• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/kernel/
1/*
2 *  kernel/cpuset.c
3 *
4 *  Processor and Memory placement constraints for sets of tasks.
5 *
6 *  Copyright (C) 2003 BULL SA.
7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 *  Copyright (C) 2006 Google, Inc
9 *
10 *  Portions derived from Patrick Mochel's sysfs code.
11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 *  2003-10-10 Written by Simon Derr.
14 *  2003-10-22 Updates by Stephen Hemminger.
15 *  2004 May-July Rework by Paul Jackson.
16 *  2006 Rework by Paul Menage to use generic cgroups
17 *  2008 Rework of the scheduler domains and CPU hotplug handling
18 *       by Max Krasnyansky
19 *
20 *  This file is subject to the terms and conditions of the GNU General Public
21 *  License.  See the file COPYING in the main directory of the Linux
22 *  distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
37#include <linux/mempolicy.h>
38#include <linux/mm.h>
39#include <linux/memory.h>
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
45#include <linux/rcupdate.h>
46#include <linux/sched.h>
47#include <linux/seq_file.h>
48#include <linux/security.h>
49#include <linux/slab.h>
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
59#include <linux/mutex.h>
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
62
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76int number_of_cpusets __read_mostly;
77
78/* Forward declare cgroup structures */
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85	int cnt;		/* unprocessed events count */
86	int val;		/* most recent output value */
87	time_t time;		/* clock (secs) when val computed */
88	spinlock_t lock;	/* guards read or write of above */
89};
90
91struct cpuset {
92	struct cgroup_subsys_state css;
93
94	unsigned long flags;		/* "unsigned long" so bitops work */
95	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
96	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */
97
98	struct cpuset *parent;		/* my parent */
99
100	struct fmeter fmeter;		/* memory_pressure filter */
101
102	/* partition number for rebuild_sched_domains() */
103	int pn;
104
105	/* for custom sched domain */
106	int relax_domain_level;
107
108	/* used for walking a cpuset hierarchy */
109	struct list_head stack_list;
110};
111
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116			    struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122	return container_of(task_subsys_state(task, cpuset_subsys_id),
123			    struct cpuset, css);
124}
125
126/* bits in struct cpuset flags field */
127typedef enum {
128	CS_CPU_EXCLUSIVE,
129	CS_MEM_EXCLUSIVE,
130	CS_MEM_HARDWALL,
131	CS_MEMORY_MIGRATE,
132	CS_SCHED_LOAD_BALANCE,
133	CS_SPREAD_PAGE,
134	CS_SPREAD_SLAB,
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
140	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
145	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
146}
147
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150	return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
160	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
161}
162
163static inline int is_spread_page(const struct cpuset *cs)
164{
165	return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170	return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
173static struct cpuset top_cpuset = {
174	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
175};
176
177/*
178 * There are two global mutexes guarding cpuset structures.  The first
179 * is the main control groups cgroup_mutex, accessed via
180 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
181 * callback_mutex, below. They can nest.  It is ok to first take
182 * cgroup_mutex, then nest callback_mutex.  We also require taking
183 * task_lock() when dereferencing a task's cpuset pointer.  See "The
184 * task_lock() exception", at the end of this comment.
185 *
186 * A task must hold both mutexes to modify cpusets.  If a task
187 * holds cgroup_mutex, then it blocks others wanting that mutex,
188 * ensuring that it is the only task able to also acquire callback_mutex
189 * and be able to modify cpusets.  It can perform various checks on
190 * the cpuset structure first, knowing nothing will change.  It can
191 * also allocate memory while just holding cgroup_mutex.  While it is
192 * performing these checks, various callback routines can briefly
193 * acquire callback_mutex to query cpusets.  Once it is ready to make
194 * the changes, it takes callback_mutex, blocking everyone else.
195 *
196 * Calls to the kernel memory allocator can not be made while holding
197 * callback_mutex, as that would risk double tripping on callback_mutex
198 * from one of the callbacks into the cpuset code from within
199 * __alloc_pages().
200 *
201 * If a task is only holding callback_mutex, then it has read-only
202 * access to cpusets.
203 *
204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
205 * by other task, we use alloc_lock in the task_struct fields to protect
206 * them.
207 *
208 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 * small pieces of code, such as when reading out possibly multi-word
210 * cpumasks and nodemasks.
211 *
212 * Accessing a task's cpuset should be done in accordance with the
213 * guidelines for accessing subsystem state in kernel/cgroup.c
214 */
215
216static DEFINE_MUTEX(callback_mutex);
217
218/*
219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220 * buffers.  They are statically allocated to prevent using excess stack
221 * when calling cpuset_print_task_mems_allowed().
222 */
223#define CPUSET_NAME_LEN		(128)
224#define	CPUSET_NODELIST_LEN	(256)
225static char cpuset_name[CPUSET_NAME_LEN];
226static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227static DEFINE_SPINLOCK(cpuset_buffer_lock);
228
229/*
230 * This is ugly, but preserves the userspace API for existing cpuset
231 * users. If someone tries to mount the "cpuset" filesystem, we
232 * silently switch it to mount "cgroup" instead
233 */
234static int cpuset_get_sb(struct file_system_type *fs_type,
235			 int flags, const char *unused_dev_name,
236			 void *data, struct vfsmount *mnt)
237{
238	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
239	int ret = -ENODEV;
240	if (cgroup_fs) {
241		char mountopts[] =
242			"cpuset,noprefix,"
243			"release_agent=/sbin/cpuset_release_agent";
244		ret = cgroup_fs->get_sb(cgroup_fs, flags,
245					   unused_dev_name, mountopts, mnt);
246		put_filesystem(cgroup_fs);
247	}
248	return ret;
249}
250
251static struct file_system_type cpuset_fs_type = {
252	.name = "cpuset",
253	.get_sb = cpuset_get_sb,
254};
255
256/*
257 * Return in pmask the portion of a cpusets's cpus_allowed that
258 * are online.  If none are online, walk up the cpuset hierarchy
259 * until we find one that does have some online cpus.  If we get
260 * all the way to the top and still haven't found any online cpus,
261 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
262 * task, return cpu_online_map.
263 *
264 * One way or another, we guarantee to return some non-empty subset
265 * of cpu_online_map.
266 *
267 * Call with callback_mutex held.
268 */
269
270static void guarantee_online_cpus(const struct cpuset *cs,
271				  struct cpumask *pmask)
272{
273	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
274		cs = cs->parent;
275	if (cs)
276		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
277	else
278		cpumask_copy(pmask, cpu_online_mask);
279	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
280}
281
282/*
283 * Return in *pmask the portion of a cpusets's mems_allowed that
284 * are online, with memory.  If none are online with memory, walk
285 * up the cpuset hierarchy until we find one that does have some
286 * online mems.  If we get all the way to the top and still haven't
287 * found any online mems, return node_states[N_HIGH_MEMORY].
288 *
289 * One way or another, we guarantee to return some non-empty subset
290 * of node_states[N_HIGH_MEMORY].
291 *
292 * Call with callback_mutex held.
293 */
294
295static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
296{
297	while (cs && !nodes_intersects(cs->mems_allowed,
298					node_states[N_HIGH_MEMORY]))
299		cs = cs->parent;
300	if (cs)
301		nodes_and(*pmask, cs->mems_allowed,
302					node_states[N_HIGH_MEMORY]);
303	else
304		*pmask = node_states[N_HIGH_MEMORY];
305	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
306}
307
308/*
309 * update task's spread flag if cpuset's page/slab spread flag is set
310 *
311 * Called with callback_mutex/cgroup_mutex held
312 */
313static void cpuset_update_task_spread_flag(struct cpuset *cs,
314					struct task_struct *tsk)
315{
316	if (is_spread_page(cs))
317		tsk->flags |= PF_SPREAD_PAGE;
318	else
319		tsk->flags &= ~PF_SPREAD_PAGE;
320	if (is_spread_slab(cs))
321		tsk->flags |= PF_SPREAD_SLAB;
322	else
323		tsk->flags &= ~PF_SPREAD_SLAB;
324}
325
326/*
327 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
328 *
329 * One cpuset is a subset of another if all its allowed CPUs and
330 * Memory Nodes are a subset of the other, and its exclusive flags
331 * are only set if the other's are set.  Call holding cgroup_mutex.
332 */
333
334static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
335{
336	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
337		nodes_subset(p->mems_allowed, q->mems_allowed) &&
338		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
339		is_mem_exclusive(p) <= is_mem_exclusive(q);
340}
341
342/**
343 * alloc_trial_cpuset - allocate a trial cpuset
344 * @cs: the cpuset that the trial cpuset duplicates
345 */
346static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
347{
348	struct cpuset *trial;
349
350	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
351	if (!trial)
352		return NULL;
353
354	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
355		kfree(trial);
356		return NULL;
357	}
358	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
359
360	return trial;
361}
362
363/**
364 * free_trial_cpuset - free the trial cpuset
365 * @trial: the trial cpuset to be freed
366 */
367static void free_trial_cpuset(struct cpuset *trial)
368{
369	free_cpumask_var(trial->cpus_allowed);
370	kfree(trial);
371}
372
373/*
374 * validate_change() - Used to validate that any proposed cpuset change
375 *		       follows the structural rules for cpusets.
376 *
377 * If we replaced the flag and mask values of the current cpuset
378 * (cur) with those values in the trial cpuset (trial), would
379 * our various subset and exclusive rules still be valid?  Presumes
380 * cgroup_mutex held.
381 *
382 * 'cur' is the address of an actual, in-use cpuset.  Operations
383 * such as list traversal that depend on the actual address of the
384 * cpuset in the list must use cur below, not trial.
385 *
386 * 'trial' is the address of bulk structure copy of cur, with
387 * perhaps one or more of the fields cpus_allowed, mems_allowed,
388 * or flags changed to new, trial values.
