• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/kernel/debug/kdb/
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu.  Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state;			/* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72	CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[50];
82#define for_each_kdbcmd(cmd, num)					\
83	for ((cmd) = kdb_base_commands, (num) = 0;			\
84	     num < kdb_max_commands;					\
85	     num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++)
86
87typedef struct _kdbmsg {
88	int	km_diag;	/* kdb diagnostic */
89	char	*km_msg;	/* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93	{ KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96	KDBMSG(NOTFOUND, "Command Not Found"),
97	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99	       "8 is only allowed on 64 bit systems"),
100	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101	KDBMSG(NOTENV, "Cannot find environment variable"),
102	KDBMSG(NOENVVALUE, "Environment variable should have value"),
103	KDBMSG(NOTIMP, "Command not implemented"),
104	KDBMSG(ENVFULL, "Environment full"),
105	KDBMSG(ENVBUFFULL, "Environment buffer full"),
106	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114	KDBMSG(BADMODE, "Invalid IDMODE"),
115	KDBMSG(BADINT, "Illegal numeric value"),
116	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117	KDBMSG(BADREG, "Invalid register name"),
118	KDBMSG(BADCPUNUM, "Invalid cpu number"),
119	KDBMSG(BADLENGTH, "Invalid length field"),
120	KDBMSG(NOBP, "No Breakpoint exists"),
121	KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment.   This is all kept static and local to
130 * this file.   We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables.  The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8",			/* lines of md output */
148 "BTARGS=9",			/* 9 possible args in bt */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181	struct task_struct *p = curr_task(cpu);
182#ifdef	_TIF_MCA_INIT
183	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184		p = krp->p;
185#endif
186	return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 *	an environment variable.
192 * Parameters:
193 *	match	A character string representing an environment variable.
194 * Returns:
195 *	NULL	No environment variable matches 'match'
196 *	char*	Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200	char **ep = __env;
201	int matchlen = strlen(match);
202	int i;
203
204	for (i = 0; i < __nenv; i++) {
205		char *e = *ep++;
206
207		if (!e)
208			continue;
209
210		if ((strncmp(match, e, matchlen) == 0)
211		 && ((e[matchlen] == '\0')
212		   || (e[matchlen] == '='))) {
213			char *cp = strchr(e, '=');
214			return cp ? ++cp : "";
215		}
216	}
217	return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 *	environment entries.
223 * Parameters:
224 *	match	A character string representing a numeric value
225 * Outputs:
226 *	*value  the unsigned long representation of the env variable 'match'
227 * Returns:
228 *	Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 *	We use a static environment buffer (envbuffer) to hold the values
231 *	of dynamically generated environment variables (see kdb_set).  Buffer
232 *	space once allocated is never free'd, so over time, the amount of space
233 *	(currently 512 bytes) will be exhausted if env variables are changed
234 *	frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define	KDB_ENVBUFSIZE	512
239	static char envbuffer[KDB_ENVBUFSIZE];
240	static int envbufsize;
241	char *ep = NULL;
242
243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244		ep = &envbuffer[envbufsize];
245		envbufsize += bytes;
246	}
247	return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 *	long-valued environment variable.
253 * Parameters:
254 *	match	A character string representing a numeric value
255 * Outputs:
256 *	*value  the unsigned long represntation of the env variable 'match'
257 * Returns:
258 *	Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262	char *ep;
263
264	ep = kdbgetenv(match);
265	if (!ep)
266		return KDB_NOTENV;
267	if (strlen(ep) == 0)
268		return KDB_NOENVVALUE;
269
270	*value = simple_strtoul(ep, NULL, 0);
271
272	return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 *	integer-valued environment variable.
278 * Parameters:
279 *	match	A character string representing an integer-valued env variable
280 * Outputs:
281 *	*value  the integer representation of the environment variable 'match'
282 * Returns:
283 *	Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287	unsigned long val;
288	int diag;
289
290	diag = kdbgetulenv(match, &val);
291	if (!diag)
292		*value = (int) val;
293	return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 *	unsigned long value.
299 * Parameters:
300 *	arg	A character string representing a numeric value
301 * Outputs:
302 *	*value  the unsigned long represntation of arg.
303 * Returns:
304 *	Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308	char *endp;
309	unsigned long val;
310
311	val = simple_strtoul(arg, &endp, 0);
312
313	if (endp == arg) {
314		/*
315		 * Also try base 16, for us folks too lazy to type the
316		 * leading 0x...
317		 */
318		val = simple_strtoul(arg, &endp, 16);
319		if (endp == arg)
320			return KDB_BADINT;
321	}
322
323	*value = val;
324
325	return 0;
326}
327
328int kdbgetu64arg(const char *arg, u64 *value)
329{
330	char *endp;
331	u64 val;
332
333	val = simple_strtoull(arg, &endp, 0);
334
335	if (endp == arg) {
336
337		val = simple_strtoull(arg, &endp, 16);
338		if (endp == arg)
339			return KDB_BADINT;
340	}
341
342	*value = val;
343
344	return 0;
345}
346
347/*
348 * kdb_set - This function implements the 'set' command.  Alter an
349 *	existing environment variable or create a new one.
350 */
351int kdb_set(int argc, const char **argv)
352{
353	int i;
354	char *ep;
355	size_t varlen, vallen;
356
357	/*
358	 * we can be invoked two ways:
359	 *   set var=value    argv[1]="var", argv[2]="value"
360	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
361	 * - if the latter, shift 'em down.
362	 */
363	if (argc == 3) {
364		argv[2] = argv[3];
365		argc--;
366	}
367
368	if (argc != 2)
369		return KDB_ARGCOUNT;
370
371	/*
372	 * Check for internal variables
373	 */
374	if (strcmp(argv[1], "KDBDEBUG") == 0) {
375		unsigned int debugflags;
376		char *cp;
377
378		debugflags = simple_strtoul(argv[2], &cp, 0);
379		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380			kdb_printf("kdb: illegal debug flags '%s'\n",
381				    argv[2]);
382			return 0;
383		}
384		kdb_flags = (kdb_flags &
385			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
387
388		return 0;
389	}
390
391	/*
392	 * Tokenizer squashed the '=' sign.  argv[1] is variable
393	 * name, argv[2] = value.
394	 */
395	varlen = strlen(argv[1]);
396	vallen = strlen(argv[2]);
397	ep = kdballocenv(varlen + vallen + 2);
398	if (ep == (char *)0)
399		return KDB_ENVBUFFULL;
400
401	sprintf(ep, "%s=%s", argv[1], argv[2]);
402
403	ep[varlen+vallen+1] = '\0';
404
405	for (i = 0; i < __nenv; i++) {
406		if (__env[i]
407		 && ((strncmp(__env[i], argv[1], varlen) == 0)
408		   && ((__env[i][varlen] == '\0')
409		    || (__env[i][varlen] == '=')))) {
410			__env[i] = ep;
411			return 0;
412		}
413	}
414
415	/*
416	 * Wasn't existing variable.  Fit into slot.
417	 */
418	for (i = 0; i < __nenv-1; i++) {
419		if (__env[i] == (char *)0) {
420			__env[i] = ep;
421			return 0;
422		}
423	}
424
425	return KDB_ENVFULL;
426}
427
428static int kdb_check_regs(void)
429{
430	if (!kdb_current_regs) {
431		kdb_printf("No current kdb registers."
432			   "  You may need to select another task\n");
433		return KDB_BADREG;
434	}
435	return 0;
436}
437
438/*
439 * kdbgetaddrarg - This function is responsible for parsing an
440 *	address-expression and returning the value of the expression,
441 *	symbol name, and offset to the caller.
442 *
443 *	The argument may consist of a numeric value (decimal or
444 *	hexidecimal), a symbol name, a register name (preceeded by the
445 *	percent sign), an environment variable with a numeric value
446 *	(preceeded by a dollar sign) or a simple arithmetic expression
447 *	consisting of a symbol name, +/-, and a numeric constant value
448 *	(offset).
449 * Parameters:
450 *	argc	- count of arguments in argv
451 *	argv	- argument vector
452 *	*nextarg - index to next unparsed argument in argv[]
453 *	regs	- Register state at time of KDB entry
454 * Outputs:
455 *	*value	- receives the value of the address-expression
456 *	*offset - receives the offset specified, if any
457 *	*name   - receives the symbol name, if any
458 *	*nextarg - index to next unparsed argument in argv[]
459 * Returns:
460 *	zero is returned on success, a kdb diagnostic code is
461 *      returned on error.
462 */
463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464		  unsigned long *value,  long *offset,
465		  char **name)
466{
467	unsigned long addr;
468	unsigned long off = 0;
469	int positive;
470	int diag;
471	int found = 0;
472	char *symname;
473	char symbol = '\0';
474	char *cp;
475	kdb_symtab_t symtab;
476
477	/*
478	 * Process arguments which follow the following syntax:
479	 *
480	 *  symbol | numeric-address [+/- numeric-offset]
481	 *  %register
482	 *  $environment-variable
483	 */
484
485	if (*nextarg > argc)
486		return KDB_ARGCOUNT;
487
488	symname = (char *)argv[*nextarg];
489
490	/*
491	 * If there is no whitespace between the symbol
492	 * or address and the '+' or '-' symbols, we
493	 * remember the character and replace it with a
494	 * null so the symbol/value can be properly parsed
495	 */
496	cp = strpbrk(symname, "+-");
497	if (cp != NULL) {
498		symbol = *cp;
499		*cp++ = '\0';
500	}
501
502	if (symname[0] == '$') {
503		diag = kdbgetulenv(&symname[1], &addr);
504		if (diag)
505			return diag;
506	} else if (symname[0] == '%') {
507		diag = kdb_check_regs();
508		if (diag)
509			return diag;
510		/* Implement register values with % at a later time as it is
511		 * arch optional.
