1781
1782void __init setup_per_cpu_areas(void)
1783{
1784	unsigned long delta;
1785	unsigned int cpu;
1786	int rc;
1787
1788	/*
1789	 * Always reserve area for module percpu variables.  That's
1790	 * what the legacy allocator did.
1791	 */
1792	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1793				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1794				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1795	if (rc < 0)
1796		panic("Failed to initialized percpu areas.");
1797
1798	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1799	for_each_possible_cpu(cpu)
1800		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1801}
1802#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1803
1804/*
1805 * First and reserved chunks are initialized with temporary allocation
1806 * map in initdata so that they can be used before slab is online.
1807 * This function is called after slab is brought up and replaces those
1808 * with properly allocated maps.
1809 */
1810void __init percpu_init_late(void)
1811{
1812	struct pcpu_chunk *target_chunks[] =
1813		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1814	struct pcpu_chunk *chunk;
1815	unsigned long flags;
1816	int i;
1817
1818	for (i = 0; (chunk = target_chunks[i]); i++) {
1819		int *map;
1820		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1821
1822		BUILD_BUG_ON(size > PAGE_SIZE);
1823
1824		map = pcpu_mem_alloc(size);
1825		BUG_ON(!map);
1826
1827		spin_lock_irqsave(&pcpu_lock, flags);
1828		memcpy(map, chunk->map, size);
1829		chunk->map = map;
1830		spin_unlock_irqrestore(&pcpu_lock, flags);
1831	}
1832}
1833