389 *
390 * Return 0 if valid, -errno if not.
391 */
392
393static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
394{
395	struct cgroup *cont;
396	struct cpuset *c, *par;
397
398	/* Each of our child cpusets must be a subset of us */
399	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
400		if (!is_cpuset_subset(cgroup_cs(cont), trial))
401			return -EBUSY;
402	}
403
404	/* Remaining checks don't apply to root cpuset */
405	if (cur == &top_cpuset)
406		return 0;
407
408	par = cur->parent;
409
410	/* We must be a subset of our parent cpuset */
411	if (!is_cpuset_subset(trial, par))
412		return -EACCES;
413
414	/*
415	 * If either I or some sibling (!= me) is exclusive, we can't
416	 * overlap
417	 */
418	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
419		c = cgroup_cs(cont);
420		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
421		    c != cur &&
422		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
423			return -EINVAL;
424		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
425		    c != cur &&
426		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
427			return -EINVAL;
428	}
429
430	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
431	if (cgroup_task_count(cur->css.cgroup)) {
432		if (cpumask_empty(trial->cpus_allowed) ||
433		    nodes_empty(trial->mems_allowed)) {
434			return -ENOSPC;
435		}
436	}
437
438	return 0;
439}
440
441#ifdef CONFIG_SMP
442/*
443 * Helper routine for generate_sched_domains().
444 * Do cpusets a, b have overlapping cpus_allowed masks?
445 */
446static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
447{
448	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
449}
450
451static void
452update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
453{
454	if (dattr->relax_domain_level < c->relax_domain_level)
455		dattr->relax_domain_level = c->relax_domain_level;
456	return;
457}
458
459static void
460update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
461{
462	LIST_HEAD(q);
463
464	list_add(&c->stack_list, &q);
465	while (!list_empty(&q)) {
466		struct cpuset *cp;
467		struct cgroup *cont;
468		struct cpuset *child;
469
470		cp = list_first_entry(&q, struct cpuset, stack_list);
471		list_del(q.next);
472
473		if (cpumask_empty(cp->cpus_allowed))
474			continue;
475
476		if (is_sched_load_balance(cp))
477			update_domain_attr(dattr, cp);
478
479		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
480			child = cgroup_cs(cont);
481			list_add_tail(&child->stack_list, &q);
482		}
483	}
484}
485
486/*
487 * generate_sched_domains()
488 *
489 * This function builds a partial partition of the systems CPUs
490 * A 'partial partition' is a set of non-overlapping subsets whose
491 * union is a subset of that set.
492 * The output of this function needs to be passed to kernel/sched.c
493 * partition_sched_domains() routine, which will rebuild the scheduler's
494 * load balancing domains (sched domains) as specified by that partial
495 * partition.
496 *
497 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
498 * for a background explanation of this.
499 *
500 * Does not return errors, on the theory that the callers of this
501 * routine would rather not worry about failures to rebuild sched
502 * domains when operating in the severe memory shortage situations
503 * that could cause allocation failures below.
504 *
505 * Must be called with cgroup_lock held.
506 *
507 * The three key local variables below are:
508 *    q  - a linked-list queue of cpuset pointers, used to implement a
509 *	   top-down scan of all cpusets.  This scan loads a pointer
510 *	   to each cpuset marked is_sched_load_balance into the
511 *	   array 'csa'.  For our purposes, rebuilding the schedulers
512 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
513 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
514 *	   that need to be load balanced, for convenient iterative
515 *	   access by the subsequent code that finds the best partition,
516 *	   i.e the set of domains (subsets) of CPUs such that the
517 *	   cpus_allowed of every cpuset marked is_sched_load_balance
518 *	   is a subset of one of these domains, while there are as
519 *	   many such domains as possible, each as small as possible.
520 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
521 *	   the kernel/sched.c routine partition_sched_domains() in a
522 *	   convenient format, that can be easily compared to the prior
523 *	   value to determine what partition elements (sched domains)
524 *	   were changed (added or removed.)
525 *
526 * Finding the best partition (set of domains):
527 *	The triple nested loops below over i, j, k scan over the
528 *	load balanced cpusets (using the array of cpuset pointers in
529 *	csa[]) looking for pairs of cpusets that have overlapping
530 *	cpus_allowed, but which don't have the same 'pn' partition
531 *	number and gives them in the same partition number.  It keeps
532 *	looping on the 'restart' label until it can no longer find
533 *	any such pairs.
534 *
535 *	The union of the cpus_allowed masks from the set of
536 *	all cpusets having the same 'pn' value then form the one
537 *	element of the partition (one sched domain) to be passed to
538 *	partition_sched_domains().
539 */
540static int generate_sched_domains(cpumask_var_t **domains,
541			struct sched_domain_attr **attributes)
542{
543	LIST_HEAD(q);		/* queue of cpusets to be scanned */
544	struct cpuset *cp;	/* scans q */
545	struct cpuset **csa;	/* array of all cpuset ptrs */
546	int csn;		/* how many cpuset ptrs in csa so far */
547	int i, j, k;		/* indices for partition finding loops */
548	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
549	struct sched_domain_attr *dattr;  /* attributes for custom domains */
550	int ndoms = 0;		/* number of sched domains in result */
551	int nslot;		/* next empty doms[] struct cpumask slot */
552
553	doms = NULL;
554	dattr = NULL;
555	csa = NULL;
556
557	/* Special case for the 99% of systems with one, full, sched domain */
558	if (is_sched_load_balance(&top_cpuset)) {
559		ndoms = 1;
560		doms = alloc_sched_domains(ndoms);
561		if (!doms)
562			goto done;
563
564		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
565		if (dattr) {
566			*dattr = SD_ATTR_INIT;
567			update_domain_attr_tree(dattr, &top_cpuset);
568		}
569		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
570
571		goto done;
572	}
573
574	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
575	if (!csa)
576		goto done;
577	csn = 0;
578
579	list_add(&top_cpuset.stack_list, &q);
580	while (!list_empty(&q)) {
581		struct cgroup *cont;
582		struct cpuset *child;   /* scans child cpusets of cp */
583
584		cp = list_first_entry(&q, struct cpuset, stack_list);
585		list_del(q.next);
586
587		if (cpumask_empty(cp->cpus_allowed))
588			continue;
589
590		/*
591		 * All child cpusets contain a subset of the parent's cpus, so
592		 * just skip them, and then we call update_domain_attr_tree()
593		 * to calc relax_domain_level of the corresponding sched
594		 * domain.
595		 */
596		if (is_sched_load_balance(cp)) {
597			csa[csn++] = cp;
598			continue;
599		}
600
601		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
602			child = cgroup_cs(cont);
603			list_add_tail(&child->stack_list, &q);
604		}
605  	}
606
607	for (i = 0; i < csn; i++)
608		csa[i]->pn = i;
609	ndoms = csn;
610
611restart:
612	/* Find the best partition (set of sched domains) */
613	for (i = 0; i < csn; i++) {
614		struct cpuset *a = csa[i];
615		int apn = a->pn;
616
617		for (j = 0; j < csn; j++) {
618			struct cpuset *b = csa[j];
619			int bpn = b->pn;
620
621			if (apn != bpn && cpusets_overlap(a, b)) {
622				for (k = 0; k < csn; k++) {
623					struct cpuset *c = csa[k];
624
625					if (c->pn == bpn)
626						c->pn = apn;
627				}
628				ndoms--;	/* one less element */
629				goto restart;
630			}
631		}
632	}
633
634	/*
635	 * Now we know how many domains to create.
636	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
637	 */
638	doms = alloc_sched_domains(ndoms);
639	if (!doms)
640		goto done;
641
642	/*
643	 * The rest of the code, including the scheduler, can deal with
644	 * dattr==NULL case. No need to abort if alloc fails.
645	 */
646	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
647
648	for (nslot = 0, i = 0; i < csn; i++) {
649		struct cpuset *a = csa[i];
650		struct cpumask *dp;
651		int apn = a->pn;
652
653		if (apn < 0) {
654			/* Skip completed partitions */
655			continue;
656		}
657
658		dp = doms[nslot];
659
660		if (nslot == ndoms) {
661			static int warnings = 10;
662			if (warnings) {
663				printk(KERN_WARNING
664				 "rebuild_sched_domains confused:"
665				  " nslot %d, ndoms %d, csn %d, i %d,"
666				  " apn %d\n",
667				  nslot, ndoms, csn, i, apn);
668				warnings--;
669			}
670			continue;
671		}
672
673		cpumask_clear(dp);
674		if (dattr)
675			*(dattr + nslot) = SD_ATTR_INIT;
676		for (j = i; j < csn; j++) {
677			struct cpuset *b = csa[j];
678
679			if (apn == b->pn) {
680				cpumask_or(dp, dp, b->cpus_allowed);
681				if (dattr)
682					update_domain_attr_tree(dattr + nslot, b);
683
684				/* Done with this partition */
685				b->pn = -1;
686			}
687		}
688		nslot++;
689	}
690	BUG_ON(nslot != ndoms);
691
692done:
693	kfree(csa);
694
695	/*
696	 * Fallback to the default domain if kmalloc() failed.
697	 * See comments in partition_sched_domains().
698	 */
699	if (doms == NULL)
700		ndoms = 1;
701
702	*domains    = doms;
703	*attributes = dattr;
704	return ndoms;
705}
706
707/*
708 * Rebuild scheduler domains.
709 *
710 * Call with neither cgroup_mutex held nor within get_online_cpus().
711 * Takes both cgroup_mutex and get_online_cpus().
712 *
713 * Cannot be directly called from cpuset code handling changes
714 * to the cpuset pseudo-filesystem, because it cannot be called
715 * from code that already holds cgroup_mutex.
