• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/include/net/
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Definitions for the AF_INET socket handler.
7 *
8 * Version:	@(#)sock.h	1.0.4	05/13/93
9 *
10 * Authors:	Ross Biro
11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 *		Alan Cox	:	Volatiles in skbuff pointers. See
17 *					skbuff comments. May be overdone,
18 *					better to prove they can be removed
19 *					than the reverse.
20 *		Alan Cox	:	Added a zapped field for tcp to note
21 *					a socket is reset and must stay shut up
22 *		Alan Cox	:	New fields for options
23 *	Pauline Middelink	:	identd support
24 *		Alan Cox	:	Eliminate low level recv/recvfrom
25 *		David S. Miller	:	New socket lookup architecture.
26 *              Steve Whitehouse:       Default routines for sock_ops
27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28 *              			protinfo be just a void pointer, as the
29 *              			protocol specific parts were moved to
30 *              			respective headers and ipv4/v6, etc now
31 *              			use private slabcaches for its socks
32 *              Pedro Hortas	:	New flags field for socket options
33 *
34 *
35 *		This program is free software; you can redistribute it and/or
36 *		modify it under the terms of the GNU General Public License
37 *		as published by the Free Software Foundation; either version
38 *		2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/kernel.h>
44#include <linux/list.h>
45#include <linux/list_nulls.h>
46#include <linux/timer.h>
47#include <linux/cache.h>
48#include <linux/module.h>
49#include <linux/lockdep.h>
50#include <linux/netdevice.h>
51#include <linux/skbuff.h>	/* struct sk_buff */
52#include <linux/mm.h>
53#include <linux/security.h>
54#include <linux/slab.h>
55
56#include <linux/filter.h>
57#include <linux/rculist_nulls.h>
58#include <linux/poll.h>
59
60#include <asm/atomic.h>
61#include <net/dst.h>
62#include <net/checksum.h>
63
64/*
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
68 */
69
70/* Define this to get the SOCK_DBG debugging facility. */
71#define SOCK_DEBUGGING
72#ifdef SOCK_DEBUGGING
73#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74					printk(KERN_DEBUG msg); } while (0)
75#else
76/* Validate arguments and do nothing */
77static inline void __attribute__ ((format (printf, 2, 3)))
78SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79{
80}
81#endif
82
83/* This is the per-socket lock.  The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
86 */
87typedef struct {
88	spinlock_t		slock;
89	int			owned;
90	wait_queue_head_t	wq;
91	/*
92	 * We express the mutex-alike socket_lock semantics
93	 * to the lock validator by explicitly managing
94	 * the slock as a lock variant (in addition to
95	 * the slock itself):
96	 */
97#ifdef CONFIG_DEBUG_LOCK_ALLOC
98	struct lockdep_map dep_map;
99#endif
100} socket_lock_t;
101
102struct sock;
103struct proto;
104struct net;
105
106/**
107 *	struct sock_common - minimal network layer representation of sockets
108 *	@skc_node: main hash linkage for various protocol lookup tables
109 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110 *	@skc_refcnt: reference count
111 *	@skc_tx_queue_mapping: tx queue number for this connection
112 *	@skc_hash: hash value used with various protocol lookup tables
113 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
114 *	@skc_family: network address family
115 *	@skc_state: Connection state
116 *	@skc_reuse: %SO_REUSEADDR setting
117 *	@skc_bound_dev_if: bound device index if != 0
118 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
119 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 *	@skc_prot: protocol handlers inside a network family
121 *	@skc_net: reference to the network namespace of this socket
122 *
123 *	This is the minimal network layer representation of sockets, the header
124 *	for struct sock and struct inet_timewait_sock.