512		 */
513		return KDB_NOTIMP;
514	} else {
515		found = kdbgetsymval(symname, &symtab);
516		if (found) {
517			addr = symtab.sym_start;
518		} else {
519			diag = kdbgetularg(argv[*nextarg], &addr);
520			if (diag)
521				return diag;
522		}
523	}
524
525	if (!found)
526		found = kdbnearsym(addr, &symtab);
527
528	(*nextarg)++;
529
530	if (name)
531		*name = symname;
532	if (value)
533		*value = addr;
534	if (offset && name && *name)
535		*offset = addr - symtab.sym_start;
536
537	if ((*nextarg > argc)
538	 && (symbol == '\0'))
539		return 0;
540
541	/*
542	 * check for +/- and offset
543	 */
544
545	if (symbol == '\0') {
546		if ((argv[*nextarg][0] != '+')
547		 && (argv[*nextarg][0] != '-')) {
548			/*
549			 * Not our argument.  Return.
550			 */
551			return 0;
552		} else {
553			positive = (argv[*nextarg][0] == '+');
554			(*nextarg)++;
555		}
556	} else
557		positive = (symbol == '+');
558
559	/*
560	 * Now there must be an offset!
561	 */
562	if ((*nextarg > argc)
563	 && (symbol == '\0')) {
564		return KDB_INVADDRFMT;
565	}
566
567	if (!symbol) {
568		cp = (char *)argv[*nextarg];
569		(*nextarg)++;
570	}
571
572	diag = kdbgetularg(cp, &off);
573	if (diag)
574		return diag;
575
576	if (!positive)
577		off = -off;
578
579	if (offset)
580		*offset += off;
581
582	if (value)
583		*value += off;
584
585	return 0;
586}
587
588static void kdb_cmderror(int diag)
589{
590	int i;
591
592	if (diag >= 0) {
593		kdb_printf("no error detected (diagnostic is %d)\n", diag);
594		return;
595	}
596
597	for (i = 0; i < __nkdb_err; i++) {
598		if (kdbmsgs[i].km_diag == diag) {
599			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600			return;
601		}
602	}
603
604	kdb_printf("Unknown diag %d\n", -diag);
605}
606
607/*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 *	command which defines one command as a set of other commands,
610 *	terminated by endefcmd.  kdb_defcmd processes the initial
611 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 *	the following commands until 'endefcmd'.
613 * Inputs:
614 *	argc	argument count
615 *	argv	argument vector
616 * Returns:
617 *	zero for success, a kdb diagnostic if error
618 */
619struct defcmd_set {
620	int count;
621	int usable;
622	char *name;
623	char *usage;
624	char *help;
625	char **command;
626};
627static struct defcmd_set *defcmd_set;
628static int defcmd_set_count;
629static int defcmd_in_progress;
630
631/* Forward references */
632static int kdb_exec_defcmd(int argc, const char **argv);
633
634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635{
636	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637	char **save_command = s->command;
638	if (strcmp(argv0, "endefcmd") == 0) {
639		defcmd_in_progress = 0;
640		if (!s->count)
641			s->usable = 0;
642		if (s->usable)
643			kdb_register(s->name, kdb_exec_defcmd,
644				     s->usage, s->help, 0);
645		return 0;
646	}
647	if (!s->usable)
648		return KDB_NOTIMP;
649	s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650	if (!s->command) {
651		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652			   cmdstr);
653		s->usable = 0;
654		return KDB_NOTIMP;
655	}
656	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658	kfree(save_command);
659	return 0;
660}
661
662static int kdb_defcmd(int argc, const char **argv)
663{
664	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665	if (defcmd_in_progress) {
666		kdb_printf("kdb: nested defcmd detected, assuming missing "
667			   "endefcmd\n");
668		kdb_defcmd2("endefcmd", "endefcmd");
669	}
670	if (argc == 0) {
671		int i;
672		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674				   s->usage, s->help);
675			for (i = 0; i < s->count; ++i)
676				kdb_printf("%s", s->command[i]);
677			kdb_printf("endefcmd\n");
678		}
679		return 0;
680	}
681	if (argc != 3)
682		return KDB_ARGCOUNT;
683	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684			     GFP_KDB);
685	if (!defcmd_set) {
686		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687			   argv[1]);
688		defcmd_set = save_defcmd_set;
689		return KDB_NOTIMP;
690	}
691	memcpy(defcmd_set, save_defcmd_set,
692	       defcmd_set_count * sizeof(*defcmd_set));
693	kfree(save_defcmd_set);
694	s = defcmd_set + defcmd_set_count;
695	memset(s, 0, sizeof(*s));
696	s->usable = 1;
697	s->name = kdb_strdup(argv[1], GFP_KDB);
698	s->usage = kdb_strdup(argv[2], GFP_KDB);
699	s->help = kdb_strdup(argv[3], GFP_KDB);
700	if (s->usage[0] == '"') {
701		strcpy(s->usage, s->usage+1);
702		s->usage[strlen(s->usage)-1] = '\0';
703	}
704	if (s->help[0] == '"') {
705		strcpy(s->help, s->help+1);
706		s->help[strlen(s->help)-1] = '\0';
707	}
708	++defcmd_set_count;
709	defcmd_in_progress = 1;
710	return 0;
711}
712
713/*
714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 *	defcmd name.
716 * Inputs:
717 *	argc	argument count
718 *	argv	argument vector
719 * Returns:
720 *	zero for success, a kdb diagnostic if error
721 */
722static int kdb_exec_defcmd(int argc, const char **argv)
723{
724	int i, ret;
725	struct defcmd_set *s;
726	if (argc != 0)
727		return KDB_ARGCOUNT;
728	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729		if (strcmp(s->name, argv[0]) == 0)
730			break;
731	}
732	if (i == defcmd_set_count) {
733		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734			   argv[0]);
735		return KDB_NOTIMP;
736	}
737	for (i = 0; i < s->count; ++i) {
738		/* Recursive use of kdb_parse, do not use argv after
739		 * this point */
740		argv = NULL;
741		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742		ret = kdb_parse(s->command[i]);
743		if (ret)
744			return ret;
745	}
746	return 0;
747}
748
749/* Command history */
750#define KDB_CMD_HISTORY_COUNT	32
751#define CMD_BUFLEN		200	/* kdb_printf: max printline
752					 * size == 256 */
753static unsigned int cmd_head, cmd_tail;
754static unsigned int cmdptr;
755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756static char cmd_cur[CMD_BUFLEN];
757
758/*
759 * The "str" argument may point to something like  | grep xyz
760 */
761static void parse_grep(const char *str)
762{
763	int	len;
764	char	*cp = (char *)str, *cp2;
765
766	/* sanity check: we should have been called with the \ first */
767	if (*cp != '|')
768		return;
769	cp++;
770	while (isspace(*cp))
771		cp++;
772	if (strncmp(cp, "grep ", 5)) {
773		kdb_printf("invalid 'pipe', see grephelp\n");
774		return;
775	}
776	cp += 5;
777	while (isspace(*cp))
778		cp++;
779	cp2 = strchr(cp, '\n');
780	if (cp2)
781		*cp2 = '\0'; /* remove the trailing newline */
782	len = strlen(cp);
783	if (len == 0) {
784		kdb_printf("invalid 'pipe', see grephelp\n");
785		return;
786	}
787	/* now cp points to a nonzero length search string */
788	if (*cp == '"') {
789		/* allow it be "x y z" by removing the "'s - there must
790		   be two of them */
791		cp++;
792		cp2 = strchr(cp, '"');
793		if (!cp2) {
794			kdb_printf("invalid quoted string, see grephelp\n");
795			return;
796		}
797		*cp2 = '\0'; /* end the string where the 2nd " was */
798	}
799	kdb_grep_leading = 0;
800	if (*cp == '^') {
801		kdb_grep_leading = 1;
802		cp++;
803	}
804	len = strlen(cp);
805	kdb_grep_trailing = 0;
806	if (*(cp+len-1) == '$') {
807		kdb_grep_trailing = 1;
808		*(cp+len-1) = '\0';
809	}
810	len = strlen(cp);
811	if (!len)
812		return;
813	if (len >= GREP_LEN) {
814		kdb_printf("search string too long\n");
815		return;
816	}
817	strcpy(kdb_grep_string, cp);
818	kdb_grepping_flag++;
819	return;
820}
821
822/*
823 * kdb_parse - Parse the command line, search the command table for a
824 *	matching command and invoke the command function.  This
825 *	function may be called recursively, if it is, the second call
826 *	will overwrite argv and cbuf.  It is the caller's
827 *	responsibility to save their argv if they recursively call
828 *	kdb_parse().
829 * Parameters:
830 *      cmdstr	The input command line to be parsed.
831 *	regs	The registers at the time kdb was entered.
832 * Returns:
833 *	Zero for success, a kdb diagnostic if failure.
834 * Remarks:
835 *	Limited to 20 tokens.
836 *
837 *	Real rudimentary tokenization. Basically only whitespace
838 *	is considered a token delimeter (but special consideration
839 *	is taken of the '=' sign as used by the 'set' command).
840 *
841 *	The algorithm used to tokenize the input string relies on
842 *	there being at least one whitespace (or otherwise useless)
843 *	character between tokens as the character immediately following
844 *	the token is altered in-place to a null-byte to terminate the
845 *	token string.
846 */
847
848#define MAXARGC	20
849
850int kdb_parse(const char *cmdstr)
851{
852	static char *argv[MAXARGC];
853	static int argc;
854	static char cbuf[CMD_BUFLEN+2];
855	char *cp;
856	char *cpp, quoted;
857	kdbtab_t *tp;
858	int i, escaped, ignore_errors = 0, check_grep;
859
860	/*
861	 * First tokenize the command string.
