• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/kernel/
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 *  Copyright (C) 2006 Esben Nielsen
10 *
11 *  See Documentation/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/timer.h>
17
18#include "rtmutex_common.h"
19
20/*
21 * lock->owner state tracking:
22 *
23 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
24 * are used to keep track of the "owner is pending" and "lock has
25 * waiters" state.
26 *
27 * owner	bit1	bit0
28 * NULL		0	0	lock is free (fast acquire possible)
29 * NULL		0	1	invalid state
30 * NULL		1	0	Transitional State*
31 * NULL		1	1	invalid state
32 * taskpointer	0	0	lock is held (fast release possible)
33 * taskpointer	0	1	task is pending owner
34 * taskpointer	1	0	lock is held and has waiters
35 * taskpointer	1	1	task is pending owner and lock has more waiters
36 *
37 * Pending ownership is assigned to the top (highest priority)
38 * waiter of the lock, when the lock is released. The thread is woken
39 * up and can now take the lock. Until the lock is taken (bit 0
40 * cleared) a competing higher priority thread can steal the lock
41 * which puts the woken up thread back on the waiters list.
42 *
43 * The fast atomic compare exchange based acquire and release is only
44 * possible when bit 0 and 1 of lock->owner are 0.
45 *
46 * (*) There's a small time where the owner can be NULL and the
47 * "lock has waiters" bit is set.  This can happen when grabbing the lock.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
49 * bit before looking at the lock, hence the reason this is a transitional
50 * state.
51 */
52
53static void
54rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
55		   unsigned long mask)
56{
57	unsigned long val = (unsigned long)owner | mask;
58
59	if (rt_mutex_has_waiters(lock))
60		val |= RT_MUTEX_HAS_WAITERS;
61
62	lock->owner = (struct task_struct *)val;
63}
64
65static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
66{
67	lock->owner = (struct task_struct *)
68			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
69}
70
71static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
72{
73	if (!rt_mutex_has_waiters(lock))
74		clear_rt_mutex_waiters(lock);
75}
76
77/*
78 * We can speed up the acquire/release, if the architecture
79 * supports cmpxchg and if there's no debugging state to be set up
80 */
81#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
82# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
83static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
84{
85	unsigned long owner, *p = (unsigned long *) &lock->owner;
86
87	do {
88		owner = *p;
89	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
90}
91#else
92# define rt_mutex_cmpxchg(l,c,n)	(0)
93static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
94{
95	lock->owner = (struct task_struct *)
96			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
97}
98#endif
99
100/*
101 * Calculate task priority from the waiter list priority
102 *
103 * Return task->normal_prio when the waiter list is empty or when
104 * the waiter is not allowed to do priority boosting
105 */
106int rt_mutex_getprio(struct task_struct *task)
107{
108	if (likely(!task_has_pi_waiters(task)))
109		return task->normal_prio;
110
111	return min(task_top_pi_waiter(task)->pi_list_entry.prio,
112		   task->normal_prio);
113}
114
115/*
116 * Adjust the priority of a task, after its pi_waiters got modified.
117 *
118 * This can be both boosting and unboosting. task->pi_lock must be held.
119 */
120static void __rt_mutex_adjust_prio(struct task_struct *task)
121{
122	int prio = rt_mutex_getprio(task);
123
124	if (task->prio != prio)
125		rt_mutex_setprio(task, prio);
126}
127
128/*
129 * Adjust task priority (undo boosting). Called from the exit path of
130 * rt_mutex_slowunlock() and rt_mutex_slowlock().
131 *
132 * (Note: We do this outside of the protection of lock->wait_lock to
133 * allow the lock to be taken while or before we readjust the priority
134 * of task. We do not use the spin_xx_mutex() variants here as we are
135 * outside of the debug path.)
136 */
137static void rt_mutex_adjust_prio(struct task_struct *task)
138{
139	unsigned long flags;
140
141	raw_spin_lock_irqsave(&task->pi_lock, flags);
142	__rt_mutex_adjust_prio(task);
143	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
144}
145
146/*
147 * Max number of times we'll walk the boosting chain:
148 */
149int max_lock_depth = 1024;
150
151/*
152 * Adjust the priority chain. Also used for deadlock detection.
153 * Decreases task's usage by one - may thus free the task.