716 */
717static void do_rebuild_sched_domains(struct work_struct *unused)
718{
719	struct sched_domain_attr *attr;
720	cpumask_var_t *doms;
721	int ndoms;
722
723	get_online_cpus();
724
725	/* Generate domain masks and attrs */
726	cgroup_lock();
727	ndoms = generate_sched_domains(&doms, &attr);
728	cgroup_unlock();
729
730	/* Have scheduler rebuild the domains */
731	partition_sched_domains(ndoms, doms, attr);
732
733	put_online_cpus();
734}
735#else /* !CONFIG_SMP */
736static void do_rebuild_sched_domains(struct work_struct *unused)
737{
738}
739
740static int generate_sched_domains(cpumask_var_t **domains,
741			struct sched_domain_attr **attributes)
742{
743	*domains = NULL;
744	return 1;
745}
746#endif /* CONFIG_SMP */
747
748static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
749
750/*
751 * Rebuild scheduler domains, asynchronously via workqueue.
752 *
753 * If the flag 'sched_load_balance' of any cpuset with non-empty
754 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
755 * which has that flag enabled, or if any cpuset with a non-empty
756 * 'cpus' is removed, then call this routine to rebuild the
757 * scheduler's dynamic sched domains.
758 *
759 * The rebuild_sched_domains() and partition_sched_domains()
760 * routines must nest cgroup_lock() inside get_online_cpus(),
761 * but such cpuset changes as these must nest that locking the
762 * other way, holding cgroup_lock() for much of the code.
763 *
764 * So in order to avoid an ABBA deadlock, the cpuset code handling
765 * these user changes delegates the actual sched domain rebuilding
766 * to a separate workqueue thread, which ends up processing the
767 * above do_rebuild_sched_domains() function.
768 */
769static void async_rebuild_sched_domains(void)
770{
771	queue_work(cpuset_wq, &rebuild_sched_domains_work);
772}
773
774/*
775 * Accomplishes the same scheduler domain rebuild as the above
776 * async_rebuild_sched_domains(), however it directly calls the
777 * rebuild routine synchronously rather than calling it via an
778 * asynchronous work thread.
779 *
780 * This can only be called from code that is not holding
781 * cgroup_mutex (not nested in a cgroup_lock() call.)
782 */
783void rebuild_sched_domains(void)
784{
785	do_rebuild_sched_domains(NULL);
786}
787
788/**
789 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
790 * @tsk: task to test
791 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
792 *
793 * Call with cgroup_mutex held.  May take callback_mutex during call.
794 * Called for each task in a cgroup by cgroup_scan_tasks().
795 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
796 * words, if its mask is not equal to its cpuset's mask).
797 */
798static int cpuset_test_cpumask(struct task_struct *tsk,
799			       struct cgroup_scanner *scan)
800{
801	return !cpumask_equal(&tsk->cpus_allowed,
802			(cgroup_cs(scan->cg))->cpus_allowed);
803}
804
805/**
806 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
807 * @tsk: task to test
808 * @scan: struct cgroup_scanner containing the cgroup of the task
809 *
810 * Called by cgroup_scan_tasks() for each task in a cgroup whose
811 * cpus_allowed mask needs to be changed.
812 *
813 * We don't need to re-check for the cgroup/cpuset membership, since we're
814 * holding cgroup_lock() at this point.
815 */
816static void cpuset_change_cpumask(struct task_struct *tsk,
817				  struct cgroup_scanner *scan)
818{
819	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
820}
821
822/**
823 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
824 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
825 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
826 *
827 * Called with cgroup_mutex held
828 *
829 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
830 * calling callback functions for each.
831 *
832 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
833 * if @heap != NULL.
834 */
835static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
836{
837	struct cgroup_scanner scan;
838
839	scan.cg = cs->css.cgroup;
840	scan.test_task = cpuset_test_cpumask;
841	scan.process_task = cpuset_change_cpumask;
842	scan.heap = heap;
843	cgroup_scan_tasks(&scan);
844}
845
846/**
847 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
848 * @cs: the cpuset to consider
849 * @buf: buffer of cpu numbers written to this cpuset
850 */
851static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
852			  const char *buf)
853{
854	struct ptr_heap heap;
855	int retval;
856	int is_load_balanced;
857
858	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
859	if (cs == &top_cpuset)
860		return -EACCES;
861
862	/*
863	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
864	 * Since cpulist_parse() fails on an empty mask, we special case
865	 * that parsing.  The validate_change() call ensures that cpusets
866	 * with tasks have cpus.
867	 */
868	if (!*buf) {
869		cpumask_clear(trialcs->cpus_allowed);
870	} else {
871		retval = cpulist_parse(buf, trialcs->cpus_allowed);
872		if (retval < 0)
873			return retval;
874
875		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
876			return -EINVAL;
877	}
878	retval = validate_change(cs, trialcs);
879	if (retval < 0)
880		return retval;
881
882	/* Nothing to do if the cpus didn't change */
883	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
884		return 0;
885
886	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
887	if (retval)
888		return retval;
889
890	is_load_balanced = is_sched_load_balance(trialcs);
891
892	mutex_lock(&callback_mutex);
893	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
894	mutex_unlock(&callback_mutex);
895
896	/*
897	 * Scan tasks in the cpuset, and update the cpumasks of any
898	 * that need an update.
899	 */
900	update_tasks_cpumask(cs, &heap);
901
902	heap_free(&heap);
903
904	if (is_load_balanced)
905		async_rebuild_sched_domains();
906	return 0;
907}
908
909/*
910 * cpuset_migrate_mm
911 *
912 *    Migrate memory region from one set of nodes to another.
913 *
914 *    Temporarilly set tasks mems_allowed to target nodes of migration,
915 *    so that the migration code can allocate pages on these nodes.
916 *
917 *    Call holding cgroup_mutex, so current's cpuset won't change
918 *    during this call, as manage_mutex holds off any cpuset_attach()
919 *    calls.  Therefore we don't need to take task_lock around the
920 *    call to guarantee_online_mems(), as we know no one is changing
921 *    our task's cpuset.
922 *
923 *    While the mm_struct we are migrating is typically from some
924 *    other task, the task_struct mems_allowed that we are hacking
925 *    is for our current task, which must allocate new pages for that
926 *    migrating memory region.
927 */
928
929static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
930							const nodemask_t *to)
931{
932	struct task_struct *tsk = current;
933
934	tsk->mems_allowed = *to;
935
936	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
937
938	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
939}
940
941/*
942 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
943 * @tsk: the task to change
944 * @newmems: new nodes that the task will be set
945 *
946 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
947 * we structure updates as setting all new allowed nodes, then clearing newly
948 * disallowed ones.
949 */
950static void cpuset_change_task_nodemask(struct task_struct *tsk,
951					nodemask_t *newmems)
952{
953repeat:
954	/*
955	 * Allow tasks that have access to memory reserves because they have
956	 * been OOM killed to get memory anywhere.
957	 */
958	if (unlikely(test_thread_flag(TIF_MEMDIE)))
959		return;
960	if (current->flags & PF_EXITING) /* Let dying task have memory */
961		return;
962
963	task_lock(tsk);
964	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
965	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
966
967
968	/*
969	 * ensure checking ->mems_allowed_change_disable after setting all new
970	 * allowed nodes.
971	 *
972	 * the read-side task can see an nodemask with new allowed nodes and
973	 * old allowed nodes. and if it allocates page when cpuset clears newly
974	 * disallowed ones continuous, it can see the new allowed bits.
975	 *
976	 * And if setting all new allowed nodes is after the checking, setting
977	 * all new allowed nodes and clearing newly disallowed ones will be done
978	 * continuous, and the read-side task may find no node to alloc page.
979	 */
980	smp_mb();
981
982	/*
983	 * Allocation of memory is very fast, we needn't sleep when waiting
984	 * for the read-side.
985	 */
986	while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
987		task_unlock(tsk);
988		if (!task_curr(tsk))
989			yield();
990		goto repeat;
991	}
992
993	/*
994	 * ensure checking ->mems_allowed_change_disable before clearing all new
995	 * disallowed nodes.
996	 *
997	 * if clearing newly disallowed bits before the checking, the read-side
998	 * task may find no node to alloc page.
999	 */
1000	smp_mb();
1001
1002	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1003	tsk->mems_allowed = *newmems;
1004	task_unlock(tsk);
1005}
1006
1007/*
1008 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1009 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1010 * memory_migrate flag is set. Called with cgroup_mutex held.
1011 */
1012static void cpuset_change_nodemask(struct task_struct *p,
1013				   struct cgroup_scanner *scan)
1014{
1015	struct mm_struct *mm;
1016	struct cpuset *cs;
1017	int migrate;
1018	const nodemask_t *oldmem = scan->data;
1019	NODEMASK_ALLOC(nodemask_t, newmems, GFP_KERNEL);
1020
1021	if (!newmems)
1022		return;
1023
1024	cs = cgroup_cs(scan->cg);
1025	guarantee_online_mems(cs, newmems);
1026
1027	cpuset_change_task_nodemask(p, newmems);
1028
1029	NODEMASK_FREE(newmems);
1030
1031	mm = get_task_mm(p);
1032	if (!mm)
1033		return;
1034
1035	migrate = is_memory_migrate(cs);
1036
1037	mpol_rebind_mm(mm, &cs->mems_allowed);
1038	if (migrate)
1039		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1040	mmput(mm);
1041}
1042
1043static void *cpuset_being_rebound;
1044
1045/**
1046 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1047 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1048 * @oldmem: old mems_allowed of cpuset cs
1049 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1050 *
1051 * Called with cgroup_mutex held
1052 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1053 * if @heap != NULL.