862	 */
863	cp = (char *)cmdstr;
864	kdb_grepping_flag = check_grep = 0;
865
866	if (KDB_FLAG(CMD_INTERRUPT)) {
867		/* Previous command was interrupted, newline must not
868		 * repeat the command */
869		KDB_FLAG_CLEAR(CMD_INTERRUPT);
870		KDB_STATE_SET(PAGER);
871		argc = 0;	/* no repeat */
872	}
873
874	if (*cp != '\n' && *cp != '\0') {
875		argc = 0;
876		cpp = cbuf;
877		while (*cp) {
878			/* skip whitespace */
879			while (isspace(*cp))
880				cp++;
881			if ((*cp == '\0') || (*cp == '\n') ||
882			    (*cp == '#' && !defcmd_in_progress))
883				break;
884			/* special case: check for | grep pattern */
885			if (*cp == '|') {
886				check_grep++;
887				break;
888			}
889			if (cpp >= cbuf + CMD_BUFLEN) {
890				kdb_printf("kdb_parse: command buffer "
891					   "overflow, command ignored\n%s\n",
892					   cmdstr);
893				return KDB_NOTFOUND;
894			}
895			if (argc >= MAXARGC - 1) {
896				kdb_printf("kdb_parse: too many arguments, "
897					   "command ignored\n%s\n", cmdstr);
898				return KDB_NOTFOUND;
899			}
900			argv[argc++] = cpp;
901			escaped = 0;
902			quoted = '\0';
903			/* Copy to next unquoted and unescaped
904			 * whitespace or '=' */
905			while (*cp && *cp != '\n' &&
906			       (escaped || quoted || !isspace(*cp))) {
907				if (cpp >= cbuf + CMD_BUFLEN)
908					break;
909				if (escaped) {
910					escaped = 0;
911					*cpp++ = *cp++;
912					continue;
913				}
914				if (*cp == '\\') {
915					escaped = 1;
916					++cp;
917					continue;
918				}
919				if (*cp == quoted)
920					quoted = '\0';
921				else if (*cp == '\'' || *cp == '"')
922					quoted = *cp;
923				*cpp = *cp++;
924				if (*cpp == '=' && !quoted)
925					break;
926				++cpp;
927			}
928			*cpp++ = '\0';	/* Squash a ws or '=' character */
929		}
930	}
931	if (!argc)
932		return 0;
933	if (check_grep)
934		parse_grep(cp);
935	if (defcmd_in_progress) {
936		int result = kdb_defcmd2(cmdstr, argv[0]);
937		if (!defcmd_in_progress) {
938			argc = 0;	/* avoid repeat on endefcmd */
939			*(argv[0]) = '\0';
940		}
941		return result;
942	}
943	if (argv[0][0] == '-' && argv[0][1] &&
944	    (argv[0][1] < '0' || argv[0][1] > '9')) {
945		ignore_errors = 1;
946		++argv[0];
947	}
948
949	for_each_kdbcmd(tp, i) {
950		if (tp->cmd_name) {
951			/*
952			 * If this command is allowed to be abbreviated,
953			 * check to see if this is it.
954			 */
955
956			if (tp->cmd_minlen
957			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958				if (strncmp(argv[0],
959					    tp->cmd_name,
960					    tp->cmd_minlen) == 0) {
961					break;
962				}
963			}
964
965			if (strcmp(argv[0], tp->cmd_name) == 0)
966				break;
967		}
968	}
969
970	/*
971	 * If we don't find a command by this name, see if the first
972	 * few characters of this match any of the known commands.
973	 * e.g., md1c20 should match md.
974	 */
975	if (i == kdb_max_commands) {
976		for_each_kdbcmd(tp, i) {
977			if (tp->cmd_name) {
978				if (strncmp(argv[0],
979					    tp->cmd_name,
980					    strlen(tp->cmd_name)) == 0) {
981					break;
982				}
983			}
984		}
985	}
986
987	if (i < kdb_max_commands) {
988		int result;
989		KDB_STATE_SET(CMD);
990		result = (*tp->cmd_func)(argc-1, (const char **)argv);
991		if (result && ignore_errors && result > KDB_CMD_GO)
992			result = 0;
993		KDB_STATE_CLEAR(CMD);
994		switch (tp->cmd_repeat) {
995		case KDB_REPEAT_NONE:
996			argc = 0;
997			if (argv[0])
998				*(argv[0]) = '\0';
999			break;
1000		case KDB_REPEAT_NO_ARGS:
1001			argc = 1;
1002			if (argv[1])
1003				*(argv[1]) = '\0';
1004			break;
1005		case KDB_REPEAT_WITH_ARGS:
1006			break;
1007		}
1008		return result;
1009	}
1010
1011	/*
1012	 * If the input with which we were presented does not
1013	 * map to an existing command, attempt to parse it as an
1014	 * address argument and display the result.   Useful for
1015	 * obtaining the address of a variable, or the nearest symbol
1016	 * to an address contained in a register.
1017	 */
1018	{
1019		unsigned long value;
1020		char *name = NULL;
1021		long offset;
1022		int nextarg = 0;
1023
1024		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025				  &value, &offset, &name)) {
1026			return KDB_NOTFOUND;
1027		}
1028
1029		kdb_printf("%s = ", argv[0]);
1030		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031		kdb_printf("\n");
1032		return 0;
1033	}
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P	16
1040#define CTRL_N	14
1041
1042	/* initial situation */
1043	if (cmd_head == cmd_tail)
1044		return 0;
1045	switch (*cmd) {
1046	case CTRL_P:
1047		if (cmdptr != cmd_tail)
1048			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050		return 1;
1051	case CTRL_N:
1052		if (cmdptr != cmd_head)
1053			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055		return 1;
1056	}
1057	return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1062 *	the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066	emergency_restart();
1067	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068	while (1)
1069		cpu_relax();
1070	/* NOTREACHED */
1071	return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076	int old_lvl = console_loglevel;
1077	console_loglevel = 15;
1078	kdb_trap_printk++;
1079	show_regs(regs);
1080	kdb_trap_printk--;
1081	kdb_printf("\n");
1082	console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087	kdb_current_task = p;
1088
1089	if (kdb_task_has_cpu(p)) {
1090		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091		return;
1092	}
1093	kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb.  This routine is invoked on a
1098 *	specific processor, it is not global.  The main kdb() routine
1099 *	ensures that only one processor at a time is in this routine.
1100 *	This code is called with the real reason code on the first
1101 *	entry to a kdb session, thereafter it is called with reason
1102 *	SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 *	reason		The reason KDB was invoked
1105 *	error		The hardware-defined error code
1106 *	regs		The exception frame at time of fault/breakpoint.
1107 *	db_result	Result code from the break or debug point.
1108 * Returns:
1109 *	0	KDB was invoked for an event which it wasn't responsible
1110 *	1	KDB handled the event for which it was invoked.
1111 *	KDB_CMD_GO	User typed 'go'.
1112 *	KDB_CMD_CPU	User switched to another cpu.
1113 *	KDB_CMD_SS	Single step.
1114 *	KDB_CMD_SSB	Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117		     kdb_dbtrap_t db_result)
1118{
1119	char *cmdbuf;
1120	int diag;
1121	struct task_struct *kdb_current =
1122		kdb_curr_task(raw_smp_processor_id());
1123
1124	KDB_DEBUG_STATE("kdb_local 1", reason);
1125	kdb_go_count = 0;
1126	if (reason == KDB_REASON_DEBUG) {
1127		/* special case below */
1128	} else {
1129		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130			   kdb_current, kdb_current->pid);
1131#if defined(CONFIG_SMP)
1132		kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134	}
1135
1136	switch (reason) {
1137	case KDB_REASON_DEBUG:
1138	{
1139		/*
1140		 * If re-entering kdb after a single step
1141		 * command, don't print the message.
1142		 */
1143		switch (db_result) {
1144		case KDB_DB_BPT:
1145			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146				   kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148			kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151				   instruction_pointer(regs));
1152			break;
1153		case KDB_DB_SSB:
1154			/*
1155			 * In the midst of ssb command. Just return.
1156			 */
1157			KDB_DEBUG_STATE("kdb_local 3", reason);
1158			return KDB_CMD_SSB;	/* Continue with SSB command */
1159
1160			break;
1161		case KDB_DB_SS:
1162			break;
1163		case KDB_DB_SSBPT:
1164			KDB_DEBUG_STATE("kdb_local 4", reason);
1165			return 1;	/* kdba_db_trap did the work */
1166		default:
1167			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168				   db_result);
1169			break;
1170		}
1171
1172	}
1173		break;
1174	case KDB_REASON_ENTER:
1175		if (KDB_STATE(KEYBOARD))
1176			kdb_printf("due to Keyboard Entry\n");
1177		else
1178			kdb_printf("due to KDB_ENTER()\n");
1179		break;
1180	case KDB_REASON_KEYBOARD:
1181		KDB_STATE_SET(KEYBOARD);
1182		kdb_printf("due to Keyboard Entry\n");
1183		break;
1184	case KDB_REASON_ENTER_SLAVE:
1185		/* drop through, slaves only get released via cpu switch */
1186	case KDB_REASON_SWITCH:
1187		kdb_printf("due to cpu switch\n");
1188		break;
1189	case KDB_REASON_OOPS:
1190		kdb_printf("Oops: %s\n", kdb_diemsg);
1191		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192			   instruction_pointer(regs));
1193		kdb_dumpregs(regs);
1194		break;
1195	case KDB_REASON_NMI:
1196		kdb_printf("due to NonMaskable Interrupt @ "
1197			   kdb_machreg_fmt "\n",
1198			   instruction_pointer(regs));
1199		kdb_dumpregs(regs);
1200		break;
1201	case KDB_REASON_SSTEP:
1202	case KDB_REASON_BREAK:
1203		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204			   reason == KDB_REASON_BREAK ?
1205			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1206		/*
1207		 * Determine if this breakpoint is one that we
1208		 * are interested in.