154 * Returns 0 or -EDEADLK.
155 */
156static int rt_mutex_adjust_prio_chain(struct task_struct *task,
157				      int deadlock_detect,
158				      struct rt_mutex *orig_lock,
159				      struct rt_mutex_waiter *orig_waiter,
160				      struct task_struct *top_task)
161{
162	struct rt_mutex *lock;
163	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
164	int detect_deadlock, ret = 0, depth = 0;
165	unsigned long flags;
166
167	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
168							 deadlock_detect);
169
170	/*
171	 * The (de)boosting is a step by step approach with a lot of
172	 * pitfalls. We want this to be preemptible and we want hold a
173	 * maximum of two locks per step. So we have to check
174	 * carefully whether things change under us.
175	 */
176 again:
177	if (++depth > max_lock_depth) {
178		static int prev_max;
179
180		/*
181		 * Print this only once. If the admin changes the limit,
182		 * print a new message when reaching the limit again.
183		 */
184		if (prev_max != max_lock_depth) {
185			prev_max = max_lock_depth;
186			printk(KERN_WARNING "Maximum lock depth %d reached "
187			       "task: %s (%d)\n", max_lock_depth,
188			       top_task->comm, task_pid_nr(top_task));
189		}
190		put_task_struct(task);
191
192		return deadlock_detect ? -EDEADLK : 0;
193	}
194 retry:
195	/*
196	 * Task can not go away as we did a get_task() before !
197	 */
198	raw_spin_lock_irqsave(&task->pi_lock, flags);
199
200	waiter = task->pi_blocked_on;
201	/*
202	 * Check whether the end of the boosting chain has been
203	 * reached or the state of the chain has changed while we
204	 * dropped the locks.
205	 */
206	if (!waiter || !waiter->task)
207		goto out_unlock_pi;
208
209	/*
210	 * Check the orig_waiter state. After we dropped the locks,
211	 * the previous owner of the lock might have released the lock
212	 * and made us the pending owner:
213	 */
214	if (orig_waiter && !orig_waiter->task)
215		goto out_unlock_pi;
216
217	/*
218	 * Drop out, when the task has no waiters. Note,
219	 * top_waiter can be NULL, when we are in the deboosting
220	 * mode!
221	 */
222	if (top_waiter && (!task_has_pi_waiters(task) ||
223			   top_waiter != task_top_pi_waiter(task)))
224		goto out_unlock_pi;
225
226	/*
227	 * When deadlock detection is off then we check, if further
228	 * priority adjustment is necessary.
229	 */
230	if (!detect_deadlock && waiter->list_entry.prio == task->prio)
231		goto out_unlock_pi;
232
233	lock = waiter->lock;
234	if (!raw_spin_trylock(&lock->wait_lock)) {
235		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
236		cpu_relax();
237		goto retry;
238	}
239
240	/* Deadlock detection */
241	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
242		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
243		raw_spin_unlock(&lock->wait_lock);
244		ret = deadlock_detect ? -EDEADLK : 0;
245		goto out_unlock_pi;
246	}
247
248	top_waiter = rt_mutex_top_waiter(lock);
249
250	/* Requeue the waiter */
251	plist_del(&waiter->list_entry, &lock->wait_list);
252	waiter->list_entry.prio = task->prio;
253	plist_add(&waiter->list_entry, &lock->wait_list);
254
255	/* Release the task */
256	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
257	put_task_struct(task);
258
259	/* Grab the next task */
260	task = rt_mutex_owner(lock);
261	get_task_struct(task);
262	raw_spin_lock_irqsave(&task->pi_lock, flags);
263
264	if (waiter == rt_mutex_top_waiter(lock)) {
265		/* Boost the owner */
266		plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
267		waiter->pi_list_entry.prio = waiter->list_entry.prio;
268		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
269		__rt_mutex_adjust_prio(task);
270
271	} else if (top_waiter == waiter) {
272		/* Deboost the owner */
273		plist_del(&waiter->pi_list_entry, &task->pi_waiters);
274		waiter = rt_mutex_top_waiter(lock);
275		waiter->pi_list_entry.prio = waiter->list_entry.prio;
276		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
277		__rt_mutex_adjust_prio(task);
278	}
279
280	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
281
282	top_waiter = rt_mutex_top_waiter(lock);
283	raw_spin_unlock(&lock->wait_lock);
284
285	if (!detect_deadlock && waiter != top_waiter)
286		goto out_put_task;
287
288	goto again;
289
290 out_unlock_pi:
291	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
292 out_put_task:
293	put_task_struct(task);
294
295	return ret;
296}
297
298/*
299 * Optimization: check if we can steal the lock from the
300 * assigned pending owner [which might not have taken the
301 * lock yet]:
302 */
303static inline int try_to_steal_lock(struct rt_mutex *lock,
304				    struct task_struct *task)
305{
306	struct task_struct *pendowner = rt_mutex_owner(lock);
307	struct rt_mutex_waiter *next;
308	unsigned long flags;
309
310	if (!rt_mutex_owner_pending(lock))
311		return 0;
312
313	if (pendowner == task)
314		return 1;
315
316	raw_spin_lock_irqsave(&pendowner->pi_lock, flags);
317	if (task->prio >= pendowner->prio) {
318		raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
319		return 0;
320	}
321
322	/*
323	 * Check if a waiter is enqueued on the pending owners
324	 * pi_waiters list. Remove it and readjust pending owners
325	 * priority.