1054 */
1055static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1056				 struct ptr_heap *heap)
1057{
1058	struct cgroup_scanner scan;
1059
1060	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1061
1062	scan.cg = cs->css.cgroup;
1063	scan.test_task = NULL;
1064	scan.process_task = cpuset_change_nodemask;
1065	scan.heap = heap;
1066	scan.data = (nodemask_t *)oldmem;
1067
1068	/*
1069	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1070	 * take while holding tasklist_lock.  Forks can happen - the
1071	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1072	 * and rebind their vma mempolicies too.  Because we still hold
1073	 * the global cgroup_mutex, we know that no other rebind effort
1074	 * will be contending for the global variable cpuset_being_rebound.
1075	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1076	 * is idempotent.  Also migrate pages in each mm to new nodes.
1077	 */
1078	cgroup_scan_tasks(&scan);
1079
1080	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1081	cpuset_being_rebound = NULL;
1082}
1083
1084/*
1085 * Handle user request to change the 'mems' memory placement
1086 * of a cpuset.  Needs to validate the request, update the
1087 * cpusets mems_allowed, and for each task in the cpuset,
1088 * update mems_allowed and rebind task's mempolicy and any vma
1089 * mempolicies and if the cpuset is marked 'memory_migrate',
1090 * migrate the tasks pages to the new memory.
1091 *
1092 * Call with cgroup_mutex held.  May take callback_mutex during call.
1093 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1094 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1095 * their mempolicies to the cpusets new mems_allowed.
1096 */
1097static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1098			   const char *buf)
1099{
1100	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1101	int retval;
1102	struct ptr_heap heap;
1103
1104	if (!oldmem)
1105		return -ENOMEM;
1106
1107	/*
1108	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1109	 * it's read-only
1110	 */
1111	if (cs == &top_cpuset) {
1112		retval = -EACCES;
1113		goto done;
1114	}
1115
1116	/*
1117	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1118	 * Since nodelist_parse() fails on an empty mask, we special case
1119	 * that parsing.  The validate_change() call ensures that cpusets
1120	 * with tasks have memory.
1121	 */
1122	if (!*buf) {
1123		nodes_clear(trialcs->mems_allowed);
1124	} else {
1125		retval = nodelist_parse(buf, trialcs->mems_allowed);
1126		if (retval < 0)
1127			goto done;
1128
1129		if (!nodes_subset(trialcs->mems_allowed,
1130				node_states[N_HIGH_MEMORY])) {
1131			retval =  -EINVAL;
1132			goto done;
1133		}
1134	}
1135	*oldmem = cs->mems_allowed;
1136	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1137		retval = 0;		/* Too easy - nothing to do */
1138		goto done;
1139	}
1140	retval = validate_change(cs, trialcs);
1141	if (retval < 0)
1142		goto done;
1143
1144	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1145	if (retval < 0)
1146		goto done;
1147
1148	mutex_lock(&callback_mutex);
1149	cs->mems_allowed = trialcs->mems_allowed;
1150	mutex_unlock(&callback_mutex);
1151
1152	update_tasks_nodemask(cs, oldmem, &heap);
1153
1154	heap_free(&heap);
1155done:
1156	NODEMASK_FREE(oldmem);
1157	return retval;
1158}
1159
1160int current_cpuset_is_being_rebound(void)
1161{
1162	return task_cs(current) == cpuset_being_rebound;
1163}
1164
1165static int update_relax_domain_level(struct cpuset *cs, s64 val)
1166{
1167#ifdef CONFIG_SMP
1168	if (val < -1 || val >= SD_LV_MAX)
1169		return -EINVAL;
1170#endif
1171
1172	if (val != cs->relax_domain_level) {
1173		cs->relax_domain_level = val;
1174		if (!cpumask_empty(cs->cpus_allowed) &&
1175		    is_sched_load_balance(cs))
1176			async_rebuild_sched_domains();
1177	}
1178
1179	return 0;
1180}
1181
1182/*
1183 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1184 * @tsk: task to be updated
1185 * @scan: struct cgroup_scanner containing the cgroup of the task
1186 *
1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1188 *
1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
1190 * holding cgroup_lock() at this point.
1191 */
1192static void cpuset_change_flag(struct task_struct *tsk,
1193				struct cgroup_scanner *scan)
1194{
1195	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1196}
1197
1198/*
1199 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1202 *
1203 * Called with cgroup_mutex held
1204 *
1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1206 * calling callback functions for each.
1207 *
1208 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1209 * if @heap != NULL.
1210 */
1211static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1212{
1213	struct cgroup_scanner scan;
1214
1215	scan.cg = cs->css.cgroup;
1216	scan.test_task = NULL;
1217	scan.process_task = cpuset_change_flag;
1218	scan.heap = heap;
1219	cgroup_scan_tasks(&scan);
1220}
1221
1222/*
1223 * update_flag - read a 0 or a 1 in a file and update associated flag
1224 * bit:		the bit to update (see cpuset_flagbits_t)
1225 * cs:		the cpuset to update
1226 * turning_on: 	whether the flag is being set or cleared
1227 *
1228 * Call with cgroup_mutex held.
1229 */
1230
1231static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1232		       int turning_on)
1233{
1234	struct cpuset *trialcs;
1235	int balance_flag_changed;
1236	int spread_flag_changed;
1237	struct ptr_heap heap;
1238	int err;
1239
1240	trialcs = alloc_trial_cpuset(cs);
1241	if (!trialcs)
1242		return -ENOMEM;
1243
1244	if (turning_on)
1245		set_bit(bit, &trialcs->flags);
1246	else
1247		clear_bit(bit, &trialcs->flags);
1248
1249	err = validate_change(cs, trialcs);
1250	if (err < 0)
1251		goto out;
1252
1253	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1254	if (err < 0)
1255		goto out;
1256
1257	balance_flag_changed = (is_sched_load_balance(cs) !=
1258				is_sched_load_balance(trialcs));
1259
1260	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1262
1263	mutex_lock(&callback_mutex);
1264	cs->flags = trialcs->flags;
1265	mutex_unlock(&callback_mutex);
1266
1267	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268		async_rebuild_sched_domains();
1269
1270	if (spread_flag_changed)
1271		update_tasks_flags(cs, &heap);
1272	heap_free(&heap);
1273out:
1274	free_trial_cpuset(trialcs);
1275	return err;
1276}
1277
1278/*
1279 * Frequency meter - How fast is some event occurring?
1280 *
1281 * These routines manage a digitally filtered, constant time based,
1282 * event frequency meter.  There are four routines:
1283 *   fmeter_init() - initialize a frequency meter.
1284 *   fmeter_markevent() - called each time the event happens.
1285 *   fmeter_getrate() - returns the recent rate of such events.
1286 *   fmeter_update() - internal routine used to update fmeter.
1287 *
1288 * A common data structure is passed to each of these routines,
1289 * which is used to keep track of the state required to manage the
1290 * frequency meter and its digital filter.
1291 *
1292 * The filter works on the number of events marked per unit time.
1293 * The filter is single-pole low-pass recursive (IIR).  The time unit
1294 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1295 * simulate 3 decimal digits of precision (multiplied by 1000).
1296 *
1297 * With an FM_COEF of 933, and a time base of 1 second, the filter
1298 * has a half-life of 10 seconds, meaning that if the events quit
1299 * happening, then the rate returned from the fmeter_getrate()
1300 * will be cut in half each 10 seconds, until it converges to zero.
1301 *
1302 * It is not worth doing a real infinitely recursive filter.  If more
1303 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1304 * just compute FM_MAXTICKS ticks worth, by which point the level
1305 * will be stable.
1306 *
1307 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1308 * arithmetic overflow in the fmeter_update() routine.
1309 *
1310 * Given the simple 32 bit integer arithmetic used, this meter works
1311 * best for reporting rates between one per millisecond (msec) and
1312 * one per 32 (approx) seconds.  At constant rates faster than one
1313 * per msec it maxes out at values just under 1,000,000.  At constant
1314 * rates between one per msec, and one per second it will stabilize
1315 * to a value N*1000, where N is the rate of events per second.
1316 * At constant rates between one per second and one per 32 seconds,
1317 * it will be choppy, moving up on the seconds that have an event,
1318 * and then decaying until the next event.  At rates slower than
1319 * about one in 32 seconds, it decays all the way back to zero between
1320 * each event.
1321 */
1322
1323#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1324#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1325#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1326#define FM_SCALE 1000		/* faux fixed point scale */
1327
1328/* Initialize a frequency meter */
1329static void fmeter_init(struct fmeter *fmp)
1330{
1331	fmp->cnt = 0;
1332	fmp->val = 0;
1333	fmp->time = 0;
1334	spin_lock_init(&fmp->lock);
1335}
1336
1337/* Internal meter update - process cnt events and update value */
1338static void fmeter_update(struct fmeter *fmp)
1339{
1340	time_t now = get_seconds();
1341	time_t ticks = now - fmp->time;
1342
1343	if (ticks == 0)
1344		return;
1345
1346	ticks = min(FM_MAXTICKS, ticks);
1347	while (ticks-- > 0)
1348		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1349	fmp->time = now;
1350
1351	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1352	fmp->cnt = 0;
1353}
1354
1355/* Process any previous ticks, then bump cnt by one (times scale). */
1356static void fmeter_markevent(struct fmeter *fmp)
1357{
1358	spin_lock(&fmp->lock);
1359	fmeter_update(fmp);
1360	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1361	spin_unlock(&fmp->lock);
1362}
1363
1364/* Process any previous ticks, then return current value. */
1365static int fmeter_getrate(struct fmeter *fmp)
1366{
1367	int val;
1368
1369	spin_lock(&fmp->lock);
1370	fmeter_update(fmp);
1371	val = fmp->val;
1372	spin_unlock(&fmp->lock);
1373	return val;
1374}
1375
1376/* Protected by cgroup_lock */
1377static cpumask_var_t cpus_attach;
1378
1379/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1380static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1381			     struct task_struct *tsk, bool threadgroup)
1382{
1383	int ret;
1384	struct cpuset *cs = cgroup_cs(cont);
1385
1386	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1387		return -ENOSPC;
1388
1389	/*
1390	 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1391	 * cannot change their cpu affinity and isolating such threads by their
1392	 * set of allowed nodes is unnecessary.  Thus, cpusets are not
1393	 * applicable for such threads.  This prevents checking for success of
1394	 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1395	 * be changed.