1209		 */
1210		if (db_result != KDB_DB_BPT) {
1211			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212				   db_result);
1213			KDB_DEBUG_STATE("kdb_local 6", reason);
1214			return 0;	/* Not for us, dismiss it */
1215		}
1216		break;
1217	case KDB_REASON_RECURSE:
1218		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219			   instruction_pointer(regs));
1220		break;
1221	default:
1222		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223		KDB_DEBUG_STATE("kdb_local 8", reason);
1224		return 0;	/* Not for us, dismiss it */
1225	}
1226
1227	while (1) {
1228		/*
1229		 * Initialize pager context.
1230		 */
1231		kdb_nextline = 1;
1232		KDB_STATE_CLEAR(SUPPRESS);
1233
1234		cmdbuf = cmd_cur;
1235		*cmdbuf = '\0';
1236		*(cmd_hist[cmd_head]) = '\0';
1237
1238		if (KDB_FLAG(ONLY_DO_DUMP)) {
1239			/* kdb is off but a catastrophic error requires a dump.
1240			 * Take the dump and reboot.
1241			 * Turn on logging so the kdb output appears in the log
1242			 * buffer in the dump.
1243			 */
1244			const char *setargs[] = { "set", "LOGGING", "1" };
1245			kdb_set(2, setargs);
1246			kdb_reboot(0, NULL);
1247			/*NOTREACHED*/
1248		}
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253			 raw_smp_processor_id());
1254#else
1255		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257		if (defcmd_in_progress)
1258			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260		/*
1261		 * Fetch command from keyboard
1262		 */
1263		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264		if (*cmdbuf != '\n') {
1265			if (*cmdbuf < 32) {
1266				if (cmdptr == cmd_head) {
1267					strncpy(cmd_hist[cmd_head], cmd_cur,
1268						CMD_BUFLEN);
1269					*(cmd_hist[cmd_head] +
1270					  strlen(cmd_hist[cmd_head])-1) = '\0';
1271				}
1272				if (!handle_ctrl_cmd(cmdbuf))
1273					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274				cmdbuf = cmd_cur;
1275				goto do_full_getstr;
1276			} else {
1277				strncpy(cmd_hist[cmd_head], cmd_cur,
1278					CMD_BUFLEN);
1279			}
1280
1281			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282			if (cmd_head == cmd_tail)
1283				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284		}
1285
1286		cmdptr = cmd_head;
1287		diag = kdb_parse(cmdbuf);
1288		if (diag == KDB_NOTFOUND) {
1289			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290			diag = 0;
1291		}
1292		if (diag == KDB_CMD_GO
1293		 || diag == KDB_CMD_CPU
1294		 || diag == KDB_CMD_SS
1295		 || diag == KDB_CMD_SSB
1296		 || diag == KDB_CMD_KGDB)
1297			break;
1298
1299		if (diag)
1300			kdb_cmderror(diag);
1301	}
1302	KDB_DEBUG_STATE("kdb_local 9", diag);
1303	return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 *	for debugging.
1310 * Inputs:
1311 *	text		Identifies the debug point
1312 *	value		Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318		   kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 *	controlling cpu, all cpus are in this loop.  One cpu is in
1324 *	control and will issue the kdb prompt, the others will spin
1325 *	until 'go' or cpu switch.
1326 *
1327 *	To get a consistent view of the kernel stacks for all
1328 *	processes, this routine is invoked from the main kdb code via
1329 *	an architecture specific routine.  kdba_main_loop is
1330 *	responsible for making the kernel stacks consistent for all
1331 *	processes, there should be no difference between a blocked
1332 *	process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 *	reason		The reason KDB was invoked
1335 *	error		The hardware-defined error code
1336 *	reason2		kdb's current reason code.
1337 *			Initially error but can change
1338 *			acording to kdb state.
1339 *	db_result	Result code from break or debug point.
1340 *	regs		The exception frame at time of fault/breakpoint.
1341 *			should always be valid.
1342 * Returns:
1343 *	0	KDB was invoked for an event which it wasn't responsible
1344 *	1	KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349	int result = 1;
1350	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1351	while (1) {
1352		/*
1353		 * All processors except the one that is in control
1354		 * will spin here.
1355		 */
1356		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357		while (KDB_STATE(HOLD_CPU)) {
1358			/* state KDB is turned off by kdb_cpu to see if the
1359			 * other cpus are still live, each cpu in this loop
1360			 * turns it back on.
1361			 */
1362			if (!KDB_STATE(KDB))
1363				KDB_STATE_SET(KDB);
1364		}
1365
1366		KDB_STATE_CLEAR(SUPPRESS);
1367		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368		if (KDB_STATE(LEAVING))
1369			break;	/* Another cpu said 'go' */
1370		/* Still using kdb, this processor is in control */
1371		result = kdb_local(reason2, error, regs, db_result);
1372		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374		if (result == KDB_CMD_CPU)
1375			break;
1376
1377		if (result == KDB_CMD_SS) {
1378			KDB_STATE_SET(DOING_SS);
1379			break;
1380		}
1381
1382		if (result == KDB_CMD_SSB) {
1383			KDB_STATE_SET(DOING_SS);
1384			KDB_STATE_SET(DOING_SSB);
1385			break;
1386		}
1387
1388		if (result == KDB_CMD_KGDB) {
1389			if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
1390				kdb_printf("Entering please attach debugger "
1391					   "or use $D#44+ or $3#33\n");
1392			break;
1393		}
1394		if (result && result != 1 && result != KDB_CMD_GO)
1395			kdb_printf("\nUnexpected kdb_local return code %d\n",
1396				   result);
1397		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398		break;
1399	}
1400	if (KDB_STATE(DOING_SS))
1401		KDB_STATE_CLEAR(SSBPT);
1402
1403	return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 *	mdr  <addr arg>,<byte count>
1410 * Inputs:
1411 *	addr	Start address
1412 *	count	Number of bytes
1413 * Returns:
1414 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418	unsigned char c;
1419	while (count--) {
1420		if (kdb_getarea(c, addr))
1421			return 0;
1422		kdb_printf("%02x", c);
1423		addr++;
1424	}
1425	kdb_printf("\n");
1426	return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 *	'md8' 'mdr' and 'mds' commands.
1432 *
1433 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1434 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1435 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1436 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1437 *	mdr  <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440			int symbolic, int nosect, int bytesperword,
1441			int num, int repeat, int phys)
1442{
1443	/* print just one line of data */
1444	kdb_symtab_t symtab;
1445	char cbuf[32];
1446	char *c = cbuf;
1447	int i;
1448	unsigned long word;
1449
1450	memset(cbuf, '\0', sizeof(cbuf));
1451	if (phys)
1452		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453	else
1454		kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456	for (i = 0; i < num && repeat--; i++) {
1457		if (phys) {
1458			if (kdb_getphysword(&word, addr, bytesperword))
1459				break;
1460		} else if (kdb_getword(&word, addr, bytesperword))
1461			break;
1462		kdb_printf(fmtstr, word);
1463		if (symbolic)
1464			kdbnearsym(word, &symtab);
1465		else
1466			memset(&symtab, 0, sizeof(symtab));
1467		if (symtab.sym_name) {
1468			kdb_symbol_print(word, &symtab, 0);
1469			if (!nosect) {
1470				kdb_printf("\n");
1471				kdb_printf("                       %s %s "
1472					   kdb_machreg_fmt " "
1473					   kdb_machreg_fmt " "
1474					   kdb_machreg_fmt, symtab.mod_name,
1475					   symtab.sec_name, symtab.sec_start,
1476					   symtab.sym_start, symtab.sym_end);
1477			}
1478			addr += bytesperword;
1479		} else {
1480			union {
1481				u64 word;
1482				unsigned char c[8];
1483			} wc;
1484			unsigned char *cp;
1485#ifdef	__BIG_ENDIAN
1486			cp = wc.c + 8 - bytesperword;
1487#else
1488			cp = wc.c;
1489#endif
1490			wc.word = word;
1491#define printable_char(c) \
1492	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493			switch (bytesperword) {
1494			case 8:
1495				*c++ = printable_char(*cp++);
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				*c++ = printable_char(*cp++);
1499				addr += 4;
1500			case 4:
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 2;
1504			case 2:
1505				*c++ = printable_char(*cp++);
1506				addr++;
1507			case 1:
1508				*c++ = printable_char(*cp++);
1509				addr++;
1510				break;
1511			}
1512#undef printable_char
1513		}
1514	}
1515	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516		   " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521	static unsigned long last_addr;
1522	static int last_radix, last_bytesperword, last_repeat;
1523	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524	int nosect = 0;
1525	char fmtchar, fmtstr[64];
1526	unsigned long addr;
1527	unsigned long word;
1528	long offset = 0;
1529	int symbolic = 0;
1530	int valid = 0;
1531	int phys = 0;
1532
1533	kdbgetintenv("MDCOUNT", &mdcount);
1534	kdbgetintenv("RADIX", &radix);
1535	kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537	/* Assume 'md <addr>' and start with environment values */
1538	repeat = mdcount * 16 / bytesperword;
1539
1540	if (strcmp(argv[0], "mdr") == 0) {
1541		if (argc != 2)
1542			return KDB_ARGCOUNT;
1543		valid = 1;
1544	} else if (isdigit(argv[0][2])) {
1545		bytesperword = (int)(argv[0][2] - '0');
1546		if (bytesperword == 0) {
1547			bytesperword = last_bytesperword;
1548			if (bytesperword == 0)
1549				bytesperword = 4;
1550		}
1551		last_bytesperword = bytesperword;
1552		repeat = mdcount * 16 / bytesperword;
1553		if (!argv[0][3])
1554			valid = 1;
1555		else if (argv[0][3] == 'c' && argv[0][4]) {
1556			char *p;
1557			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558			mdcount = ((repeat * bytesperword) + 15) / 16;
1559			valid = !*p;
1560		}
1561		last_repeat = repeat;
1562	} else if (strcmp(argv[0], "md") == 0)
1563		valid = 1;
1564	else if (strcmp(argv[0], "mds") == 0)
1565		valid = 1;
1566	else if (strcmp(argv[0], "mdp") == 0) {
1567		phys = valid = 1;
1568	}
1569	if (!valid)
1570		return KDB_NOTFOUND;
1571
1572	if (argc == 0) {
1573		if (last_addr == 0)
1574			return KDB_ARGCOUNT;
1575		addr = last_addr;
1576		radix = last_radix;
1577		bytesperword = last_bytesperword;
1578		repeat = last_repeat;
1579		mdcount = ((repeat * bytesperword) + 15) / 16;
1580	}
1581
1582	if (argc) {
1583		unsigned long val;
1584		int diag, nextarg = 1;
1585		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586				     &offset, NULL);
1587		if (diag)
1588			return diag;
1589		if (argc > nextarg+2)
1590			return KDB_ARGCOUNT;
1591
1592		if (argc >= nextarg) {
1593			diag = kdbgetularg(argv[nextarg], &val);
1594			if (!diag) {
1595				mdcount = (int) val;
1596				repeat = mdcount * 16 / bytesperword;
1597			}
1598		}
1599		if (argc >= nextarg+1) {
1600			diag = kdbgetularg(argv[nextarg+1], &val);
1601			if (!diag)
1602				radix = (int) val;
1603		}
1604	}
1605
1606	if (strcmp(argv[0], "mdr") == 0)
1607		return kdb_mdr(addr, mdcount);
1608
1609	switch (radix) {
1610	case 10:
1611		fmtchar = 'd';
1612		break;
1613	case 16:
1614		fmtchar = 'x';
1615		break;
1616	case 8:
1617		fmtchar = 'o';
1618		break;
1619	default:
1620		return KDB_BADRADIX;
1621	}
1622
1623	last_radix = radix;
1624
1625	if (bytesperword > KDB_WORD_SIZE)
1626		return KDB_BADWIDTH;
1627
1628	switch (bytesperword) {
1629	case 8:
1630		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631		break;
1632	case 4:
1633		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634		break;
1635	case 2:
1636		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637		break;
1638	case 1:
1639		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640		break;
1641	default:
1642		return KDB_BADWIDTH;
1643	}
1644
1645	last_repeat = repeat;
1646	last_bytesperword = bytesperword;
1647
1648	if (strcmp(argv[0], "mds") == 0) {
1649		symbolic = 1;
1650		/* Do not save these changes as last_*, they are temporary mds
1651		 * overrides.
