• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/kernel/
1/*
2 *  linux/kernel/profile.c
3 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4 *  with configurable resolution, support for restricting the cpus on
5 *  which profiling is done, and switching between cpu time and
6 *  schedule() calls via kernel command line parameters passed at boot.
7 *
8 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9 *	Red Hat, July 2004
10 *  Consolidation of architecture support code for profiling,
11 *	William Irwin, Oracle, July 2004
12 *  Amortized hit count accounting via per-cpu open-addressed hashtables
13 *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14 */
15
16#include <linux/module.h>
17#include <linux/profile.h>
18#include <linux/bootmem.h>
19#include <linux/notifier.h>
20#include <linux/mm.h>
21#include <linux/cpumask.h>
22#include <linux/cpu.h>
23#include <linux/highmem.h>
24#include <linux/mutex.h>
25#include <linux/slab.h>
26#include <linux/vmalloc.h>
27#include <asm/sections.h>
28#include <asm/irq_regs.h>
29#include <asm/ptrace.h>
30
31struct profile_hit {
32	u32 pc, hits;
33};
34#define PROFILE_GRPSHIFT	3
35#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38
39/* Oprofile timer tick hook */
40static int (*timer_hook)(struct pt_regs *) __read_mostly;
41
42static atomic_t *prof_buffer;
43static unsigned long prof_len, prof_shift;
44
45int prof_on __read_mostly;
46EXPORT_SYMBOL_GPL(prof_on);
47
48static cpumask_var_t prof_cpu_mask;
49#ifdef CONFIG_SMP
50static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51static DEFINE_PER_CPU(int, cpu_profile_flip);
52static DEFINE_MUTEX(profile_flip_mutex);
53#endif /* CONFIG_SMP */
54
55int profile_setup(char *str)
56{
57	static char schedstr[] = "schedule";
58	static char sleepstr[] = "sleep";
59	static char kvmstr[] = "kvm";
60	int par;
61
62	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63#ifdef CONFIG_SCHEDSTATS
64		prof_on = SLEEP_PROFILING;
65		if (str[strlen(sleepstr)] == ',')
66			str += strlen(sleepstr) + 1;
67		if (get_option(&str, &par))
68			prof_shift = par;
69		printk(KERN_INFO
70			"kernel sleep profiling enabled (shift: %ld)\n",
71			prof_shift);
72#else
73		printk(KERN_WARNING
74			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75#endif /* CONFIG_SCHEDSTATS */
76	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77		prof_on = SCHED_PROFILING;
78		if (str[strlen(schedstr)] == ',')
79			str += strlen(schedstr) + 1;
80		if (get_option(&str, &par))
81			prof_shift = par;
82		printk(KERN_INFO
83			"kernel schedule profiling enabled (shift: %ld)\n",
84			prof_shift);
85	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86		prof_on = KVM_PROFILING;
87		if (str[strlen(kvmstr)] == ',')
88			str += strlen(kvmstr) + 1;
89		if (get_option(&str, &par))
90			prof_shift = par;
91		printk(KERN_INFO
92			"kernel KVM profiling enabled (shift: %ld)\n",
93			prof_shift);
94	} else if (get_option(&str, &par)) {
95		prof_shift = par;
96		prof_on = CPU_PROFILING;
97		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98			prof_shift);
99	}
100	return 1;
101}
102__setup("profile=", profile_setup);
103
104
105int __ref profile_init(void)
106{
107	int buffer_bytes;
108	if (!prof_on)
109		return 0;
110
111	/* only text is profiled */
112	prof_len = (_etext - _stext) >> prof_shift;
113	buffer_bytes = prof_len*sizeof(atomic_t);
114
115	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116		return -ENOMEM;
117
118	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
119
120	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
121	if (prof_buffer)
122		return 0;
123
124	prof_buffer = alloc_pages_exact(buffer_bytes,
125					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
126	if (prof_buffer)
127		return 0;
128
129	prof_buffer = vmalloc(buffer_bytes);
130	if (prof_buffer) {
131		memset(prof_buffer, 0, buffer_bytes);
132		return 0;
133	}
134
135	free_cpumask_var(prof_cpu_mask);
136	return -ENOMEM;
137}
138
139/* Profile event notifications */
140
141static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