326	 */
327	if (likely(!rt_mutex_has_waiters(lock))) {
328		raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
329		return 1;
330	}
331
332	/* No chain handling, pending owner is not blocked on anything: */
333	next = rt_mutex_top_waiter(lock);
334	plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
335	__rt_mutex_adjust_prio(pendowner);
336	raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
337
338	/*
339	 * We are going to steal the lock and a waiter was
340	 * enqueued on the pending owners pi_waiters queue. So
341	 * we have to enqueue this waiter into
342	 * task->pi_waiters list. This covers the case,
343	 * where task is boosted because it holds another
344	 * lock and gets unboosted because the booster is
345	 * interrupted, so we would delay a waiter with higher
346	 * priority as task->normal_prio.
347	 *
348	 * Note: in the rare case of a SCHED_OTHER task changing
349	 * its priority and thus stealing the lock, next->task
350	 * might be task:
351	 */
352	if (likely(next->task != task)) {
353		raw_spin_lock_irqsave(&task->pi_lock, flags);
354		plist_add(&next->pi_list_entry, &task->pi_waiters);
355		__rt_mutex_adjust_prio(task);
356		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
357	}
358	return 1;
359}
360
361/*
362 * Try to take an rt-mutex
363 *
364 * This fails
365 * - when the lock has a real owner
366 * - when a different pending owner exists and has higher priority than current
367 *
368 * Must be called with lock->wait_lock held.
369 */
370static int try_to_take_rt_mutex(struct rt_mutex *lock)
371{
372	/*
373	 * We have to be careful here if the atomic speedups are
374	 * enabled, such that, when
375	 *  - no other waiter is on the lock
376	 *  - the lock has been released since we did the cmpxchg
377	 * the lock can be released or taken while we are doing the
378	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
379	 *
380	 * The atomic acquire/release aware variant of
381	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
382	 * the WAITERS bit, the atomic release / acquire can not
383	 * happen anymore and lock->wait_lock protects us from the
384	 * non-atomic case.
385	 *
386	 * Note, that this might set lock->owner =
387	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
388	 * any more. This is fixed up when we take the ownership.
389	 * This is the transitional state explained at the top of this file.
390	 */
391	mark_rt_mutex_waiters(lock);
392
393	if (rt_mutex_owner(lock) && !try_to_steal_lock(lock, current))
394		return 0;
395
396	/* We got the lock. */
397	debug_rt_mutex_lock(lock);
398
399	rt_mutex_set_owner(lock, current, 0);
400
401	rt_mutex_deadlock_account_lock(lock, current);
402
403	return 1;
404}
405
406/*
407 * Task blocks on lock.
408 *
409 * Prepare waiter and propagate pi chain
410 *
411 * This must be called with lock->wait_lock held.