1652		 */
1653		bytesperword = KDB_WORD_SIZE;
1654		repeat = mdcount;
1655		kdbgetintenv("NOSECT", &nosect);
1656	}
1657
1658	/* Round address down modulo BYTESPERWORD */
1659
1660	addr &= ~(bytesperword-1);
1661
1662	while (repeat > 0) {
1663		unsigned long a;
1664		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666		if (KDB_FLAG(CMD_INTERRUPT))
1667			return 0;
1668		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669			if (phys) {
1670				if (kdb_getphysword(&word, a, bytesperword)
1671						|| word)
1672					break;
1673			} else if (kdb_getword(&word, a, bytesperword) || word)
1674				break;
1675		}
1676		n = min(num, repeat);
1677		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678			    num, repeat, phys);
1679		addr += bytesperword * n;
1680		repeat -= n;
1681		z = (z + num - 1) / num;
1682		if (z > 2) {
1683			int s = num * (z-2);
1684			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685				   " zero suppressed\n",
1686				addr, addr + bytesperword * s - 1);
1687			addr += bytesperword * s;
1688			repeat -= s;
1689		}
1690	}
1691	last_addr = addr;
1692
1693	return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 *	mm address-expression new-value
1699 * Remarks:
1700 *	mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704	int diag;
1705	unsigned long addr;
1706	long offset = 0;
1707	unsigned long contents;
1708	int nextarg;
1709	int width;
1710
1711	if (argv[0][2] && !isdigit(argv[0][2]))
1712		return KDB_NOTFOUND;
1713
1714	if (argc < 2)
1715		return KDB_ARGCOUNT;
1716
1717	nextarg = 1;
1718	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719	if (diag)
1720		return diag;
1721
1722	if (nextarg > argc)
1723		return KDB_ARGCOUNT;
1724	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725	if (diag)
1726		return diag;
1727
1728	if (nextarg != argc + 1)
1729		return KDB_ARGCOUNT;
1730
1731	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732	diag = kdb_putword(addr, contents, width);
1733	if (diag)
1734		return diag;
1735
1736	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738	return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 *	go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747	unsigned long addr;
1748	int diag;
1749	int nextarg;
1750	long offset;
1751
1752	if (argc == 1) {
1753		if (raw_smp_processor_id() != kdb_initial_cpu) {
1754			kdb_printf("go <address> must be issued from the "
1755				   "initial cpu, do cpu %d first\n",
1756				   kdb_initial_cpu);
1757			return KDB_ARGCOUNT;
1758		}
1759		nextarg = 1;
1760		diag = kdbgetaddrarg(argc, argv, &nextarg,
1761				     &addr, &offset, NULL);
1762		if (diag)
1763			return diag;
1764	} else if (argc) {
1765		return KDB_ARGCOUNT;
1766	}
1767
1768	diag = KDB_CMD_GO;
1769	if (KDB_FLAG(CATASTROPHIC)) {
1770		kdb_printf("Catastrophic error detected\n");
1771		kdb_printf("kdb_continue_catastrophic=%d, ",
1772			kdb_continue_catastrophic);
1773		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774			kdb_printf("type go a second time if you really want "
1775				   "to continue\n");
1776			return 0;
1777		}
1778		if (kdb_continue_catastrophic == 2) {
1779			kdb_printf("forcing reboot\n");
1780			kdb_reboot(0, NULL);
1781		}
1782		kdb_printf("attempting to continue\n");
1783	}
1784	return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792	int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794	int i;
1795	char *rname;
1796	int rsize;
1797	u64 reg64;
1798	u32 reg32;
1799	u16 reg16;
1800	u8 reg8;
1801
1802	if (len)
1803		return len;
1804
1805	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806		rsize = dbg_reg_def[i].size * 2;
1807		if (rsize > 16)
1808			rsize = 2;
1809		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810			len = 0;
1811			kdb_printf("\n");
1812		}
1813		if (len)
1814			len += kdb_printf("  ");
1815		switch(dbg_reg_def[i].size * 8) {
1816		case 8:
1817			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1818			if (!rname)
1819				break;
1820			len += kdb_printf("%s: %02x", rname, reg8);
1821			break;
1822		case 16:
1823			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1824			if (!rname)
1825				break;
1826			len += kdb_printf("%s: %04x", rname, reg16);
1827			break;
1828		case 32:
1829			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1830			if (!rname)
1831				break;
1832			len += kdb_printf("%s: %08x", rname, reg32);
1833			break;
1834		case 64:
1835			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1836			if (!rname)
1837				break;
1838			len += kdb_printf("%s: %016llx", rname, reg64);
1839			break;
1840		default:
1841			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842		}
1843	}
1844	kdb_printf("\n");
1845#else
1846	if (len)
1847		return len;
1848
1849	kdb_dumpregs(kdb_current_regs);
1850#endif
1851	return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify)  command.
1856 *	rm register-name new-contents
1857 * Remarks:
1858 *	Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863	int diag;
1864	const char *rname;
1865	int i;
1866	u64 reg64;
1867	u32 reg32;
1868	u16 reg16;
1869	u8 reg8;
1870
1871	if (argc != 2)
1872		return KDB_ARGCOUNT;
1873	/*
1874	 * Allow presence or absence of leading '%' symbol.
1875	 */
1876	rname = argv[1];
1877	if (*rname == '%')
1878		rname++;
1879
1880	diag = kdbgetu64arg(argv[2], &reg64);
1881	if (diag)
1882		return diag;
1883
1884	diag = kdb_check_regs();
1885	if (diag)
1886		return diag;
1887
1888	diag = KDB_BADREG;
1889	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891			diag = 0;
1892			break;
1893		}
1894	}
1895	if (!diag) {
1896		switch(dbg_reg_def[i].size * 8) {
1897		case 8:
1898			reg8 = reg64;
1899			dbg_set_reg(i, &reg8, kdb_current_regs);
1900			break;
1901		case 16:
1902			reg16 = reg64;
1903			dbg_set_reg(i, &reg16, kdb_current_regs);
1904			break;
1905		case 32:
1906			reg32 = reg64;
1907			dbg_set_reg(i, &reg32, kdb_current_regs);
1908			break;
1909		case 64:
1910			dbg_set_reg(i, &reg64, kdb_current_regs);
1911			break;
1912		}
1913	}
1914	return diag;
1915#else
1916	kdb_printf("ERROR: Register set currently not implemented\n");
1917    return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 *		sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
1929	if (argc != 1)
1930		return KDB_ARGCOUNT;
1931	kdb_trap_printk++;
1932	__handle_sysrq(*argv[1], false);
1933	kdb_trap_printk--;
1934
1935	return 0;
1936}
1937#endif	/* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 *	frame) command.  This command takes an address and expects to
1942 *	find an exception frame at that address, formats and prints
1943 *	it.
1944 *		regs address-expression
1945 * Remarks:
1946 *	Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950	int diag;
1951	unsigned long addr;
1952	long offset;
1953	int nextarg;
1954
1955	if (argc != 1)
1956		return KDB_ARGCOUNT;
1957
1958	nextarg = 1;
1959	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960	if (diag)
1961		return diag;
1962	show_regs((struct pt_regs *)addr);
1963	return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1969 *	currently loaded kernel modules.