1396	 */
1397	if (tsk->flags & PF_THREAD_BOUND)
1398		return -EINVAL;
1399
1400	ret = security_task_setscheduler(tsk, 0, NULL);
1401	if (ret)
1402		return ret;
1403	if (threadgroup) {
1404		struct task_struct *c;
1405
1406		rcu_read_lock();
1407		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1408			ret = security_task_setscheduler(c, 0, NULL);
1409			if (ret) {
1410				rcu_read_unlock();
1411				return ret;
1412			}
1413		}
1414		rcu_read_unlock();
1415	}
1416	return 0;
1417}
1418
1419static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1420			       struct cpuset *cs)
1421{
1422	int err;
1423	/*
1424	 * can_attach beforehand should guarantee that this doesn't fail.
1425	 * TODO: have a better way to handle failure here
1426	 */
1427	err = set_cpus_allowed_ptr(tsk, cpus_attach);
1428	WARN_ON_ONCE(err);
1429
1430	cpuset_change_task_nodemask(tsk, to);
1431	cpuset_update_task_spread_flag(cs, tsk);
1432
1433}
1434
1435static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1436			  struct cgroup *oldcont, struct task_struct *tsk,
1437			  bool threadgroup)
1438{
1439	struct mm_struct *mm;
1440	struct cpuset *cs = cgroup_cs(cont);
1441	struct cpuset *oldcs = cgroup_cs(oldcont);
1442	NODEMASK_ALLOC(nodemask_t, from, GFP_KERNEL);
1443	NODEMASK_ALLOC(nodemask_t, to, GFP_KERNEL);
1444
1445	if (from == NULL || to == NULL)
1446		goto alloc_fail;
1447
1448	if (cs == &top_cpuset) {
1449		cpumask_copy(cpus_attach, cpu_possible_mask);
1450	} else {
1451		guarantee_online_cpus(cs, cpus_attach);
1452	}
1453	guarantee_online_mems(cs, to);
1454
1455	/* do per-task migration stuff possibly for each in the threadgroup */
1456	cpuset_attach_task(tsk, to, cs);
1457	if (threadgroup) {
1458		struct task_struct *c;
1459		rcu_read_lock();
1460		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1461			cpuset_attach_task(c, to, cs);
1462		}
1463		rcu_read_unlock();
1464	}
1465
1466	/* change mm; only needs to be done once even if threadgroup */
1467	*from = oldcs->mems_allowed;
1468	*to = cs->mems_allowed;
1469	mm = get_task_mm(tsk);
1470	if (mm) {
1471		mpol_rebind_mm(mm, to);
1472		if (is_memory_migrate(cs))
1473			cpuset_migrate_mm(mm, from, to);
1474		mmput(mm);
1475	}
1476
1477alloc_fail:
1478	NODEMASK_FREE(from);
1479	NODEMASK_FREE(to);
1480}
1481
1482/* The various types of files and directories in a cpuset file system */
1483
1484typedef enum {
1485	FILE_MEMORY_MIGRATE,
1486	FILE_CPULIST,
1487	FILE_MEMLIST,
1488	FILE_CPU_EXCLUSIVE,
1489	FILE_MEM_EXCLUSIVE,
1490	FILE_MEM_HARDWALL,
1491	FILE_SCHED_LOAD_BALANCE,
1492	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1493	FILE_MEMORY_PRESSURE_ENABLED,
1494	FILE_MEMORY_PRESSURE,
1495	FILE_SPREAD_PAGE,
1496	FILE_SPREAD_SLAB,
1497} cpuset_filetype_t;
1498
1499static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1500{
1501	int retval = 0;
1502	struct cpuset *cs = cgroup_cs(cgrp);
1503	cpuset_filetype_t type = cft->private;
1504
1505	if (!cgroup_lock_live_group(cgrp))
1506		return -ENODEV;
1507
1508	switch (type) {
1509	case FILE_CPU_EXCLUSIVE:
1510		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1511		break;
1512	case FILE_MEM_EXCLUSIVE:
1513		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1514		break;
1515	case FILE_MEM_HARDWALL:
1516		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1517		break;
1518	case FILE_SCHED_LOAD_BALANCE:
1519		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1520		break;
1521	case FILE_MEMORY_MIGRATE:
1522		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1523		break;
1524	case FILE_MEMORY_PRESSURE_ENABLED:
1525		cpuset_memory_pressure_enabled = !!val;
1526		break;
1527	case FILE_MEMORY_PRESSURE:
1528		retval = -EACCES;
1529		break;
1530	case FILE_SPREAD_PAGE:
1531		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1532		break;
1533	case FILE_SPREAD_SLAB:
1534		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1535		break;
1536	default:
1537		retval = -EINVAL;
1538		break;
1539	}
1540	cgroup_unlock();
1541	return retval;
1542}
1543
1544static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1545{
1546	int retval = 0;
1547	struct cpuset *cs = cgroup_cs(cgrp);
1548	cpuset_filetype_t type = cft->private;
1549
1550	if (!cgroup_lock_live_group(cgrp))
1551		return -ENODEV;
1552
1553	switch (type) {
1554	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1555		retval = update_relax_domain_level(cs, val);
1556		break;
1557	default:
1558		retval = -EINVAL;
1559		break;
1560	}
1561	cgroup_unlock();
1562	return retval;
1563}
1564
1565/*
1566 * Common handling for a write to a "cpus" or "mems" file.
1567 */
1568static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1569				const char *buf)
1570{
1571	int retval = 0;
1572	struct cpuset *cs = cgroup_cs(cgrp);
1573	struct cpuset *trialcs;
1574
1575	if (!cgroup_lock_live_group(cgrp))
1576		return -ENODEV;
1577
1578	trialcs = alloc_trial_cpuset(cs);
1579	if (!trialcs)
1580		return -ENOMEM;
1581
1582	switch (cft->private) {
1583	case FILE_CPULIST:
1584		retval = update_cpumask(cs, trialcs, buf);
1585		break;
1586	case FILE_MEMLIST:
1587		retval = update_nodemask(cs, trialcs, buf);
1588		break;
1589	default:
1590		retval = -EINVAL;
1591		break;
1592	}
1593
1594	free_trial_cpuset(trialcs);
1595	cgroup_unlock();
1596	return retval;
1597}
1598
1599/*
1600 * These ascii lists should be read in a single call, by using a user
1601 * buffer large enough to hold the entire map.  If read in smaller
1602 * chunks, there is no guarantee of atomicity.  Since the display format
1603 * used, list of ranges of sequential numbers, is variable length,
1604 * and since these maps can change value dynamically, one could read
1605 * gibberish by doing partial reads while a list was changing.
1606 * A single large read to a buffer that crosses a page boundary is
1607 * ok, because the result being copied to user land is not recomputed
1608 * across a page fault.