412 */
413static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
414				   struct rt_mutex_waiter *waiter,
415				   struct task_struct *task,
416				   int detect_deadlock)
417{
418	struct task_struct *owner = rt_mutex_owner(lock);
419	struct rt_mutex_waiter *top_waiter = waiter;
420	unsigned long flags;
421	int chain_walk = 0, res;
422
423	raw_spin_lock_irqsave(&task->pi_lock, flags);
424	__rt_mutex_adjust_prio(task);
425	waiter->task = task;
426	waiter->lock = lock;
427	plist_node_init(&waiter->list_entry, task->prio);
428	plist_node_init(&waiter->pi_list_entry, task->prio);
429
430	/* Get the top priority waiter on the lock */
431	if (rt_mutex_has_waiters(lock))
432		top_waiter = rt_mutex_top_waiter(lock);
433	plist_add(&waiter->list_entry, &lock->wait_list);
434
435	task->pi_blocked_on = waiter;
436
437	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
438
439	if (waiter == rt_mutex_top_waiter(lock)) {
440		raw_spin_lock_irqsave(&owner->pi_lock, flags);
441		plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
442		plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
443
444		__rt_mutex_adjust_prio(owner);
445		if (owner->pi_blocked_on)
446			chain_walk = 1;
447		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
448	}
449	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
450		chain_walk = 1;
451
452	if (!chain_walk)
453		return 0;
454
455	/*
456	 * The owner can't disappear while holding a lock,
457	 * so the owner struct is protected by wait_lock.
458	 * Gets dropped in rt_mutex_adjust_prio_chain()!
459	 */
460	get_task_struct(owner);
461
462	raw_spin_unlock(&lock->wait_lock);
463
464	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
465					 task);
466
467	raw_spin_lock(&lock->wait_lock);
468
469	return res;
470}
471
472/*
473 * Wake up the next waiter on the lock.
474 *
475 * Remove the top waiter from the current tasks waiter list and from
476 * the lock waiter list. Set it as pending owner. Then wake it up.
477 *
478 * Called with lock->wait_lock held.
479 */
480static void wakeup_next_waiter(struct rt_mutex *lock)
481{
482	struct rt_mutex_waiter *waiter;
483	struct task_struct *pendowner;
484	unsigned long flags;
485
486	raw_spin_lock_irqsave(&current->pi_lock, flags);
487
488	waiter = rt_mutex_top_waiter(lock);
489	plist_del(&waiter->list_entry, &lock->wait_list);
490
491	/*
492	 * Remove it from current->pi_waiters. We do not adjust a
493	 * possible priority boost right now. We execute wakeup in the
494	 * boosted mode and go back to normal after releasing
495	 * lock->wait_lock.
496	 */
497	plist_del(&waiter->pi_list_entry, &current->pi_waiters);
498	pendowner = waiter->task;
499	waiter->task = NULL;
500
501	rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
502
503	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
504
505	/*
506	 * Clear the pi_blocked_on variable and enqueue a possible
507	 * waiter into the pi_waiters list of the pending owner. This
508	 * prevents that in case the pending owner gets unboosted a
509	 * waiter with higher priority than pending-owner->normal_prio
510	 * is blocked on the unboosted (pending) owner.
511	 */
512	raw_spin_lock_irqsave(&pendowner->pi_lock, flags);
513
514	WARN_ON(!pendowner->pi_blocked_on);
515	WARN_ON(pendowner->pi_blocked_on != waiter);
516	WARN_ON(pendowner->pi_blocked_on->lock != lock);
517
518	pendowner->pi_blocked_on = NULL;
519
520	if (rt_mutex_has_waiters(lock)) {
521		struct rt_mutex_waiter *next;
522
523		next = rt_mutex_top_waiter(lock);
524		plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
525	}
526	raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
527
528	wake_up_process(pendowner);
529}
530
531/*
532 * Remove a waiter from a lock
533 *
534 * Must be called with lock->wait_lock held
535 */
536static void remove_waiter(struct rt_mutex *lock,
537			  struct rt_mutex_waiter *waiter)
538{
539	int first = (waiter == rt_mutex_top_waiter(lock));
540	struct task_struct *owner = rt_mutex_owner(lock);
541	unsigned long flags;
542	int chain_walk = 0;
543
544	raw_spin_lock_irqsave(&current->pi_lock, flags);
545	plist_del(&waiter->list_entry, &lock->wait_list);
546	waiter->task = NULL;
547	current->pi_blocked_on = NULL;
548	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
549
550	if (first && owner != current) {
551
552		raw_spin_lock_irqsave(&owner->pi_lock, flags);
553
554		plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
555
556		if (rt_mutex_has_waiters(lock)) {
557			struct rt_mutex_waiter *next;
558