1970 *	Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974	struct module *mod;
1975
1976	if (argc != 0)
1977		return KDB_ARGCOUNT;
1978
1979	kdb_printf("Module                  Size  modstruct     Used by\n");
1980	list_for_each_entry(mod, kdb_modules, list) {
1981
1982		kdb_printf("%-20s%8u  0x%p ", mod->name,
1983			   mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985		kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987		if (mod->state == MODULE_STATE_GOING)
1988			kdb_printf(" (Unloading)");
1989		else if (mod->state == MODULE_STATE_COMING)
1990			kdb_printf(" (Loading)");
1991		else
1992			kdb_printf(" (Live)");
1993		kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996		{
1997			struct module_use *use;
1998			kdb_printf(" [ ");
1999			list_for_each_entry(use, &mod->source_list,
2000					    source_list)
2001				kdb_printf("%s ", use->target->name);
2002			kdb_printf("]\n");
2003		}
2004#endif
2005	}
2006
2007	return 0;
2008}
2009
2010#endif	/* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command.  Display the
2014 *	current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019	int i;
2020
2021	for (i = 0; i < __nenv; i++) {
2022		if (__env[i])
2023			kdb_printf("%s\n", __env[i]);
2024	}
2025
2026	if (KDB_DEBUG(MASK))
2027		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029	return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 *	the contents of the syslog buffer.
2036 *		dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040	char *syslog_data[4], *start, *end, c = '\0', *p;
2041	int diag, logging, logsize, lines = 0, adjust = 0, n;
2042
2043	if (argc > 2)
2044		return KDB_ARGCOUNT;
2045	if (argc) {
2046		char *cp;
2047		lines = simple_strtol(argv[1], &cp, 0);
2048		if (*cp)
2049			lines = 0;
2050		if (argc > 1) {
2051			adjust = simple_strtoul(argv[2], &cp, 0);
2052			if (*cp || adjust < 0)
2053				adjust = 0;
2054		}
2055	}
2056
2057	/* disable LOGGING if set */
2058	diag = kdbgetintenv("LOGGING", &logging);
2059	if (!diag && logging) {
2060		const char *setargs[] = { "set", "LOGGING", "0" };
2061		kdb_set(2, setargs);
2062	}
2063
2064	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
2065	 * logical start, end+1. */
2066	kdb_syslog_data(syslog_data);
2067	if (syslog_data[2] == syslog_data[3])
2068		return 0;
2069	logsize = syslog_data[1] - syslog_data[0];
2070	start = syslog_data[2];
2071	end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073	for (n = 0, p = start; p < end; ++p) {
2074		c = *KDB_WRAP(p);
2075		if (c == '\n')
2076			++n;
2077	}
2078	if (c != '\n')
2079		++n;
2080	if (lines < 0) {
2081		if (adjust >= n)
2082			kdb_printf("buffer only contains %d lines, nothing "
2083				   "printed\n", n);
2084		else if (adjust - lines >= n)
2085			kdb_printf("buffer only contains %d lines, last %d "
2086				   "lines printed\n", n, n - adjust);
2087		if (adjust) {
2088			for (; start < end && adjust; ++start) {
2089				if (*KDB_WRAP(start) == '\n')
2090					--adjust;
2091			}
2092			if (start < end)
2093				++start;
2094		}
2095		for (p = start; p < end && lines; ++p) {
2096			if (*KDB_WRAP(p) == '\n')
2097				++lines;
2098		}
2099		end = p;
2100	} else if (lines > 0) {
2101		int skip = n - (adjust + lines);
2102		if (adjust >= n) {
2103			kdb_printf("buffer only contains %d lines, "
2104				   "nothing printed\n", n);
2105			skip = n;
2106		} else if (skip < 0) {
2107			lines += skip;
2108			skip = 0;
2109			kdb_printf("buffer only contains %d lines, first "
2110				   "%d lines printed\n", n, lines);
2111		}
2112		for (; start < end && skip; ++start) {
2113			if (*KDB_WRAP(start) == '\n')
2114				--skip;
2115		}
2116		for (p = start; p < end && lines; ++p) {
2117			if (*KDB_WRAP(p) == '\n')
2118				--lines;
2119		}
2120		end = p;
2121	}
2122	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123	c = '\n';
2124	while (start != end) {
2125		char buf[201];
2126		p = buf;
2127		if (KDB_FLAG(CMD_INTERRUPT))
2128			return 0;
2129		while (start < end && (c = *KDB_WRAP(start)) &&
2130		       (p - buf) < sizeof(buf)-1) {
2131			++start;
2132			*p++ = c;
2133			if (c == '\n')
2134				break;
2135		}
2136		*p = '\0';
2137		kdb_printf("%s", buf);
2138	}
2139	if (c != '\n')
2140		kdb_printf("\n");
2141
2142	return 0;
2143}
2144#endif /* CONFIG_PRINTK */
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 *	cpu	[<cpunum>]
2148 * Returns:
2149 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153	int i, start_cpu, first_print = 1;
2154	char state, prev_state = '?';
2155
2156	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157	kdb_printf("Available cpus: ");
2158	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159		if (!cpu_online(i)) {
2160			state = 'F';	/* cpu is offline */
2161		} else {
2162			state = ' ';	/* cpu is responding to kdb */
2163			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164				state = 'I';	/* idle task */
2165		}
2166		if (state != prev_state) {
2167			if (prev_state != '?') {
2168				if (!first_print)
2169					kdb_printf(", ");
2170				first_print = 0;
2171				kdb_printf("%d", start_cpu);
2172				if (start_cpu < i-1)
2173					kdb_printf("-%d", i-1);
2174				if (prev_state != ' ')
2175					kdb_printf("(%c)", prev_state);
2176			}
2177			prev_state = state;
2178			start_cpu = i;
2179		}
2180	}
2181	/* print the trailing cpus, ignoring them if they are all offline */
2182	if (prev_state != 'F') {
2183		if (!first_print)
2184			kdb_printf(", ");
2185		kdb_printf("%d", start_cpu);
2186		if (start_cpu < i-1)
2187			kdb_printf("-%d", i-1);
2188		if (prev_state != ' ')
2189			kdb_printf("(%c)", prev_state);
2190	}
2191	kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196	unsigned long cpunum;
2197	int diag;
2198
2199	if (argc == 0) {
2200		kdb_cpu_status();
2201		return 0;
2202	}
2203
2204	if (argc != 1)
2205		return KDB_ARGCOUNT;
2206
2207	diag = kdbgetularg(argv[1], &cpunum);
2208	if (diag)
2209		return diag;
2210
2211	/*
2212	 * Validate cpunum
2213	 */
2214	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215		return KDB_BADCPUNUM;
2216
2217	dbg_switch_cpu = cpunum;
2218
2219	/*
2220	 * Switch to other cpu
2221	 */
2222	return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230	int idle = 0, daemon = 0;
2231	unsigned long mask_I = kdb_task_state_string("I"),
2232		      mask_M = kdb_task_state_string("M");
2233	unsigned long cpu;
2234	const struct task_struct *p, *g;
2235	for_each_online_cpu(cpu) {
2236		p = kdb_curr_task(cpu);
2237		if (kdb_task_state(p, mask_I))
2238			++idle;
2239	}
2240	kdb_do_each_thread(g, p) {
2241		if (kdb_task_state(p, mask_M))
2242			++daemon;
2243	} kdb_while_each_thread(g, p);
2244	if (idle || daemon) {
2245		if (idle)
2246			kdb_printf("%d idle process%s (state I)%s\n",
2247				   idle, idle == 1 ? "" : "es",
2248				   daemon ? " and " : "");
2249		if (daemon)
2250			kdb_printf("%d sleeping system daemon (state M) "
2251				   "process%s", daemon,
2252				   daemon == 1 ? "" : "es");
2253		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254	}
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 *	list of the active processes.
2260 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264	int cpu;
2265	unsigned long tmp;
2266
2267	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268		return;
2269
2270	cpu = kdb_process_cpu(p);
2271	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2272		   (void *)p, p->pid, p->parent->pid,
2273		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2274		   kdb_task_state_char(p),
2275		   (void *)(&p->thread),
2276		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277		   p->comm);
2278	if (kdb_task_has_cpu(p)) {
2279		if (!KDB_TSK(cpu)) {
2280			kdb_printf("  Error: no saved data for this cpu\n");
2281		} else {
2282			if (KDB_TSK(cpu) != p)
2283				kdb_printf("  Error: does not match running "
2284				   "process table (0x%p)\n", KDB_TSK(cpu));
2285		}
2286	}
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291	struct task_struct *g, *p;
2292	unsigned long mask, cpu;
2293
2294	if (argc == 0)
2295		kdb_ps_suppressed();
2296	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2297		(int)(2*sizeof(void *))+2, "Task Addr",
2298		(int)(2*sizeof(void *))+2, "Thread");
2299	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300	/* Run the active tasks first */
2301	for_each_online_cpu(cpu) {
2302		if (KDB_FLAG(CMD_INTERRUPT))
2303			return 0;
2304		p = kdb_curr_task(cpu);
2305		if (kdb_task_state(p, mask))
2306			kdb_ps1(p);
2307	}
2308	kdb_printf("\n");
2309	/* Now the real tasks */
2310	kdb_do_each_thread(g, p) {
2311		if (KDB_FLAG(CMD_INTERRUPT))
2312			return 0;
2313		if (kdb_task_state(p, mask))
2314			kdb_ps1(p);
2315	} kdb_while_each_thread(g, p);
2316
2317	return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 *	the currently active process.