125 */
126struct sock_common {
127	/*
128	 * first fields are not copied in sock_copy()
129	 */
130	union {
131		struct hlist_node	skc_node;
132		struct hlist_nulls_node skc_nulls_node;
133	};
134	atomic_t		skc_refcnt;
135	int			skc_tx_queue_mapping;
136
137	union  {
138		unsigned int	skc_hash;
139		__u16		skc_u16hashes[2];
140	};
141	unsigned short		skc_family;
142	volatile unsigned char	skc_state;
143	unsigned char		skc_reuse;
144	int			skc_bound_dev_if;
145	union {
146		struct hlist_node	skc_bind_node;
147		struct hlist_nulls_node skc_portaddr_node;
148	};
149	struct proto		*skc_prot;
150#ifdef CONFIG_NET_NS
151	struct net	 	*skc_net;
152#endif
153};
154
155/**
156  *	struct sock - network layer representation of sockets
157  *	@__sk_common: shared layout with inet_timewait_sock
158  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160  *	@sk_lock:	synchronizer
161  *	@sk_rcvbuf: size of receive buffer in bytes
162  *	@sk_wq: sock wait queue and async head
163  *	@sk_dst_cache: destination cache
164  *	@sk_dst_lock: destination cache lock
165  *	@sk_policy: flow policy
166  *	@sk_rmem_alloc: receive queue bytes committed
167  *	@sk_receive_queue: incoming packets
168  *	@sk_wmem_alloc: transmit queue bytes committed
169  *	@sk_write_queue: Packet sending queue
170  *	@sk_async_wait_queue: DMA copied packets
171  *	@sk_omem_alloc: "o" is "option" or "other"
172  *	@sk_wmem_queued: persistent queue size
173  *	@sk_forward_alloc: space allocated forward
174  *	@sk_allocation: allocation mode
175  *	@sk_sndbuf: size of send buffer in bytes
176  *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177  *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178  *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182  *	@sk_gso_max_size: Maximum GSO segment size to build
183  *	@sk_lingertime: %SO_LINGER l_linger setting
184  *	@sk_backlog: always used with the per-socket spinlock held
185  *	@sk_callback_lock: used with the callbacks in the end of this struct
186  *	@sk_error_queue: rarely used
187  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188  *			  IPV6_ADDRFORM for instance)
189  *	@sk_err: last error
190  *	@sk_err_soft: errors that don't cause failure but are the cause of a
191  *		      persistent failure not just 'timed out'
192  *	@sk_drops: raw/udp drops counter
193  *	@sk_ack_backlog: current listen backlog
194  *	@sk_max_ack_backlog: listen backlog set in listen()
195  *	@sk_priority: %SO_PRIORITY setting
196  *	@sk_type: socket type (%SOCK_STREAM, etc)
197  *	@sk_protocol: which protocol this socket belongs in this network family
198  *	@sk_peer_pid: &struct pid for this socket's peer
199  *	@sk_peer_cred: %SO_PEERCRED setting
200  *	@sk_rcvlowat: %SO_RCVLOWAT setting
201  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
202  *	@sk_sndtimeo: %SO_SNDTIMEO setting
203  *	@sk_rxhash: flow hash received from netif layer
204  *	@sk_filter: socket filtering instructions
205  *	@sk_protinfo: private area, net family specific, when not using slab
206  *	@sk_timer: sock cleanup timer
207  *	@sk_stamp: time stamp of last packet received
208  *	@sk_socket: Identd and reporting IO signals
209  *	@sk_user_data: RPC layer private data
210  *	@sk_sndmsg_page: cached page for sendmsg
211  *	@sk_sndmsg_off: cached offset for sendmsg
212  *	@sk_send_head: front of stuff to transmit
213  *	@sk_security: used by security modules
214  *	@sk_mark: generic packet mark
215  *	@sk_classid: this socket's cgroup classid
216  *	@sk_write_pending: a write to stream socket waits to start
217  *	@sk_state_change: callback to indicate change in the state of the sock
218  *	@sk_data_ready: callback to indicate there is data to be processed
219  *	@sk_write_space: callback to indicate there is bf sending space available
220  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
221  *	@sk_backlog_rcv: callback to process the backlog
222  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
223 */
224struct sock {
225	/*
226	 * Now struct inet_timewait_sock also uses sock_common, so please just
227	 * don't add nothing before this first member (__sk_common) --acme
228	 */
229	struct sock_common	__sk_common;
230#define sk_node			__sk_common.skc_node
231#define sk_nulls_node		__sk_common.skc_nulls_node
232#define sk_refcnt		__sk_common.skc_refcnt
233#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
234
235#define sk_copy_start		__sk_common.skc_hash
236#define sk_hash			__sk_common.skc_hash
237#define sk_family		__sk_common.skc_family
238#define sk_state		__sk_common.skc_state
239#define sk_reuse		__sk_common.skc_reuse
240#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
241#define sk_bind_node		__sk_common.skc_bind_node
242#define sk_prot			__sk_common.skc_prot
243#define sk_net			__sk_common.skc_net
244	kmemcheck_bitfield_begin(flags);
245	unsigned int		sk_shutdown  : 2,
246				sk_no_check  : 2,
247				sk_userlocks : 4,
248				sk_protocol  : 8,
249				sk_type      : 16;
250	kmemcheck_bitfield_end(flags);
251	int			sk_rcvbuf;
252	socket_lock_t		sk_lock;
253	/*
254	 * The backlog queue is special, it is always used with
255	 * the per-socket spinlock held and requires low latency
256	 * access. Therefore we special case it's implementation.