559			next = rt_mutex_top_waiter(lock);
560			plist_add(&next->pi_list_entry, &owner->pi_waiters);
561		}
562		__rt_mutex_adjust_prio(owner);
563
564		if (owner->pi_blocked_on)
565			chain_walk = 1;
566
567		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
568	}
569
570	WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
571
572	if (!chain_walk)
573		return;
574
575	/* gets dropped in rt_mutex_adjust_prio_chain()! */
576	get_task_struct(owner);
577
578	raw_spin_unlock(&lock->wait_lock);
579
580	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
581
582	raw_spin_lock(&lock->wait_lock);
583}
584
585/*
586 * Recheck the pi chain, in case we got a priority setting
587 *
588 * Called from sched_setscheduler
589 */
590void rt_mutex_adjust_pi(struct task_struct *task)
591{
592	struct rt_mutex_waiter *waiter;
593	unsigned long flags;
594
595	raw_spin_lock_irqsave(&task->pi_lock, flags);
596
597	waiter = task->pi_blocked_on;
598	if (!waiter || waiter->list_entry.prio == task->prio) {
599		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
600		return;
601	}
602
603	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
604
605	/* gets dropped in rt_mutex_adjust_prio_chain()! */
606	get_task_struct(task);
607	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
608}
609
610/**
611 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
612 * @lock:		 the rt_mutex to take
613 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
614 * 			 or TASK_UNINTERRUPTIBLE)
615 * @timeout:		 the pre-initialized and started timer, or NULL for none
616 * @waiter:		 the pre-initialized rt_mutex_waiter
617 * @detect_deadlock:	 passed to task_blocks_on_rt_mutex
618 *
619 * lock->wait_lock must be held by the caller.
620 */
621static int __sched
622__rt_mutex_slowlock(struct rt_mutex *lock, int state,
623		    struct hrtimer_sleeper *timeout,
624		    struct rt_mutex_waiter *waiter,
625		    int detect_deadlock)
626{
627	int ret = 0;
628
629	for (;;) {
630		/* Try to acquire the lock: */
631		if (try_to_take_rt_mutex(lock))
632			break;
633
634		/*
635		 * TASK_INTERRUPTIBLE checks for signals and
636		 * timeout. Ignored otherwise.
637		 */
638		if (unlikely(state == TASK_INTERRUPTIBLE)) {
639			/* Signal pending? */
640			if (signal_pending(current))
641				ret = -EINTR;
642			if (timeout && !timeout->task)
643				ret = -ETIMEDOUT;
644			if (ret)
645				break;
646		}
647
648		/*
649		 * waiter->task is NULL the first time we come here and
650		 * when we have been woken up by the previous owner
651		 * but the lock got stolen by a higher prio task.
652		 */
653		if (!waiter->task) {
654			ret = task_blocks_on_rt_mutex(lock, waiter, current,
655						      detect_deadlock);
656			/*
657			 * If we got woken up by the owner then start loop
658			 * all over without going into schedule to try
659			 * to get the lock now:
660			 */
661			if (unlikely(!waiter->task)) {
662				/*
663				 * Reset the return value. We might
664				 * have returned with -EDEADLK and the
665				 * owner released the lock while we
666				 * were walking the pi chain.
667				 */
668				ret = 0;
669				continue;
670			}
671			if (unlikely(ret))
672				break;
673		}
674
675		raw_spin_unlock(&lock->wait_lock);
676
677		debug_rt_mutex_print_deadlock(waiter);
678
679		if (waiter->task)
680			schedule_rt_mutex(lock);
681
682		raw_spin_lock(&lock->wait_lock);
683		set_current_state(state);
684	}
685
686	return ret;
687}
688
689/*
690 * Slow path lock function:
691 */
692static int __sched
693rt_mutex_slowlock(struct rt_mutex *lock, int state,
694		  struct hrtimer_sleeper *timeout,
695		  int detect_deadlock)
696{
697	struct rt_mutex_waiter waiter;
698	int ret = 0;
699
700	debug_rt_mutex_init_waiter(&waiter);
701	waiter.task = NULL;
702
703	raw_spin_lock(&lock->wait_lock);
704
705	/* Try to acquire the lock again: */
706	if (try_to_take_rt_mutex(lock)) {
707		raw_spin_unlock(&lock->wait_lock);
708		return 0;
709	}
710
711	set_current_state(state);
712
713	/* Setup the timer, when timeout != NULL */
714	if (unlikely(timeout)) {
715		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
716		if (!hrtimer_active(&timeout->timer))
717			timeout->task = NULL;
718	}
719
720	ret = __rt_mutex_slowlock(lock, state, timeout, &waiter,
721				  detect_deadlock);
722
723	set_current_state(TASK_RUNNING);
724
725	if (unlikely(waiter.task))
726		remove_waiter(lock, &waiter);
727
728	/*
729	 * try_to_take_rt_mutex() sets the waiter bit
730	 * unconditionally. We might have to fix that up.