1609 */
1610
1611static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1612{
1613	int ret;
1614
1615	mutex_lock(&callback_mutex);
1616	ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1617	mutex_unlock(&callback_mutex);
1618
1619	return ret;
1620}
1621
1622static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1623{
1624	NODEMASK_ALLOC(nodemask_t, mask, GFP_KERNEL);
1625	int retval;
1626
1627	if (mask == NULL)
1628		return -ENOMEM;
1629
1630	mutex_lock(&callback_mutex);
1631	*mask = cs->mems_allowed;
1632	mutex_unlock(&callback_mutex);
1633
1634	retval = nodelist_scnprintf(page, PAGE_SIZE, *mask);
1635
1636	NODEMASK_FREE(mask);
1637
1638	return retval;
1639}
1640
1641static ssize_t cpuset_common_file_read(struct cgroup *cont,
1642				       struct cftype *cft,
1643				       struct file *file,
1644				       char __user *buf,
1645				       size_t nbytes, loff_t *ppos)
1646{
1647	struct cpuset *cs = cgroup_cs(cont);
1648	cpuset_filetype_t type = cft->private;
1649	char *page;
1650	ssize_t retval = 0;
1651	char *s;
1652
1653	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1654		return -ENOMEM;
1655
1656	s = page;
1657
1658	switch (type) {
1659	case FILE_CPULIST:
1660		s += cpuset_sprintf_cpulist(s, cs);
1661		break;
1662	case FILE_MEMLIST:
1663		s += cpuset_sprintf_memlist(s, cs);
1664		break;
1665	default:
1666		retval = -EINVAL;
1667		goto out;
1668	}
1669	*s++ = '\n';
1670
1671	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1672out:
1673	free_page((unsigned long)page);
1674	return retval;
1675}
1676
1677static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1678{
1679	struct cpuset *cs = cgroup_cs(cont);
1680	cpuset_filetype_t type = cft->private;
1681	switch (type) {
1682	case FILE_CPU_EXCLUSIVE:
1683		return is_cpu_exclusive(cs);
1684	case FILE_MEM_EXCLUSIVE:
1685		return is_mem_exclusive(cs);
1686	case FILE_MEM_HARDWALL:
1687		return is_mem_hardwall(cs);
1688	case FILE_SCHED_LOAD_BALANCE:
1689		return is_sched_load_balance(cs);
1690	case FILE_MEMORY_MIGRATE:
1691		return is_memory_migrate(cs);
1692	case FILE_MEMORY_PRESSURE_ENABLED:
1693		return cpuset_memory_pressure_enabled;
1694	case FILE_MEMORY_PRESSURE:
1695		return fmeter_getrate(&cs->fmeter);
1696	case FILE_SPREAD_PAGE:
1697		return is_spread_page(cs);
1698	case FILE_SPREAD_SLAB:
1699		return is_spread_slab(cs);
1700	default:
1701		BUG();
1702	}
1703
1704	/* Unreachable but makes gcc happy */
1705	return 0;
1706}
1707
1708static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1709{
1710	struct cpuset *cs = cgroup_cs(cont);
1711	cpuset_filetype_t type = cft->private;
1712	switch (type) {
1713	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1714		return cs->relax_domain_level;
1715	default:
1716		BUG();
1717	}
1718
1719	/* Unrechable but makes gcc happy */
1720	return 0;
1721}
1722
1723
1724/*
1725 * for the common functions, 'private' gives the type of file
1726 */
1727
1728static struct cftype files[] = {
1729	{
1730		.name = "cpus",
1731		.read = cpuset_common_file_read,
1732		.write_string = cpuset_write_resmask,
1733		.max_write_len = (100U + 6 * NR_CPUS),
1734		.private = FILE_CPULIST,
1735	},
1736
1737	{
1738		.name = "mems",
1739		.read = cpuset_common_file_read,
1740		.write_string = cpuset_write_resmask,
1741		.max_write_len = (100U + 6 * MAX_NUMNODES),
1742		.private = FILE_MEMLIST,
1743	},
1744
1745	{
1746		.name = "cpu_exclusive",
1747		.read_u64 = cpuset_read_u64,
1748		.write_u64 = cpuset_write_u64,
1749		.private = FILE_CPU_EXCLUSIVE,
1750	},
1751
1752	{
1753		.name = "mem_exclusive",
1754		.read_u64 = cpuset_read_u64,
1755		.write_u64 = cpuset_write_u64,
1756		.private = FILE_MEM_EXCLUSIVE,
1757	},
1758
1759	{
1760		.name = "mem_hardwall",
1761		.read_u64 = cpuset_read_u64,
1762		.write_u64 = cpuset_write_u64,
1763		.private = FILE_MEM_HARDWALL,
1764	},
1765
1766	{
1767		.name = "sched_load_balance",
1768		.read_u64 = cpuset_read_u64,
1769		.write_u64 = cpuset_write_u64,
1770		.private = FILE_SCHED_LOAD_BALANCE,
1771	},
1772
1773	{
1774		.name = "sched_relax_domain_level",
1775		.read_s64 = cpuset_read_s64,
1776		.write_s64 = cpuset_write_s64,
1777		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1778	},
1779
1780	{
1781		.name = "memory_migrate",
1782		.read_u64 = cpuset_read_u64,
1783		.write_u64 = cpuset_write_u64,
1784		.private = FILE_MEMORY_MIGRATE,
1785	},
1786
1787	{
1788		.name = "memory_pressure",
1789		.read_u64 = cpuset_read_u64,
1790		.write_u64 = cpuset_write_u64,
1791		.private = FILE_MEMORY_PRESSURE,
1792		.mode = S_IRUGO,
1793	},
1794
1795	{
1796		.name = "memory_spread_page",
1797		.read_u64 = cpuset_read_u64,
1798		.write_u64 = cpuset_write_u64,
1799		.private = FILE_SPREAD_PAGE,
1800	},
1801
1802	{
1803		.name = "memory_spread_slab",
1804		.read_u64 = cpuset_read_u64,
1805		.write_u64 = cpuset_write_u64,
1806		.private = FILE_SPREAD_SLAB,
1807	},
1808};
1809
1810static struct cftype cft_memory_pressure_enabled = {
1811	.name = "memory_pressure_enabled",
1812	.read_u64 = cpuset_read_u64,
1813	.write_u64 = cpuset_write_u64,
1814	.private = FILE_MEMORY_PRESSURE_ENABLED,
1815};
1816
1817static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1818{
1819	int err;
1820
1821	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1822	if (err)
1823		return err;
1824	/* memory_pressure_enabled is in root cpuset only */
1825	if (!cont->parent)
1826		err = cgroup_add_file(cont, ss,
1827				      &cft_memory_pressure_enabled);
1828	return err;
1829}
1830
1831/*
1832 * post_clone() is called at the end of cgroup_clone().
1833 * 'cgroup' was just created automatically as a result of
1834 * a cgroup_clone(), and the current task is about to
1835 * be moved into 'cgroup'.
1836 *
1837 * Currently we refuse to set up the cgroup - thereby
1838 * refusing the task to be entered, and as a result refusing
1839 * the sys_unshare() or clone() which initiated it - if any
1840 * sibling cpusets have exclusive cpus or mem.
1841 *
1842 * If this becomes a problem for some users who wish to
1843 * allow that scenario, then cpuset_post_clone() could be
1844 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1845 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1846 * held.
1847 */
1848static void cpuset_post_clone(struct cgroup_subsys *ss,
1849			      struct cgroup *cgroup)
1850{
1851	struct cgroup *parent, *child;
1852	struct cpuset *cs, *parent_cs;
1853
1854	parent = cgroup->parent;
1855	list_for_each_entry(child, &parent->children, sibling) {
1856		cs = cgroup_cs(child);
1857		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1858			return;
1859	}
1860	cs = cgroup_cs(cgroup);
1861	parent_cs = cgroup_cs(parent);
1862
1863	cs->mems_allowed = parent_cs->mems_allowed;
1864	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1865	return;
1866}
1867
1868/*
1869 *	cpuset_create - create a cpuset
1870 *	ss:	cpuset cgroup subsystem
1871 *	cont:	control group that the new cpuset will be part of
1872 */
1873
1874static struct cgroup_subsys_state *cpuset_create(
1875	struct cgroup_subsys *ss,
1876	struct cgroup *cont)
1877{
1878	struct cpuset *cs;
1879	struct cpuset *parent;
1880
1881	if (!cont->parent) {
1882		return &top_cpuset.css;
1883	}
1884	parent = cgroup_cs(cont->parent);
1885	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1886	if (!cs)
1887		return ERR_PTR(-ENOMEM);
1888	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1889		kfree(cs);
1890		return ERR_PTR(-ENOMEM);
1891	}
1892
1893	cs->flags = 0;
1894	if (is_spread_page(parent))
1895		set_bit(CS_SPREAD_PAGE, &cs->flags);
1896	if (is_spread_slab(parent))
1897		set_bit(CS_SPREAD_SLAB, &cs->flags);
1898	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1899	cpumask_clear(cs->cpus_allowed);
1900	nodes_clear(cs->mems_allowed);
1901	fmeter_init(&cs->fmeter);
1902	cs->relax_domain_level = -1;
1903
1904	cs->parent = parent;
1905	number_of_cpusets++;
1906	return &cs->css ;
1907}
1908
1909/*
1910 * If the cpuset being removed has its flag 'sched_load_balance'
1911 * enabled, then simulate turning sched_load_balance off, which
1912 * will call async_rebuild_sched_domains().
1913 */
1914
1915static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1916{
1917	struct cpuset *cs = cgroup_cs(cont);
1918
1919	if (is_sched_load_balance(cs))
1920		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1921
1922	number_of_cpusets--;
1923	free_cpumask_var(cs->cpus_allowed);
1924	kfree(cs);
1925}
1926
1927struct cgroup_subsys cpuset_subsys = {
1928	.name = "cpuset",
1929	.create = cpuset_create,
1930	.destroy = cpuset_destroy,
1931	.can_attach = cpuset_can_attach,
1932	.attach = cpuset_attach,
1933	.populate = cpuset_populate,
1934	.post_clone = cpuset_post_clone,
1935	.subsys_id = cpuset_subsys_id,
1936	.early_init = 1,
1937};
1938
1939/**
1940 * cpuset_init - initialize cpusets at system boot
1941 *
1942 * Description: Initialize top_cpuset and the cpuset internal file system,
1943 **/
1944
1945int __init cpuset_init(void)
1946{
1947	int err = 0;
1948
1949	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1950		BUG();
1951
1952	cpumask_setall(top_cpuset.cpus_allowed);
1953	nodes_setall(top_cpuset.mems_allowed);
1954
1955	fmeter_init(&top_cpuset.fmeter);
1956	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1957	top_cpuset.relax_domain_level = -1;
1958
1959	err = register_filesystem(&cpuset_fs_type);
1960	if (err < 0)
1961		return err;
1962
1963	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1964		BUG();
1965
1966	number_of_cpusets = 1;
1967	return 0;
1968}
1969
1970/**
1971 * cpuset_do_move_task - move a given task to another cpuset
1972 * @tsk: pointer to task_struct the task to move
1973 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1974 *
1975 * Called by cgroup_scan_tasks() for each task in a cgroup.
1976 * Return nonzero to stop the walk through the tasks.
1977 */
1978static void cpuset_do_move_task(struct task_struct *tsk,
1979				struct cgroup_scanner *scan)
1980{
1981	struct cgroup *new_cgroup = scan->data;
1982
1983	cgroup_attach_task(new_cgroup, tsk);
1984}
1985
1986/**
1987 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1988 * @from: cpuset in which the tasks currently reside
1989 * @to: cpuset to which the tasks will be moved
1990 *
1991 * Called with cgroup_mutex held
1992 * callback_mutex must not be held, as cpuset_attach() will take it.
1993 *
1994 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1995 * calling callback functions for each.
1996 */
1997static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1998{
1999	struct cgroup_scanner scan;
2000
2001	scan.cg = from->css.cgroup;
2002	scan.test_task = NULL; /* select all tasks in cgroup */
2003	scan.process_task = cpuset_do_move_task;
2004	scan.heap = NULL;
2005	scan.data = to->css.cgroup;
2006
2007	if (cgroup_scan_tasks(&scan))
2008		printk(KERN_ERR "move_member_tasks_to_cpuset: "
2009				"cgroup_scan_tasks failed\n");
2010}
2011
2012/*
2013 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2014 * or memory nodes, we need to walk over the cpuset hierarchy,
2015 * removing that CPU or node from all cpusets.  If this removes the
2016 * last CPU or node from a cpuset, then move the tasks in the empty
2017 * cpuset to its next-highest non-empty parent.