2323 *		pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327	struct task_struct *p;
2328	unsigned long val;
2329	int diag;
2330
2331	if (argc > 1)
2332		return KDB_ARGCOUNT;
2333
2334	if (argc) {
2335		if (strcmp(argv[1], "R") == 0) {
2336			p = KDB_TSK(kdb_initial_cpu);
2337		} else {
2338			diag = kdbgetularg(argv[1], &val);
2339			if (diag)
2340				return KDB_BADINT;
2341
2342			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2343			if (!p) {
2344				kdb_printf("No task with pid=%d\n", (pid_t)val);
2345				return 0;
2346			}
2347		}
2348		kdb_set_current_task(p);
2349	}
2350	kdb_printf("KDB current process is %s(pid=%d)\n",
2351		   kdb_current_task->comm,
2352		   kdb_current_task->pid);
2353
2354	return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 *	linked list and executes an arbitrary command for each
2360 *	element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364	int diag;
2365	unsigned long addr;
2366	long offset = 0;
2367	unsigned long va;
2368	unsigned long linkoffset;
2369	int nextarg;
2370	const char *command;
2371
2372	if (argc != 3)
2373		return KDB_ARGCOUNT;
2374
2375	nextarg = 1;
2376	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377	if (diag)
2378		return diag;
2379
2380	diag = kdbgetularg(argv[2], &linkoffset);
2381	if (diag)
2382		return diag;
2383
2384	/*
2385	 * Using the starting address as
2386	 * the first element in the list, and assuming that
2387	 * the list ends with a null pointer.
2388	 */
2389
2390	va = addr;
2391	command = kdb_strdup(argv[3], GFP_KDB);
2392	if (!command) {
2393		kdb_printf("%s: cannot duplicate command\n", __func__);
2394		return 0;
2395	}
2396	/* Recursive use of kdb_parse, do not use argv after this point */
2397	argv = NULL;
2398
2399	while (va) {
2400		char buf[80];
2401
2402		if (KDB_FLAG(CMD_INTERRUPT))
2403			return 0;
2404
2405		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406		diag = kdb_parse(buf);
2407		if (diag)
2408			return diag;
2409
2410		addr = va + linkoffset;
2411		if (kdb_getword(&va, addr, sizeof(va)))
2412			return 0;
2413	}
2414	kfree(command);
2415
2416	return 0;
2417}
2418
2419static int kdb_kgdb(int argc, const char **argv)
2420{
2421	return KDB_CMD_KGDB;
2422}
2423
2424/*
2425 * kdb_help - This function implements the 'help' and '?' commands.
2426 */
2427static int kdb_help(int argc, const char **argv)
2428{
2429	kdbtab_t *kt;
2430	int i;
2431
2432	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2433	kdb_printf("-----------------------------"
2434		   "-----------------------------\n");
2435	for_each_kdbcmd(kt, i) {
2436		if (kt->cmd_name)
2437			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2438				   kt->cmd_usage, kt->cmd_help);
2439		if (KDB_FLAG(CMD_INTERRUPT))
2440			return 0;
2441	}
2442	return 0;
2443}
2444
2445/*
2446 * kdb_kill - This function implements the 'kill' commands.
2447 */
2448static int kdb_kill(int argc, const char **argv)
2449{
2450	long sig, pid;
2451	char *endp;
2452	struct task_struct *p;
2453	struct siginfo info;
2454
2455	if (argc != 2)
2456		return KDB_ARGCOUNT;
2457
2458	sig = simple_strtol(argv[1], &endp, 0);
2459	if (*endp)
2460		return KDB_BADINT;
2461	if (sig >= 0) {
2462		kdb_printf("Invalid signal parameter.<-signal>\n");
2463		return 0;
2464	}
2465	sig = -sig;
2466
2467	pid = simple_strtol(argv[2], &endp, 0);
2468	if (*endp)
2469		return KDB_BADINT;
2470	if (pid <= 0) {
2471		kdb_printf("Process ID must be large than 0.\n");
2472		return 0;
2473	}
2474
2475	/* Find the process. */
2476	p = find_task_by_pid_ns(pid, &init_pid_ns);
2477	if (!p) {
2478		kdb_printf("The specified process isn't found.\n");
2479		return 0;
2480	}
2481	p = p->group_leader;
2482	info.si_signo = sig;
2483	info.si_errno = 0;
2484	info.si_code = SI_USER;
2485	info.si_pid = pid;  /* same capabilities as process being signalled */
2486	info.si_uid = 0;    /* kdb has root authority */
2487	kdb_send_sig_info(p, &info);
2488	return 0;
2489}
2490
2491struct kdb_tm {
2492	int tm_sec;	/* seconds */
2493	int tm_min;	/* minutes */
2494	int tm_hour;	/* hours */
2495	int tm_mday;	/* day of the month */
2496	int tm_mon;	/* month */
2497	int tm_year;	/* year */
2498};
2499
2500static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2501{
2502	/* This will work from 1970-2099, 2100 is not a leap year */
2503	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2504				 31, 30, 31, 30, 31 };
2505	memset(tm, 0, sizeof(*tm));
2506	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2507	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2508		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2509	tm->tm_min =  tm->tm_sec / 60 % 60;
2510	tm->tm_hour = tm->tm_sec / 60 / 60;
2511	tm->tm_sec =  tm->tm_sec % 60;
2512	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2513	tm->tm_mday %= (4*365+1);
2514	mon_day[1] = 29;
2515	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2516		tm->tm_mday -= mon_day[tm->tm_mon];
2517		if (++tm->tm_mon == 12) {
2518			tm->tm_mon = 0;
2519			++tm->tm_year;
2520			mon_day[1] = 28;
2521		}
2522	}
2523	++tm->tm_mday;
2524}
2525
2526/*
2527 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2528 * I cannot call that code directly from kdb, it has an unconditional
2529 * cli()/sti() and calls routines that take locks which can stop the debugger.
2530 */
2531static void kdb_sysinfo(struct sysinfo *val)
2532{
2533	struct timespec uptime;
2534	do_posix_clock_monotonic_gettime(&uptime);
2535	memset(val, 0, sizeof(*val));
2536	val->uptime = uptime.tv_sec;
2537	val->loads[0] = avenrun[0];
2538	val->loads[1] = avenrun[1];
2539	val->loads[2] = avenrun[2];
2540	val->procs = nr_threads-1;
2541	si_meminfo(val);
2542
2543	return;
2544}
2545
2546/*
2547 * kdb_summary - This function implements the 'summary' command.
2548 */
2549static int kdb_summary(int argc, const char **argv)
2550{
2551	struct timespec now;
2552	struct kdb_tm tm;
2553	struct sysinfo val;
2554
2555	if (argc)
2556		return KDB_ARGCOUNT;
2557
2558	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2559	kdb_printf("release    %s\n", init_uts_ns.name.release);
2560	kdb_printf("version    %s\n", init_uts_ns.name.version);
2561	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2562	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2563	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2564	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2565
2566	now = __current_kernel_time();
2567	kdb_gmtime(&now, &tm);
2568	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2569		   "tz_minuteswest %d\n",
2570		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2571		tm.tm_hour, tm.tm_min, tm.tm_sec,
2572		sys_tz.tz_minuteswest);
2573
2574	kdb_sysinfo(&val);
2575	kdb_printf("uptime     ");
2576	if (val.uptime > (24*60*60)) {
2577		int days = val.uptime / (24*60*60);
2578		val.uptime %= (24*60*60);
2579		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2580	}
2581	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2582
2583	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2584
2585#define LOAD_INT(x) ((x) >> FSHIFT)
2586#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2587	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2588		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2589		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2590		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2591#undef LOAD_INT
2592#undef LOAD_FRAC
2593	/* Display in kilobytes */
2594#define K(x) ((x) << (PAGE_SHIFT - 10))
2595	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2596		   "Buffers:        %8lu kB\n",
2597		   val.totalram, val.freeram, val.bufferram);
2598	return 0;
2599}
2600
2601/*
2602 * kdb_per_cpu - This function implements the 'per_cpu' command.
2603 */
2604static int kdb_per_cpu(int argc, const char **argv)
2605{
2606	char buf[256], fmtstr[64];
2607	kdb_symtab_t symtab;
2608	cpumask_t suppress = CPU_MASK_NONE;
2609	int cpu, diag;
2610	unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL;
2611
2612	if (argc < 1 || argc > 3)
2613		return KDB_ARGCOUNT;
2614
2615	snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]);
2616	if (!kdbgetsymval(buf, &symtab)) {
2617		kdb_printf("%s is not a per_cpu variable\n", argv[1]);
2618		return KDB_BADADDR;
2619	}
2620	if (argc >= 2) {
2621		diag = kdbgetularg(argv[2], &bytesperword);
2622		if (diag)
2623			return diag;
2624	}
2625	if (!bytesperword)
2626		bytesperword = KDB_WORD_SIZE;
2627	else if (bytesperword > KDB_WORD_SIZE)
2628		return KDB_BADWIDTH;
2629	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2630	if (argc >= 3) {
2631		diag = kdbgetularg(argv[3], &whichcpu);
2632		if (diag)
2633			return diag;
2634		if (!cpu_online(whichcpu)) {
2635			kdb_printf("cpu %ld is not online\n", whichcpu);
2636			return KDB_BADCPUNUM;
2637		}
2638	}
2639
2640	/* Most architectures use __per_cpu_offset[cpu], some use
2641	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2642	 */
2643#ifdef	__per_cpu_offset
2644#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2645#else
2646#ifdef	CONFIG_SMP
2647#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2648#else
2649#define KDB_PCU(cpu) 0
2650#endif
2651#endif
2652
2653	for_each_online_cpu(cpu) {
2654		if (whichcpu != ~0UL && whichcpu != cpu)
2655			continue;
2656		addr = symtab.sym_start + KDB_PCU(cpu);
2657		diag = kdb_getword(&val, addr, bytesperword);
2658		if (diag) {
2659			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660				   "read, diag=%d\n", cpu, addr, diag);
2661			continue;
2662		}
2663#ifdef	CONFIG_SMP
2664		if (!val) {
2665			cpu_set(cpu, suppress);
2666			continue;
2667		}
2668#endif	/* CONFIG_SMP */
2669		kdb_printf("%5d ", cpu);
2670		kdb_md_line(fmtstr, addr,
2671			bytesperword == KDB_WORD_SIZE,
2672			1, bytesperword, 1, 1, 0);
2673	}
2674	if (cpus_weight(suppress) == 0)
2675		return 0;
2676	kdb_printf("Zero suppressed cpu(s):");
2677	for (cpu = first_cpu(suppress); cpu < num_possible_cpus();
2678	     cpu = next_cpu(cpu, suppress)) {
2679		kdb_printf(" %d", cpu);
2680		if (cpu == num_possible_cpus() - 1 ||
2681		    next_cpu(cpu, suppress) != cpu + 1)
2682			continue;
2683		while (cpu < num_possible_cpus() &&
2684		       next_cpu(cpu, suppress) == cpu + 1)
2685			++cpu;
2686		kdb_printf("-%d", cpu);
2687	}
2688	kdb_printf("\n");
2689
2690#undef KDB_PCU
2691
2692	return 0;
2693}
2694
2695/*
2696 * display help for the use of cmd | grep pattern
2697 */
2698static int kdb_grep_help(int argc, const char **argv)
2699{
2700	kdb_printf("Usage of  cmd args | grep pattern:\n");
2701	kdb_printf("  Any command's output may be filtered through an ");
2702	kdb_printf("emulated 'pipe'.\n");
2703	kdb_printf("  'grep' is just a key word.\n");
2704	kdb_printf("  The pattern may include a very limited set of "
2705		   "metacharacters:\n");
2706	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2707	kdb_printf("  And if there are spaces in the pattern, you may "
2708		   "quote it:\n");
2709	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2710		   " or \"^pat tern$\"\n");
2711	return 0;
2712}
2713
2714/*
2715 * kdb_register_repeat - This function is used to register a kernel
2716 * 	debugger command.