731	 */
732	fixup_rt_mutex_waiters(lock);
733
734	raw_spin_unlock(&lock->wait_lock);
735
736	/* Remove pending timer: */
737	if (unlikely(timeout))
738		hrtimer_cancel(&timeout->timer);
739
740	/*
741	 * Readjust priority, when we did not get the lock. We might
742	 * have been the pending owner and boosted. Since we did not
743	 * take the lock, the PI boost has to go.
744	 */
745	if (unlikely(ret))
746		rt_mutex_adjust_prio(current);
747
748	debug_rt_mutex_free_waiter(&waiter);
749
750	return ret;
751}
752
753/*
754 * Slow path try-lock function:
755 */
756static inline int
757rt_mutex_slowtrylock(struct rt_mutex *lock)
758{
759	int ret = 0;
760
761	raw_spin_lock(&lock->wait_lock);
762
763	if (likely(rt_mutex_owner(lock) != current)) {
764
765		ret = try_to_take_rt_mutex(lock);
766		/*
767		 * try_to_take_rt_mutex() sets the lock waiters
768		 * bit unconditionally. Clean this up.
769		 */
770		fixup_rt_mutex_waiters(lock);
771	}
772
773	raw_spin_unlock(&lock->wait_lock);
774
775	return ret;
776}
777
778/*
779 * Slow path to release a rt-mutex:
780 */
781static void __sched
782rt_mutex_slowunlock(struct rt_mutex *lock)
783{
784	raw_spin_lock(&lock->wait_lock);
785
786	debug_rt_mutex_unlock(lock);
787
788	rt_mutex_deadlock_account_unlock(current);
789
790	if (!rt_mutex_has_waiters(lock)) {
791		lock->owner = NULL;
792		raw_spin_unlock(&lock->wait_lock);
793		return;
794	}
795
796	wakeup_next_waiter(lock);
797
798	raw_spin_unlock(&lock->wait_lock);
799
800	/* Undo pi boosting if necessary: */
801	rt_mutex_adjust_prio(current);
802}
803
804/*
805 * debug aware fast / slowpath lock,trylock,unlock
806 *
807 * The atomic acquire/release ops are compiled away, when either the
808 * architecture does not support cmpxchg or when debugging is enabled.