257	 */
258	struct {
259		struct sk_buff *head;
260		struct sk_buff *tail;
261		int len;
262	} sk_backlog;
263	struct socket_wq	*sk_wq;
264	struct dst_entry	*sk_dst_cache;
265#ifdef CONFIG_XFRM
266	struct xfrm_policy	*sk_policy[2];
267#endif
268	spinlock_t		sk_dst_lock;
269	atomic_t		sk_rmem_alloc;
270	atomic_t		sk_wmem_alloc;
271	atomic_t		sk_omem_alloc;
272	int			sk_sndbuf;
273	struct sk_buff_head	sk_receive_queue;
274	struct sk_buff_head	sk_write_queue;
275#ifdef CONFIG_NET_DMA
276	struct sk_buff_head	sk_async_wait_queue;
277#endif
278	int			sk_wmem_queued;
279	int			sk_forward_alloc;
280	gfp_t			sk_allocation;
281	int			sk_route_caps;
282	int			sk_route_nocaps;
283	int			sk_gso_type;
284	unsigned int		sk_gso_max_size;
285	int			sk_rcvlowat;
286#ifdef CONFIG_RPS
287	__u32			sk_rxhash;
288#endif
289	unsigned long 		sk_flags;
290	unsigned long	        sk_lingertime;
291	struct sk_buff_head	sk_error_queue;
292	struct proto		*sk_prot_creator;
293	rwlock_t		sk_callback_lock;
294	int			sk_err,
295				sk_err_soft;
296	atomic_t		sk_drops;
297	unsigned short		sk_ack_backlog;
298	unsigned short		sk_max_ack_backlog;
299	__u32			sk_priority;
300	struct pid		*sk_peer_pid;
301	const struct cred	*sk_peer_cred;
302	long			sk_rcvtimeo;
303	long			sk_sndtimeo;
304	struct sk_filter      	*sk_filter;
305	void			*sk_protinfo;
306	struct timer_list	sk_timer;
307	ktime_t			sk_stamp;
308	struct socket		*sk_socket;
309	void			*sk_user_data;
310	struct page		*sk_sndmsg_page;
311	struct sk_buff		*sk_send_head;
312	__u32			sk_sndmsg_off;
313	int			sk_write_pending;
314#ifdef CONFIG_SECURITY
315	void			*sk_security;
316#endif
317	__u32			sk_mark;
318	u32			sk_classid;
319	void			(*sk_state_change)(struct sock *sk);
320	void			(*sk_data_ready)(struct sock *sk, int bytes);
321	void			(*sk_write_space)(struct sock *sk);
322	void			(*sk_error_report)(struct sock *sk);
323  	int			(*sk_backlog_rcv)(struct sock *sk,
324						  struct sk_buff *skb);
325	void                    (*sk_destruct)(struct sock *sk);
326};
327
328/*
329 * Hashed lists helper routines
330 */
331static inline struct sock *sk_entry(const struct hlist_node *node)
332{
333	return hlist_entry(node, struct sock, sk_node);
334}
335
336static inline struct sock *__sk_head(const struct hlist_head *head)
337{
338	return hlist_entry(head->first, struct sock, sk_node);
339}
340
341static inline struct sock *sk_head(const struct hlist_head *head)
342{
343	return hlist_empty(head) ? NULL : __sk_head(head);
344}
345
346static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
347{
348	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
349}
350
351static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
352{
353	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
354}
355
356static inline struct sock *sk_next(const struct sock *sk)
357{
358	return sk->sk_node.next ?