2018 *
2019 * Called with cgroup_mutex held
2020 * callback_mutex must not be held, as cpuset_attach() will take it.
2021 */
2022static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2023{
2024	struct cpuset *parent;
2025
2026	/*
2027	 * The cgroup's css_sets list is in use if there are tasks
2028	 * in the cpuset; the list is empty if there are none;
2029	 * the cs->css.refcnt seems always 0.
2030	 */
2031	if (list_empty(&cs->css.cgroup->css_sets))
2032		return;
2033
2034	/*
2035	 * Find its next-highest non-empty parent, (top cpuset
2036	 * has online cpus, so can't be empty).
2037	 */
2038	parent = cs->parent;
2039	while (cpumask_empty(parent->cpus_allowed) ||
2040			nodes_empty(parent->mems_allowed))
2041		parent = parent->parent;
2042
2043	move_member_tasks_to_cpuset(cs, parent);
2044}
2045
2046/*
2047 * Walk the specified cpuset subtree and look for empty cpusets.
2048 * The tasks of such cpuset must be moved to a parent cpuset.
2049 *
2050 * Called with cgroup_mutex held.  We take callback_mutex to modify
2051 * cpus_allowed and mems_allowed.
2052 *
2053 * This walk processes the tree from top to bottom, completing one layer
2054 * before dropping down to the next.  It always processes a node before
2055 * any of its children.
2056 *
2057 * For now, since we lack memory hot unplug, we'll never see a cpuset
2058 * that has tasks along with an empty 'mems'.  But if we did see such
2059 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2060 */
2061static void scan_for_empty_cpusets(struct cpuset *root)
2062{
2063	LIST_HEAD(queue);
2064	struct cpuset *cp;	/* scans cpusets being updated */
2065	struct cpuset *child;	/* scans child cpusets of cp */
2066	struct cgroup *cont;
2067	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
2068
2069	if (oldmems == NULL)
2070		return;
2071
2072	list_add_tail((struct list_head *)&root->stack_list, &queue);
2073
2074	while (!list_empty(&queue)) {
2075		cp = list_first_entry(&queue, struct cpuset, stack_list);
2076		list_del(queue.next);
2077		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2078			child = cgroup_cs(cont);
2079			list_add_tail(&child->stack_list, &queue);
2080		}
2081
2082		/* Continue past cpusets with all cpus, mems online */
2083		if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2084		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2085			continue;
2086
2087		*oldmems = cp->mems_allowed;
2088
2089		/* Remove offline cpus and mems from this cpuset. */
2090		mutex_lock(&callback_mutex);
2091		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2092			    cpu_active_mask);
2093		nodes_and(cp->mems_allowed, cp->mems_allowed,
2094						node_states[N_HIGH_MEMORY]);
2095		mutex_unlock(&callback_mutex);
2096
2097		/* Move tasks from the empty cpuset to a parent */
2098		if (cpumask_empty(cp->cpus_allowed) ||
2099		     nodes_empty(cp->mems_allowed))
2100			remove_tasks_in_empty_cpuset(cp);
2101		else {
2102			update_tasks_cpumask(cp, NULL);
2103			update_tasks_nodemask(cp, oldmems, NULL);
2104		}
2105	}
2106	NODEMASK_FREE(oldmems);
2107}
2108
2109/*
2110 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2111 * period.  This is necessary in order to make cpusets transparent
2112 * (of no affect) on systems that are actively using CPU hotplug
2113 * but making no active use of cpusets.
2114 *
2115 * This routine ensures that top_cpuset.cpus_allowed tracks
2116 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2117 *
2118 * Called within get_online_cpus().  Needs to call cgroup_lock()
2119 * before calling generate_sched_domains().
2120 */
2121void cpuset_update_active_cpus(void)
2122{
2123	struct sched_domain_attr *attr;
2124	cpumask_var_t *doms;
2125	int ndoms;
2126
2127	cgroup_lock();
2128	mutex_lock(&callback_mutex);
2129	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2130	mutex_unlock(&callback_mutex);
2131	scan_for_empty_cpusets(&top_cpuset);
2132	ndoms = generate_sched_domains(&doms, &attr);
2133	cgroup_unlock();
2134
2135	/* Have scheduler rebuild the domains */
2136	partition_sched_domains(ndoms, doms, attr);
2137}
2138
2139#ifdef CONFIG_MEMORY_HOTPLUG
2140/*
2141 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2142 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2143 * See also the previous routine cpuset_track_online_cpus().
2144 */
2145static int cpuset_track_online_nodes(struct notifier_block *self,
2146				unsigned long action, void *arg)
2147{
2148	NODEMASK_ALLOC(nodemask_t, oldmems, GFP_KERNEL);
2149
2150	if (oldmems == NULL)
2151		return NOTIFY_DONE;
2152
2153	cgroup_lock();
2154	switch (action) {
2155	case MEM_ONLINE:
2156		*oldmems = top_cpuset.mems_allowed;
2157		mutex_lock(&callback_mutex);
2158		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2159		mutex_unlock(&callback_mutex);
2160		update_tasks_nodemask(&top_cpuset, oldmems, NULL);
2161		break;
2162	case MEM_OFFLINE:
2163		/*
2164		 * needn't update top_cpuset.mems_allowed explicitly because
2165		 * scan_for_empty_cpusets() will update it.
2166		 */
2167		scan_for_empty_cpusets(&top_cpuset);
2168		break;
2169	default:
2170		break;
2171	}
2172	cgroup_unlock();
2173
2174	NODEMASK_FREE(oldmems);
2175	return NOTIFY_OK;
2176}
2177#endif
2178
2179/**
2180 * cpuset_init_smp - initialize cpus_allowed
2181 *
2182 * Description: Finish top cpuset after cpu, node maps are initialized
2183 **/
2184
2185void __init cpuset_init_smp(void)
2186{
2187	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2188	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2189
2190	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2191
2192	cpuset_wq = create_singlethread_workqueue("cpuset");
2193	BUG_ON(!cpuset_wq);
2194}
2195
2196/**
2197 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2198 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2199 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2200 *
2201 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2202 * attached to the specified @tsk.  Guaranteed to return some non-empty
2203 * subset of cpu_online_map, even if this means going outside the
2204 * tasks cpuset.
2205 **/
2206
2207void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2208{
2209	mutex_lock(&callback_mutex);
2210	task_lock(tsk);
2211	guarantee_online_cpus(task_cs(tsk), pmask);
2212	task_unlock(tsk);
2213	mutex_unlock(&callback_mutex);
2214}
2215
2216int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2217{
2218	const struct cpuset *cs;
2219	int cpu;
2220
2221	rcu_read_lock();
2222	cs = task_cs(tsk);
2223	if (cs)
2224		cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed);
2225	rcu_read_unlock();
2226
2227	/*
2228	 * We own tsk->cpus_allowed, nobody can change it under us.
2229	 *
2230	 * But we used cs && cs->cpus_allowed lockless and thus can
2231	 * race with cgroup_attach_task() or update_cpumask() and get
2232	 * the wrong tsk->cpus_allowed. However, both cases imply the
2233	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2234	 * which takes task_rq_lock().
2235	 *
2236	 * If we are called after it dropped the lock we must see all
2237	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2238	 * set any mask even if it is not right from task_cs() pov,
2239	 * the pending set_cpus_allowed_ptr() will fix things.
2240	 */
2241
2242	cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2243	if (cpu >= nr_cpu_ids) {
2244		/*
2245		 * Either tsk->cpus_allowed is wrong (see above) or it
2246		 * is actually empty. The latter case is only possible
2247		 * if we are racing with remove_tasks_in_empty_cpuset().
2248		 * Like above we can temporary set any mask and rely on
2249		 * set_cpus_allowed_ptr() as synchronization point.
2250		 */
2251		cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask);
2252		cpu = cpumask_any(cpu_active_mask);
2253	}
2254
2255	return cpu;
2256}
2257
2258void cpuset_init_current_mems_allowed(void)
2259{
2260	nodes_setall(current->mems_allowed);
2261}
2262
2263/**
2264 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2265 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2266 *
2267 * Description: Returns the nodemask_t mems_allowed of the cpuset
2268 * attached to the specified @tsk.  Guaranteed to return some non-empty
2269 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2270 * tasks cpuset.
2271 **/
2272
2273nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2274{
2275	nodemask_t mask;
2276
2277	mutex_lock(&callback_mutex);
2278	task_lock(tsk);
2279	guarantee_online_mems(task_cs(tsk), &mask);
2280	task_unlock(tsk);
2281	mutex_unlock(&callback_mutex);
2282
2283	return mask;
2284}
2285
2286/**
2287 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2288 * @nodemask: the nodemask to be checked
2289 *
2290 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2291 */
2292int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2293{
2294	return nodes_intersects(*nodemask, current->mems_allowed);
2295}
2296
2297/*
2298 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2299 * mem_hardwall ancestor to the specified cpuset.  Call holding
2300 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2301 * (an unusual configuration), then returns the root cpuset.
2302 */
2303static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2304{
2305	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2306		cs = cs->parent;
2307	return cs;
2308}
2309
2310/**
2311 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2312 * @node: is this an allowed node?
2313 * @gfp_mask: memory allocation flags
2314 *
2315 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2316 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2317 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2318 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2319 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2320 * flag, yes.
2321 * Otherwise, no.
2322 *
2323 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2324 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2325 * might sleep, and might allow a node from an enclosing cpuset.
2326 *
2327 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2328 * cpusets, and never sleeps.
2329 *
2330 * The __GFP_THISNODE placement logic is really handled elsewhere,
2331 * by forcibly using a zonelist starting at a specified node, and by
2332 * (in get_page_from_freelist()) refusing to consider the zones for
2333 * any node on the zonelist except the first.  By the time any such
2334 * calls get to this routine, we should just shut up and say 'yes'.