809 */
810static inline int
811rt_mutex_fastlock(struct rt_mutex *lock, int state,
812		  int detect_deadlock,
813		  int (*slowfn)(struct rt_mutex *lock, int state,
814				struct hrtimer_sleeper *timeout,
815				int detect_deadlock))
816{
817	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
818		rt_mutex_deadlock_account_lock(lock, current);
819		return 0;
820	} else
821		return slowfn(lock, state, NULL, detect_deadlock);
822}
823
824static inline int
825rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
826			struct hrtimer_sleeper *timeout, int detect_deadlock,
827			int (*slowfn)(struct rt_mutex *lock, int state,
828				      struct hrtimer_sleeper *timeout,
829				      int detect_deadlock))
830{
831	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
832		rt_mutex_deadlock_account_lock(lock, current);
833		return 0;
834	} else
835		return slowfn(lock, state, timeout, detect_deadlock);
836}
837
838static inline int
839rt_mutex_fasttrylock(struct rt_mutex *lock,
840		     int (*slowfn)(struct rt_mutex *lock))
841{
842	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
843		rt_mutex_deadlock_account_lock(lock, current);
844		return 1;
845	}
846	return slowfn(lock);
847}
848
849static inline void
850rt_mutex_fastunlock(struct rt_mutex *lock,
851		    void (*slowfn)(struct rt_mutex *lock))
852{
853	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
854		rt_mutex_deadlock_account_unlock(current);
855	else
856		slowfn(lock);
857}
858
859/**
860 * rt_mutex_lock - lock a rt_mutex
861 *
862 * @lock: the rt_mutex to be locked
863 */
864void __sched rt_mutex_lock(struct rt_mutex *lock)
865{
866	might_sleep();
867
868	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
869}
870EXPORT_SYMBOL_GPL(rt_mutex_lock);
871
872/**
873 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
874 *
875 * @lock: 		the rt_mutex to be locked
876 * @detect_deadlock:	deadlock detection on/off
877 *
878 * Returns:
879 *  0 		on success
880 * -EINTR 	when interrupted by a signal
881 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
882 */
883int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
884						 int detect_deadlock)
885{
886	might_sleep();
887
888	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
889				 detect_deadlock, rt_mutex_slowlock);
890}
891EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
892
893/**
894 * rt_mutex_timed_lock - lock a rt_mutex interruptible
895 *			the timeout structure is provided
896 *			by the caller
897 *
898 * @lock: 		the rt_mutex to be locked
899 * @timeout:		timeout structure or NULL (no timeout)
900 * @detect_deadlock:	deadlock detection on/off
901 *
902 * Returns:
903 *  0 		on success
904 * -EINTR 	when interrupted by a signal
905 * -ETIMEDOUT	when the timeout expired
906 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
907 */
908int
909rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
910		    int detect_deadlock)
911{
912	might_sleep();
913
914	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
915				       detect_deadlock, rt_mutex_slowlock);
916}
917EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
918
919/**
920 * rt_mutex_trylock - try to lock a rt_mutex
921 *
922 * @lock:	the rt_mutex to be locked
923 *
924 * Returns 1 on success and 0 on contention
925 */
926int __sched rt_mutex_trylock(struct rt_mutex *lock)
927{
928	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
929}
930EXPORT_SYMBOL_GPL(rt_mutex_trylock);
931
932/**
933 * rt_mutex_unlock - unlock a rt_mutex
934 *
935 * @lock: the rt_mutex to be unlocked
936 */
937void __sched rt_mutex_unlock(struct rt_mutex *lock)
938{
939	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
940}
941EXPORT_SYMBOL_GPL(rt_mutex_unlock);
942
943/**
944 * rt_mutex_destroy - mark a mutex unusable
945 * @lock: the mutex to be destroyed
946 *
947 * This function marks the mutex uninitialized, and any subsequent
948 * use of the mutex is forbidden. The mutex must not be locked when
949 * this function is called.
950 */
951void rt_mutex_destroy(struct rt_mutex *lock)
952{
953	WARN_ON(rt_mutex_is_locked(lock));
954#ifdef CONFIG_DEBUG_RT_MUTEXES
955	lock->magic = NULL;
956#endif
957}
958
959EXPORT_SYMBOL_GPL(rt_mutex_destroy);
960
961/**
962 * __rt_mutex_init - initialize the rt lock
963 *
964 * @lock: the rt lock to be initialized
965 *
966 * Initialize the rt lock to unlocked state.
967 *
968 * Initializing of a locked rt lock is not allowed
969 */
970void __rt_mutex_init(struct rt_mutex *lock, const char *name)
971{
972	lock->owner = NULL;
973	raw_spin_lock_init(&lock->wait_lock);
974	plist_head_init_raw(&lock->wait_list, &lock->wait_lock);
975
976	debug_rt_mutex_init(lock, name);
977}
978EXPORT_SYMBOL_GPL(__rt_mutex_init);
979
980/**
981 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
982 *				proxy owner
983 *
984 * @lock: 	the rt_mutex to be locked
985 * @proxy_owner:the task to set as owner
986 *
987 * No locking. Caller has to do serializing itself
988 * Special API call for PI-futex support
989 */
990void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
991				struct task_struct *proxy_owner)
992{
993	__rt_mutex_init(lock, NULL);
994	debug_rt_mutex_proxy_lock(lock, proxy_owner);
995	rt_mutex_set_owner(lock, proxy_owner, 0);
996	rt_mutex_deadlock_account_lock(lock, proxy_owner);
997}
998
999/**
1000 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1001 *
1002 * @lock: 	the rt_mutex to be locked
1003 *
1004 * No locking. Caller has to do serializing itself
1005 * Special API call for PI-futex support
1006 */
1007void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1008			   struct task_struct *proxy_owner)
1009{
1010	debug_rt_mutex_proxy_unlock(lock);
1011	rt_mutex_set_owner(lock, NULL, 0);
1012	rt_mutex_deadlock_account_unlock(proxy_owner);
1013}
1014
1015/**
1016 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1017 * @lock:		the rt_mutex to take
1018 * @waiter:		the pre-initialized rt_mutex_waiter
1019 * @task:		the task to prepare
1020 * @detect_deadlock:	perform deadlock detection (1) or not (0)
1021 *
1022 * Returns:
1023 *  0 - task blocked on lock
1024 *  1 - acquired the lock for task, caller should wake it up
1025 * <0 - error
1026 *
1027 * Special API call for FUTEX_REQUEUE_PI support.