142static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
143static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
144
145void profile_task_exit(struct task_struct *task)
146{
147	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
148}
149
150int profile_handoff_task(struct task_struct *task)
151{
152	int ret;
153	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
154	return (ret == NOTIFY_OK) ? 1 : 0;
155}
156
157void profile_munmap(unsigned long addr)
158{
159	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
160}
161
162int task_handoff_register(struct notifier_block *n)
163{
164	return atomic_notifier_chain_register(&task_free_notifier, n);
165}
166EXPORT_SYMBOL_GPL(task_handoff_register);
167
168int task_handoff_unregister(struct notifier_block *n)
169{
170	return atomic_notifier_chain_unregister(&task_free_notifier, n);
171}
172EXPORT_SYMBOL_GPL(task_handoff_unregister);
173
174int profile_event_register(enum profile_type type, struct notifier_block *n)
175{
176	int err = -EINVAL;
177
178	switch (type) {
179	case PROFILE_TASK_EXIT:
180		err = blocking_notifier_chain_register(
181				&task_exit_notifier, n);
182		break;
183	case PROFILE_MUNMAP:
184		err = blocking_notifier_chain_register(
185				&munmap_notifier, n);
186		break;
187	}
188
189	return err;
190}
191EXPORT_SYMBOL_GPL(profile_event_register);
192
193int profile_event_unregister(enum profile_type type, struct notifier_block *n)
194{
195	int err = -EINVAL;
196
197	switch (type) {
198	case PROFILE_TASK_EXIT:
199		err = blocking_notifier_chain_unregister(
200				&task_exit_notifier, n);
201		break;
202	case PROFILE_MUNMAP:
203		err = blocking_notifier_chain_unregister(
204				&munmap_notifier, n);
205		break;
206	}
207
208	return err;
209}
210EXPORT_SYMBOL_GPL(profile_event_unregister);
211
212int register_timer_hook(int (*hook)(struct pt_regs *))
213{
214	if (timer_hook)
215		return -EBUSY;
216	timer_hook = hook;
217	return 0;
218}
219EXPORT_SYMBOL_GPL(register_timer_hook);
220
221void unregister_timer_hook(int (*hook)(struct pt_regs *))
222{
223	WARN_ON(hook != timer_hook);
224	timer_hook = NULL;
225	/* make sure all CPUs see the NULL hook */
226	synchronize_sched();  /* Allow ongoing interrupts to complete. */
227}
228EXPORT_SYMBOL_GPL(unregister_timer_hook);
229
230
231#ifdef CONFIG_SMP
232/*
233 * Each cpu has a pair of open-addressed hashtables for pending
234 * profile hits. read_profile() IPI's all cpus to request them
235 * to flip buffers and flushes their contents to prof_buffer itself.
236 * Flip requests are serialized by the profile_flip_mutex. The sole
237 * use of having a second hashtable is for avoiding cacheline
238 * contention that would otherwise happen during flushes of pending
239 * profile hits required for the accuracy of reported profile hits
240 * and so resurrect the interrupt livelock issue.
241 *
242 * The open-addressed hashtables are indexed by profile buffer slot
243 * and hold the number of pending hits to that profile buffer slot on
244 * a cpu in an entry. When the hashtable overflows, all pending hits
245 * are accounted to their corresponding profile buffer slots with
246 * atomic_add() and the hashtable emptied. As numerous pending hits
247 * may be accounted to a profile buffer slot in a hashtable entry,
248 * this amortizes a number of atomic profile buffer increments likely
249 * to be far larger than the number of entries in the hashtable,
250 * particularly given that the number of distinct profile buffer
251 * positions to which hits are accounted during short intervals (e.g.
252 * several seconds) is usually very small. Exclusion from buffer
253 * flipping is provided by interrupt disablement (note that for
254 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
255 * process context).
256 * The hash function is meant to be lightweight as opposed to strong,
257 * and was vaguely inspired by ppc64 firmware-supported inverted
258 * pagetable hash functions, but uses a full hashtable full of finite
259 * collision chains, not just pairs of them.