359		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
360}
361
362static inline struct sock *sk_nulls_next(const struct sock *sk)
363{
364	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
365		hlist_nulls_entry(sk->sk_nulls_node.next,
366				  struct sock, sk_nulls_node) :
367		NULL;
368}
369
370static inline int sk_unhashed(const struct sock *sk)
371{
372	return hlist_unhashed(&sk->sk_node);
373}
374
375static inline int sk_hashed(const struct sock *sk)
376{
377	return !sk_unhashed(sk);
378}
379
380static __inline__ void sk_node_init(struct hlist_node *node)
381{
382	node->pprev = NULL;
383}
384
385static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
386{
387	node->pprev = NULL;
388}
389
390static __inline__ void __sk_del_node(struct sock *sk)
391{
392	__hlist_del(&sk->sk_node);
393}
394
395/* NB: equivalent to hlist_del_init_rcu */
396static __inline__ int __sk_del_node_init(struct sock *sk)
397{
398	if (sk_hashed(sk)) {
399		__sk_del_node(sk);
400		sk_node_init(&sk->sk_node);
401		return 1;
402	}
403	return 0;
404}
405
406/* Grab socket reference count. This operation is valid only
407   when sk is ALREADY grabbed f.e. it is found in hash table
408   or a list and the lookup is made under lock preventing hash table
409   modifications.
410 */
411
412static inline void sock_hold(struct sock *sk)
413{
414	atomic_inc(&sk->sk_refcnt);
415}
416
417/* Ungrab socket in the context, which assumes that socket refcnt
418   cannot hit zero, f.e. it is true in context of any socketcall.
419 */
420static inline void __sock_put(struct sock *sk)
421{
422	atomic_dec(&sk->sk_refcnt);
423}
424
425static __inline__ int sk_del_node_init(struct sock *sk)
426{
427	int rc = __sk_del_node_init(sk);
428
429	if (rc) {
430		/* paranoid for a while -acme */
431		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
432		__sock_put(sk);
433	}
434	return rc;
435}
436#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
437
438static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
439{
440	if (sk_hashed(sk)) {
441		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
442		return 1;
443	}
444	return 0;
445}
446
447static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
448{
449	int rc = __sk_nulls_del_node_init_rcu(sk);
450
451	if (rc) {
452		/* paranoid for a while -acme */
453		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454		__sock_put(sk);
455	}
456	return rc;
457}
458
459static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
460{
461	hlist_add_head(&sk->sk_node, list);
462}
463
464static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
465{
466	sock_hold(sk);
467	__sk_add_node(sk, list);
468}
469
470static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
471{
472	sock_hold(sk);
473	hlist_add_head_rcu(&sk->sk_node, list);
474}
475
476static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
477{
478	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
479}
480
481static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
482{
483	sock_hold(sk);
484	__sk_nulls_add_node_rcu(sk, list);
485}
486
487static __inline__ void __sk_del_bind_node(struct sock *sk)
488{
489	__hlist_del(&sk->sk_bind_node);
490}
491
492static __inline__ void sk_add_bind_node(struct sock *sk,
493					struct hlist_head *list)
494{
495	hlist_add_head(&sk->sk_bind_node, list);
496}
497
498#define sk_for_each(__sk, node, list) \
499	hlist_for_each_entry(__sk, node, list, sk_node)
500#define sk_for_each_rcu(__sk, node, list) \
501	hlist_for_each_entry_rcu(__sk, node, list, sk_node)
502#define sk_nulls_for_each(__sk, node, list) \
503	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
504#define sk_nulls_for_each_rcu(__sk, node, list) \
505	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
506#define sk_for_each_from(__sk, node) \
507	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
508		hlist_for_each_entry_from(__sk, node, sk_node)
509#define sk_nulls_for_each_from(__sk, node) \
510	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
511		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
512#define sk_for_each_continue(__sk, node) \
513	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
514		hlist_for_each_entry_continue(__sk, node, sk_node)
515#define sk_for_each_safe(__sk, node, tmp, list) \
516	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
517#define sk_for_each_bound(__sk, node, list) \
518	hlist_for_each_entry(__sk, node, list, sk_bind_node)
519
520/* Sock flags */
521enum sock_flags {
522	SOCK_DEAD,
523	SOCK_DONE,
524	SOCK_URGINLINE,
525	SOCK_KEEPOPEN,
526	SOCK_LINGER,
527	SOCK_DESTROY,
528	SOCK_BROADCAST,
529	SOCK_TIMESTAMP,
530	SOCK_ZAPPED,
531	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
532	SOCK_DBG, /* %SO_DEBUG setting */
533	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
534	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
535	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
536	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
537	SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
538	SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
539	SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
540	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
541	SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
542	SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
543	SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
544	SOCK_FASYNC, /* fasync() active */
545	SOCK_RXQ_OVFL,
546};
547
548static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
549{
550	nsk->sk_flags = osk->sk_flags;
551}
552
553static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
554{
555	__set_bit(flag, &sk->sk_flags);
556}
557
558static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
559{
560	__clear_bit(flag, &sk->sk_flags);
561}
562
563static inline int sock_flag(struct sock *sk, enum sock_flags flag)
564{
565	return test_bit(flag, &sk->sk_flags);
566}
567
568static inline void sk_acceptq_removed(struct sock *sk)
569{
570	sk->sk_ack_backlog--;
571}
572
573static inline void sk_acceptq_added(struct sock *sk)
574{
575	sk->sk_ack_backlog++;
576}
577
578static inline int sk_acceptq_is_full(struct sock *sk)
579{
580	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
581}
582
583/*
584 * Compute minimal free write space needed to queue new packets.