1028 */
1029int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1030			      struct rt_mutex_waiter *waiter,
1031			      struct task_struct *task, int detect_deadlock)
1032{
1033	int ret;
1034
1035	raw_spin_lock(&lock->wait_lock);
1036
1037	mark_rt_mutex_waiters(lock);
1038
1039	if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) {
1040		/* We got the lock for task. */
1041		debug_rt_mutex_lock(lock);
1042		rt_mutex_set_owner(lock, task, 0);
1043		raw_spin_unlock(&lock->wait_lock);
1044		rt_mutex_deadlock_account_lock(lock, task);
1045		return 1;
1046	}
1047
1048	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1049
1050	if (ret && !waiter->task) {
1051		/*
1052		 * Reset the return value. We might have
1053		 * returned with -EDEADLK and the owner
1054		 * released the lock while we were walking the
1055		 * pi chain.  Let the waiter sort it out.
1056		 */
1057		ret = 0;
1058	}
1059	raw_spin_unlock(&lock->wait_lock);
1060
1061	debug_rt_mutex_print_deadlock(waiter);
1062
1063	return ret;
1064}
1065
1066/**
1067 * rt_mutex_next_owner - return the next owner of the lock
1068 *
1069 * @lock: the rt lock query
1070 *
1071 * Returns the next owner of the lock or NULL
1072 *
1073 * Caller has to serialize against other accessors to the lock
1074 * itself.
1075 *
1076 * Special API call for PI-futex support
1077 */
1078struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1079{
1080	if (!rt_mutex_has_waiters(lock))
1081		return NULL;
1082
1083	return rt_mutex_top_waiter(lock)->task;
1084}
1085
1086/**
1087 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1088 * @lock:		the rt_mutex we were woken on
1089 * @to:			the timeout, null if none. hrtimer should already have
1090 * 			been started.
1091 * @waiter:		the pre-initialized rt_mutex_waiter
1092 * @detect_deadlock:	perform deadlock detection (1) or not (0)
1093 *
1094 * Complete the lock acquisition started our behalf by another thread.
1095 *
1096 * Returns:
1097 *  0 - success
1098 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1099 *
1100 * Special API call for PI-futex requeue support
1101 */
1102int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1103			       struct hrtimer_sleeper *to,
1104			       struct rt_mutex_waiter *waiter,
1105			       int detect_deadlock)
1106{
1107	int ret;
1108
1109	raw_spin_lock(&lock->wait_lock);
1110
1111	set_current_state(TASK_INTERRUPTIBLE);
1112
1113	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter,
1114				  detect_deadlock);
1115
1116	set_current_state(TASK_RUNNING);
1117
1118	if (unlikely(waiter->task))
1119		remove_waiter(lock, waiter);
1120
1121	/*
1122	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1123	 * have to fix that up.
1124	 */
1125	fixup_rt_mutex_waiters(lock);
1126
1127	raw_spin_unlock(&lock->wait_lock);
1128
1129	/*
1130	 * Readjust priority, when we did not get the lock. We might have been
1131	 * the pending owner and boosted. Since we did not take the lock, the
1132	 * PI boost has to go.
1133	 */
1134	if (unlikely(ret))
1135		rt_mutex_adjust_prio(current);
1136
1137	return ret;
1138}
1139