260 *
261 * -- wli
262 */
263static void __profile_flip_buffers(void *unused)
264{
265	int cpu = smp_processor_id();
266
267	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
268}
269
270static void profile_flip_buffers(void)
271{
272	int i, j, cpu;
273
274	mutex_lock(&profile_flip_mutex);
275	j = per_cpu(cpu_profile_flip, get_cpu());
276	put_cpu();
277	on_each_cpu(__profile_flip_buffers, NULL, 1);
278	for_each_online_cpu(cpu) {
279		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
280		for (i = 0; i < NR_PROFILE_HIT; ++i) {
281			if (!hits[i].hits) {
282				if (hits[i].pc)
283					hits[i].pc = 0;
284				continue;
285			}
286			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
287			hits[i].hits = hits[i].pc = 0;
288		}
289	}
290	mutex_unlock(&profile_flip_mutex);
291}
292
293static void profile_discard_flip_buffers(void)
294{
295	int i, cpu;
296
297	mutex_lock(&profile_flip_mutex);
298	i = per_cpu(cpu_profile_flip, get_cpu());
299	put_cpu();
300	on_each_cpu(__profile_flip_buffers, NULL, 1);
301	for_each_online_cpu(cpu) {
302		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
303		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
304	}
305	mutex_unlock(&profile_flip_mutex);
306}
307
308void profile_hits(int type, void *__pc, unsigned int nr_hits)
309{
310	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
311	int i, j, cpu;
312	struct profile_hit *hits;
313
314	if (prof_on != type || !prof_buffer)
315		return;
316	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
317	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
318	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
319	cpu = get_cpu();
320	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
321	if (!hits) {
322		put_cpu();
323		return;
324	}
325	/*
326	 * We buffer the global profiler buffer into a per-CPU
327	 * queue and thus reduce the number of global (and possibly
328	 * NUMA-alien) accesses. The write-queue is self-coalescing:
329	 */
330	local_irq_save(flags);
331	do {
332		for (j = 0; j < PROFILE_GRPSZ; ++j) {
333			if (hits[i + j].pc == pc) {
334				hits[i + j].hits += nr_hits;
335				goto out;
336			} else if (!hits[i + j].hits) {
337				hits[i + j].pc = pc;
338				hits[i + j].hits = nr_hits;
339				goto out;
340			}
341		}
342		i = (i + secondary) & (NR_PROFILE_HIT - 1);
343	} while (i != primary);
344
345	/*
346	 * Add the current hit(s) and flush the write-queue out
347	 * to the global buffer:
348	 */
349	atomic_add(nr_hits, &prof_buffer[pc]);
350	for (i = 0; i < NR_PROFILE_HIT; ++i) {
351		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
352		hits[i].pc = hits[i].hits = 0;
353	}
354out:
355	local_irq_restore(flags);
356	put_cpu();
357}
358
359static int __cpuinit profile_cpu_callback(struct notifier_block *info,
360					unsigned long action, void *__cpu)
361{
362	int node, cpu = (unsigned long)__cpu;
363	struct page *page;
364
365	switch (action) {
366	case CPU_UP_PREPARE:
367	case CPU_UP_PREPARE_FROZEN:
368		node = cpu_to_mem(cpu);
369		per_cpu(cpu_profile_flip, cpu) = 0;
370		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
371			page = alloc_pages_exact_node(node,
372					GFP_KERNEL | __GFP_ZERO,
373					0);
374			if (!page)
375				return notifier_from_errno(-ENOMEM);
376			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
377		}
378		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
379			page = alloc_pages_exact_node(node,
380					GFP_KERNEL | __GFP_ZERO,
381					0);
382			if (!page)
383				goto out_free;
384			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
385		}
386		break;
387out_free:
388		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
389		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
390		__free_page(page);
391		return notifier_from_errno(-ENOMEM);
392	case CPU_ONLINE:
393	case CPU_ONLINE_FROZEN:
394		if (prof_cpu_mask != NULL)
395			cpumask_set_cpu(cpu, prof_cpu_mask);
396		break;
397	case CPU_UP_CANCELED:
398	case CPU_UP_CANCELED_FROZEN:
399	case CPU_DEAD:
400	case CPU_DEAD_FROZEN:
401		if (prof_cpu_mask != NULL)
402			cpumask_clear_cpu(cpu, prof_cpu_mask);
403		if (per_cpu(cpu_profile_hits, cpu)[0]) {
404			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
405			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
406			__free_page(page);
407		}
408		if (per_cpu(cpu_profile_hits, cpu)[1]) {
409			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
410			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
411			__free_page(page);
412		}
413		break;
414	}
415	return NOTIFY_OK;
416}
417#else /* !CONFIG_SMP */
418#define profile_flip_buffers()		do { } while (0)
419#define profile_discard_flip_buffers()	do { } while (0)
420#define profile_cpu_callback		NULL
421
422void profile_hits(int type, void *__pc, unsigned int nr_hits)
423{
424	unsigned long pc;
425
426	if (prof_on != type || !prof_buffer)
427		return;
428	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
429	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
430}
431#endif /* !CONFIG_SMP */
432EXPORT_SYMBOL_GPL(profile_hits);
433
434void profile_tick(int type)
435{
436	struct pt_regs *regs = get_irq_regs();
437
438	if (type == CPU_PROFILING && timer_hook)
439		timer_hook(regs);
440	if (!user_mode(regs) && prof_cpu_mask != NULL &&
441	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
442		profile_hit(type, (void *)profile_pc(regs));
443}
444
445#ifdef CONFIG_PROC_FS
446#include <linux/proc_fs.h>
447#include <linux/seq_file.h>
448#include <asm/uaccess.h>
449
450static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
451{
452	seq_cpumask(m, prof_cpu_mask);
453	seq_putc(m, '\n');
454	return 0;
455}
456
457static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
458{
459	return single_open(file, prof_cpu_mask_proc_show, NULL);
460}
461
462static ssize_t prof_cpu_mask_proc_write(struct file *file,
463	const char __user *buffer, size_t count, loff_t *pos)
464{
465	cpumask_var_t new_value;
466	int err;
467
468	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
469		return -ENOMEM;
470
471	err = cpumask_parse_user(buffer, count, new_value);
472	if (!err) {
473		cpumask_copy(prof_cpu_mask, new_value);
474		err = count;
475	}
476	free_cpumask_var(new_value);
477	return err;
478}
479
480static const struct file_operations prof_cpu_mask_proc_fops = {
481	.open		= prof_cpu_mask_proc_open,
482	.read		= seq_read,
483	.llseek		= seq_lseek,
484	.release	= single_release,
485	.write		= prof_cpu_mask_proc_write,
486};
487
488void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
489{
490	/* create /proc/irq/prof_cpu_mask */
491	proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
492}
493
494/*
495 * This function accesses profiling information. The returned data is
496 * binary: the sampling step and the actual contents of the profile
497 * buffer. Use of the program readprofile is recommended in order to
498 * get meaningful info out of these data.