2717 * Inputs:
2718 *	cmd	Command name
2719 *	func	Function to execute the command
2720 *	usage	A simple usage string showing arguments
2721 *	help	A simple help string describing command
2722 *	repeat	Does the command auto repeat on enter?
2723 * Returns:
2724 *	zero for success, one if a duplicate command.
2725 */
2726#define kdb_command_extend 50	/* arbitrary */
2727int kdb_register_repeat(char *cmd,
2728			kdb_func_t func,
2729			char *usage,
2730			char *help,
2731			short minlen,
2732			kdb_repeat_t repeat)
2733{
2734	int i;
2735	kdbtab_t *kp;
2736
2737	/*
2738	 *  Brute force method to determine duplicates
2739	 */
2740	for_each_kdbcmd(kp, i) {
2741		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2742			kdb_printf("Duplicate kdb command registered: "
2743				"%s, func %p help %s\n", cmd, func, help);
2744			return 1;
2745		}
2746	}
2747
2748	/*
2749	 * Insert command into first available location in table
2750	 */
2751	for_each_kdbcmd(kp, i) {
2752		if (kp->cmd_name == NULL)
2753			break;
2754	}
2755
2756	if (i >= kdb_max_commands) {
2757		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2758			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2759		if (!new) {
2760			kdb_printf("Could not allocate new kdb_command "
2761				   "table\n");
2762			return 1;
2763		}
2764		if (kdb_commands) {
2765			memcpy(new, kdb_commands,
2766			       kdb_max_commands * sizeof(*new));
2767			kfree(kdb_commands);
2768		}
2769		memset(new + kdb_max_commands, 0,
2770		       kdb_command_extend * sizeof(*new));
2771		kdb_commands = new;
2772		kp = kdb_commands + kdb_max_commands;
2773		kdb_max_commands += kdb_command_extend;
2774	}
2775
2776	kp->cmd_name   = cmd;
2777	kp->cmd_func   = func;
2778	kp->cmd_usage  = usage;
2779	kp->cmd_help   = help;
2780	kp->cmd_flags  = 0;
2781	kp->cmd_minlen = minlen;
2782	kp->cmd_repeat = repeat;
2783
2784	return 0;
2785}
2786
2787/*
2788 * kdb_register - Compatibility register function for commands that do
2789 *	not need to specify a repeat state.  Equivalent to
2790 *	kdb_register_repeat with KDB_REPEAT_NONE.
2791 * Inputs:
2792 *	cmd	Command name
2793 *	func	Function to execute the command
2794 *	usage	A simple usage string showing arguments
2795 *	help	A simple help string describing command
2796 * Returns:
2797 *	zero for success, one if a duplicate command.
2798 */
2799int kdb_register(char *cmd,
2800	     kdb_func_t func,
2801	     char *usage,
2802	     char *help,
2803	     short minlen)
2804{
2805	return kdb_register_repeat(cmd, func, usage, help, minlen,
2806				   KDB_REPEAT_NONE);
2807}
2808
2809/*
2810 * kdb_unregister - This function is used to unregister a kernel
2811 *	debugger command.  It is generally called when a module which
2812 *	implements kdb commands is unloaded.
2813 * Inputs:
2814 *	cmd	Command name
2815 * Returns:
2816 *	zero for success, one command not registered.
2817 */
2818int kdb_unregister(char *cmd)
2819{
2820	int i;
2821	kdbtab_t *kp;
2822
2823	/*
2824	 *  find the command.
2825	 */
2826	for (i = 0, kp = kdb_commands; i < kdb_max_commands; i++, kp++) {
2827		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2828			kp->cmd_name = NULL;
2829			return 0;
2830		}
2831	}
2832
2833	/* Couldn't find it.  */
2834	return 1;
2835}
2836
2837/* Initialize the kdb command table. */
2838static void __init kdb_inittab(void)
2839{
2840	int i;
2841	kdbtab_t *kp;
2842
2843	for_each_kdbcmd(kp, i)
2844		kp->cmd_name = NULL;
2845
2846	kdb_register_repeat("md", kdb_md, "<vaddr>",
2847	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2848			    KDB_REPEAT_NO_ARGS);
2849	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2850	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2851	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2852	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2853	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2854	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2855	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2856	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2857	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2858	  "Continue Execution", 1, KDB_REPEAT_NONE);
2859	kdb_register_repeat("rd", kdb_rd, "",
2860	  "Display Registers", 0, KDB_REPEAT_NONE);
2861	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2862	  "Modify Registers", 0, KDB_REPEAT_NONE);
2863	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2864	  "Display exception frame", 0, KDB_REPEAT_NONE);
2865	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2866	  "Stack traceback", 1, KDB_REPEAT_NONE);
2867	kdb_register_repeat("btp", kdb_bt, "<pid>",
2868	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2870	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("btc", kdb_bt, "",
2872	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2873	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2874	  "Backtrace process given its struct task address", 0,
2875			    KDB_REPEAT_NONE);
2876	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2877	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2878	kdb_register_repeat("env", kdb_env, "",
2879	  "Show environment variables", 0, KDB_REPEAT_NONE);
2880	kdb_register_repeat("set", kdb_set, "",
2881	  "Set environment variables", 0, KDB_REPEAT_NONE);
2882	kdb_register_repeat("help", kdb_help, "",
2883	  "Display Help Message", 1, KDB_REPEAT_NONE);
2884	kdb_register_repeat("?", kdb_help, "",
2885	  "Display Help Message", 0, KDB_REPEAT_NONE);
2886	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2887	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2888	kdb_register_repeat("kgdb", kdb_kgdb, "",
2889	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2890	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2891	  "Display active task list", 0, KDB_REPEAT_NONE);
2892	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2893	  "Switch to another task", 0, KDB_REPEAT_NONE);
2894	kdb_register_repeat("reboot", kdb_reboot, "",
2895	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2896#if defined(CONFIG_MODULES)
2897	kdb_register_repeat("lsmod", kdb_lsmod, "",
2898	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2899#endif
2900#if defined(CONFIG_MAGIC_SYSRQ)
2901	kdb_register_repeat("sr", kdb_sr, "<key>",
2902	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
2903#endif
2904#if defined(CONFIG_PRINTK)
2905	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2906	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
2907#endif
2908	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2909	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2910	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2911	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2912	kdb_register_repeat("summary", kdb_summary, "",
2913	  "Summarize the system", 4, KDB_REPEAT_NONE);
2914	kdb_register_repeat("per_cpu", kdb_per_cpu, "",
2915	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2916	kdb_register_repeat("grephelp", kdb_grep_help, "",
2917	  "Display help on | grep", 0, KDB_REPEAT_NONE);
2918}
2919
2920/* Execute any commands defined in kdb_cmds.  */
2921static void __init kdb_cmd_init(void)
2922{
2923	int i, diag;
2924	for (i = 0; kdb_cmds[i]; ++i) {
2925		diag = kdb_parse(kdb_cmds[i]);
2926		if (diag)
2927			kdb_printf("kdb command %s failed, kdb diag %d\n",
2928				kdb_cmds[i], diag);
2929	}
2930	if (defcmd_in_progress) {
2931		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2932		kdb_parse("endefcmd");
2933	}
2934}
2935
2936/* Intialize kdb_printf, breakpoint tables and kdb state */
2937void __init kdb_init(int lvl)
2938{
2939	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2940	int i;
2941
2942	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2943		return;
2944	for (i = kdb_init_lvl; i < lvl; i++) {
2945		switch (i) {
2946		case KDB_NOT_INITIALIZED:
2947			kdb_inittab();		/* Initialize Command Table */
2948			kdb_initbptab();	/* Initialize Breakpoints */
2949			break;
2950		case KDB_INIT_EARLY:
2951			kdb_cmd_init();		/* Build kdb_cmds tables */
2952			break;
2953		}
2954	}
2955	kdb_init_lvl = lvl;
2956}
2957