2335 *
2336 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2337 * and do not allow allocations outside the current tasks cpuset
2338 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2339 * GFP_KERNEL allocations are not so marked, so can escape to the
2340 * nearest enclosing hardwalled ancestor cpuset.
2341 *
2342 * Scanning up parent cpusets requires callback_mutex.  The
2343 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2344 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2345 * current tasks mems_allowed came up empty on the first pass over
2346 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2347 * cpuset are short of memory, might require taking the callback_mutex
2348 * mutex.
2349 *
2350 * The first call here from mm/page_alloc:get_page_from_freelist()
2351 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2352 * so no allocation on a node outside the cpuset is allowed (unless
2353 * in interrupt, of course).
2354 *
2355 * The second pass through get_page_from_freelist() doesn't even call
2356 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2357 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2358 * in alloc_flags.  That logic and the checks below have the combined
2359 * affect that:
2360 *	in_interrupt - any node ok (current task context irrelevant)
2361 *	GFP_ATOMIC   - any node ok
2362 *	TIF_MEMDIE   - any node ok
2363 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2364 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2365 *
2366 * Rule:
2367 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2368 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2369 *    the code that might scan up ancestor cpusets and sleep.
2370 */
2371int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2372{
2373	const struct cpuset *cs;	/* current cpuset ancestors */
2374	int allowed;			/* is allocation in zone z allowed? */
2375
2376	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2377		return 1;
2378	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2379	if (node_isset(node, current->mems_allowed))
2380		return 1;
2381	/*
2382	 * Allow tasks that have access to memory reserves because they have
2383	 * been OOM killed to get memory anywhere.
2384	 */
2385	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2386		return 1;
2387	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2388		return 0;
2389
2390	if (current->flags & PF_EXITING) /* Let dying task have memory */
2391		return 1;
2392
2393	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2394	mutex_lock(&callback_mutex);
2395
2396	task_lock(current);
2397	cs = nearest_hardwall_ancestor(task_cs(current));
2398	task_unlock(current);
2399
2400	allowed = node_isset(node, cs->mems_allowed);
2401	mutex_unlock(&callback_mutex);
2402	return allowed;
2403}
2404
2405/*
2406 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2407 * @node: is this an allowed node?
2408 * @gfp_mask: memory allocation flags
2409 *
2410 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2411 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2412 * yes.  If the task has been OOM killed and has access to memory reserves as
2413 * specified by the TIF_MEMDIE flag, yes.
2414 * Otherwise, no.
2415 *
2416 * The __GFP_THISNODE placement logic is really handled elsewhere,
2417 * by forcibly using a zonelist starting at a specified node, and by
2418 * (in get_page_from_freelist()) refusing to consider the zones for
2419 * any node on the zonelist except the first.  By the time any such
2420 * calls get to this routine, we should just shut up and say 'yes'.
2421 *
2422 * Unlike the cpuset_node_allowed_softwall() variant, above,
2423 * this variant requires that the node be in the current task's
2424 * mems_allowed or that we're in interrupt.  It does not scan up the
2425 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2426 * It never sleeps.
2427 */
2428int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2429{
2430	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2431		return 1;
2432	if (node_isset(node, current->mems_allowed))
2433		return 1;
2434	/*
2435	 * Allow tasks that have access to memory reserves because they have
2436	 * been OOM killed to get memory anywhere.
2437	 */
2438	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2439		return 1;
2440	return 0;
2441}
2442
2443/**
2444 * cpuset_unlock - release lock on cpuset changes
2445 *
2446 * Undo the lock taken in a previous cpuset_lock() call.
2447 */
2448
2449void cpuset_unlock(void)
2450{
2451	mutex_unlock(&callback_mutex);
2452}
2453
2454/**
2455 * cpuset_mem_spread_node() - On which node to begin search for a file page
2456 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2457 *
2458 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2459 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2460 * and if the memory allocation used cpuset_mem_spread_node()
2461 * to determine on which node to start looking, as it will for
2462 * certain page cache or slab cache pages such as used for file
2463 * system buffers and inode caches, then instead of starting on the
2464 * local node to look for a free page, rather spread the starting
2465 * node around the tasks mems_allowed nodes.
2466 *
2467 * We don't have to worry about the returned node being offline
2468 * because "it can't happen", and even if it did, it would be ok.
2469 *
2470 * The routines calling guarantee_online_mems() are careful to
2471 * only set nodes in task->mems_allowed that are online.  So it
2472 * should not be possible for the following code to return an
2473 * offline node.  But if it did, that would be ok, as this routine
2474 * is not returning the node where the allocation must be, only
2475 * the node where the search should start.  The zonelist passed to
2476 * __alloc_pages() will include all nodes.  If the slab allocator
2477 * is passed an offline node, it will fall back to the local node.
2478 * See kmem_cache_alloc_node().
2479 */
2480
2481static int cpuset_spread_node(int *rotor)
2482{
2483	int node;
2484
2485	node = next_node(*rotor, current->mems_allowed);
2486	if (node == MAX_NUMNODES)
2487		node = first_node(current->mems_allowed);
2488	*rotor = node;
2489	return node;
2490}
2491
2492int cpuset_mem_spread_node(void)
2493{
2494	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2495}
2496
2497int cpuset_slab_spread_node(void)
2498{
2499	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2500}
2501
2502EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2503
2504/**
2505 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2506 * @tsk1: pointer to task_struct of some task.
2507 * @tsk2: pointer to task_struct of some other task.
2508 *
2509 * Description: Return true if @tsk1's mems_allowed intersects the
2510 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2511 * one of the task's memory usage might impact the memory available
2512 * to the other.
2513 **/
2514
2515int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2516				   const struct task_struct *tsk2)
2517{
2518	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2519}
2520
2521/**
2522 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2523 * @task: pointer to task_struct of some task.
2524 *
2525 * Description: Prints @task's name, cpuset name, and cached copy of its
2526 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2527 * dereferencing task_cs(task).
2528 */
2529void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2530{
2531	struct dentry *dentry;
2532
2533	dentry = task_cs(tsk)->css.cgroup->dentry;
2534	spin_lock(&cpuset_buffer_lock);
2535	snprintf(cpuset_name, CPUSET_NAME_LEN,
2536		 dentry ? (const char *)dentry->d_name.name : "/");
2537	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2538			   tsk->mems_allowed);
2539	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2540	       tsk->comm, cpuset_name, cpuset_nodelist);
2541	spin_unlock(&cpuset_buffer_lock);
2542}
2543
2544/*
2545 * Collection of memory_pressure is suppressed unless
2546 * this flag is enabled by writing "1" to the special
2547 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2548 */
2549
2550int cpuset_memory_pressure_enabled __read_mostly;
2551
2552/**
2553 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2554 *
2555 * Keep a running average of the rate of synchronous (direct)
2556 * page reclaim efforts initiated by tasks in each cpuset.
2557 *
2558 * This represents the rate at which some task in the cpuset
2559 * ran low on memory on all nodes it was allowed to use, and
2560 * had to enter the kernels page reclaim code in an effort to
2561 * create more free memory by tossing clean pages or swapping
2562 * or writing dirty pages.
2563 *
2564 * Display to user space in the per-cpuset read-only file
2565 * "memory_pressure".  Value displayed is an integer
2566 * representing the recent rate of entry into the synchronous
2567 * (direct) page reclaim by any task attached to the cpuset.
2568 **/
2569
2570void __cpuset_memory_pressure_bump(void)
2571{
2572	task_lock(current);
2573	fmeter_markevent(&task_cs(current)->fmeter);
2574	task_unlock(current);
2575}
2576
2577#ifdef CONFIG_PROC_PID_CPUSET
2578/*
2579 * proc_cpuset_show()
2580 *  - Print tasks cpuset path into seq_file.
2581 *  - Used for /proc/<pid>/cpuset.
2582 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2583 *    doesn't really matter if tsk->cpuset changes after we read it,
2584 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2585 *    anyway.
2586 */
2587static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2588{
2589	struct pid *pid;
2590	struct task_struct *tsk;
2591	char *buf;
2592	struct cgroup_subsys_state *css;
2593	int retval;
2594
2595	retval = -ENOMEM;
2596	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2597	if (!buf)
2598		goto out;
2599
2600	retval = -ESRCH;
2601	pid = m->private;
2602	tsk = get_pid_task(pid, PIDTYPE_PID);
2603	if (!tsk)
2604		goto out_free;
2605
2606	retval = -EINVAL;
2607	cgroup_lock();
2608	css = task_subsys_state(tsk, cpuset_subsys_id);
2609	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2610	if (retval < 0)
2611		goto out_unlock;
2612	seq_puts(m, buf);
2613	seq_putc(m, '\n');
2614out_unlock:
2615	cgroup_unlock();
2616	put_task_struct(tsk);
2617out_free:
2618	kfree(buf);
2619out:
2620	return retval;
2621}
2622
2623static int cpuset_open(struct inode *inode, struct file *file)
2624{
2625	struct pid *pid = PROC_I(inode)->pid;
2626	return single_open(file, proc_cpuset_show, pid);
2627}
2628
2629const struct file_operations proc_cpuset_operations = {
2630	.open		= cpuset_open,
2631	.read		= seq_read,
2632	.llseek		= seq_lseek,
2633	.release	= single_release,
2634};
2635#endif /* CONFIG_PROC_PID_CPUSET */
2636
2637/* Display task mems_allowed in /proc/<pid>/status file. */
2638void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2639{
2640	seq_printf(m, "Mems_allowed:\t");
2641	seq_nodemask(m, &task->mems_allowed);
2642	seq_printf(m, "\n");
2643	seq_printf(m, "Mems_allowed_list:\t");
2644	seq_nodemask_list(m, &task->mems_allowed);
2645	seq_printf(m, "\n");
2646}
2647