499 */
500static ssize_t
501read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
502{
503	unsigned long p = *ppos;
504	ssize_t read;
505	char *pnt;
506	unsigned int sample_step = 1 << prof_shift;
507
508	profile_flip_buffers();
509	if (p >= (prof_len+1)*sizeof(unsigned int))
510		return 0;
511	if (count > (prof_len+1)*sizeof(unsigned int) - p)
512		count = (prof_len+1)*sizeof(unsigned int) - p;
513	read = 0;
514
515	while (p < sizeof(unsigned int) && count > 0) {
516		if (put_user(*((char *)(&sample_step)+p), buf))
517			return -EFAULT;
518		buf++; p++; count--; read++;
519	}
520	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
521	if (copy_to_user(buf, (void *)pnt, count))
522		return -EFAULT;
523	read += count;
524	*ppos += read;
525	return read;
526}
527
528/*
529 * Writing to /proc/profile resets the counters
530 *
531 * Writing a 'profiling multiplier' value into it also re-sets the profiling
532 * interrupt frequency, on architectures that support this.
533 */
534static ssize_t write_profile(struct file *file, const char __user *buf,
535			     size_t count, loff_t *ppos)
536{
537#ifdef CONFIG_SMP
538	extern int setup_profiling_timer(unsigned int multiplier);
539
540	if (count == sizeof(int)) {
541		unsigned int multiplier;
542
543		if (copy_from_user(&multiplier, buf, sizeof(int)))
544			return -EFAULT;
545
546		if (setup_profiling_timer(multiplier))
547			return -EINVAL;
548	}
549#endif
550	profile_discard_flip_buffers();
551	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
552	return count;
553}
554
555static const struct file_operations proc_profile_operations = {
556	.read		= read_profile,
557	.write		= write_profile,
558};
559
560#ifdef CONFIG_SMP
561static void profile_nop(void *unused)
562{
563}
564
565static int create_hash_tables(void)
566{
567	int cpu;
568
569	for_each_online_cpu(cpu) {
570		int node = cpu_to_mem(cpu);
571		struct page *page;
572
573		page = alloc_pages_exact_node(node,
574				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
575				0);
576		if (!page)
577			goto out_cleanup;
578		per_cpu(cpu_profile_hits, cpu)[1]
579				= (struct profile_hit *)page_address(page);
580		page = alloc_pages_exact_node(node,
581				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
582				0);
583		if (!page)
584			goto out_cleanup;
585		per_cpu(cpu_profile_hits, cpu)[0]
586				= (struct profile_hit *)page_address(page);
587	}
588	return 0;
589out_cleanup:
590	prof_on = 0;
591	smp_mb();
592	on_each_cpu(profile_nop, NULL, 1);
593	for_each_online_cpu(cpu) {
594		struct page *page;
595
596		if (per_cpu(cpu_profile_hits, cpu)[0]) {
597			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
598			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
599			__free_page(page);
600		}
601		if (per_cpu(cpu_profile_hits, cpu)[1]) {
602			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
603			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
604			__free_page(page);
605		}
606	}
607	return -1;
608}
609#else
610#define create_hash_tables()			({ 0; })
611#endif
612
613int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
614{
615	struct proc_dir_entry *entry;
616
617	if (!prof_on)
618		return 0;
619	if (create_hash_tables())
620		return -ENOMEM;
621	entry = proc_create("profile", S_IWUSR | S_IRUGO,
622			    NULL, &proc_profile_operations);
623	if (!entry)
624		return 0;
625	entry->size = (1+prof_len) * sizeof(atomic_t);
626	hotcpu_notifier(profile_cpu_callback, 0);
627	return 0;
628}
629module_init(create_proc_profile);
630#endif /* CONFIG_PROC_FS */
631