585 */
586static inline int sk_stream_min_wspace(struct sock *sk)
587{
588	return sk->sk_wmem_queued >> 1;
589}
590
591static inline int sk_stream_wspace(struct sock *sk)
592{
593	return sk->sk_sndbuf - sk->sk_wmem_queued;
594}
595
596extern void sk_stream_write_space(struct sock *sk);
597
598static inline int sk_stream_memory_free(struct sock *sk)
599{
600	return sk->sk_wmem_queued < sk->sk_sndbuf;
601}
602
603/* OOB backlog add */
604static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
605{
606	/* dont let skb dst not refcounted, we are going to leave rcu lock */
607	skb_dst_force(skb);
608
609	if (!sk->sk_backlog.tail)
610		sk->sk_backlog.head = skb;
611	else
612		sk->sk_backlog.tail->next = skb;
613
614	sk->sk_backlog.tail = skb;
615	skb->next = NULL;
616}
617
618/*
619 * Take into account size of receive queue and backlog queue
620 */
621static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
622{
623	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
624
625	return qsize + skb->truesize > sk->sk_rcvbuf;
626}
627
628/* The per-socket spinlock must be held here. */
629static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
630{
631	if (sk_rcvqueues_full(sk, skb))
632		return -ENOBUFS;
633
634	__sk_add_backlog(sk, skb);
635	sk->sk_backlog.len += skb->truesize;
636	return 0;
637}
638
639static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
640{
641	return sk->sk_backlog_rcv(sk, skb);
642}
643
644static inline void sock_rps_record_flow(const struct sock *sk)
645{
646#ifdef CONFIG_RPS
647	struct rps_sock_flow_table *sock_flow_table;
648
649	rcu_read_lock();
650	sock_flow_table = rcu_dereference(rps_sock_flow_table);
651	rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
652	rcu_read_unlock();
653#endif
654}
655
656static inline void sock_rps_reset_flow(const struct sock *sk)
657{
658#ifdef CONFIG_RPS
659	struct rps_sock_flow_table *sock_flow_table;
660
661	rcu_read_lock();
662	sock_flow_table = rcu_dereference(rps_sock_flow_table);
663	rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
664	rcu_read_unlock();
665#endif
666}
667
668static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
669{
670#ifdef CONFIG_RPS
671	if (unlikely(sk->sk_rxhash != rxhash)) {
672		sock_rps_reset_flow(sk);
673		sk->sk_rxhash = rxhash;
674	}
675#endif
676}
677
678#define sk_wait_event(__sk, __timeo, __condition)			\
679	({	int __rc;						\
680		release_sock(__sk);					\
681		__rc = __condition;					\
682		if (!__rc) {						\
683			*(__timeo) = schedule_timeout(*(__timeo));	\
684		}							\
685		lock_sock(__sk);					\
686		__rc = __condition;					\
687		__rc;							\
688	})
689
690extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
691extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
692extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
693extern int sk_stream_error(struct sock *sk, int flags, int err);
694extern void sk_stream_kill_queues(struct sock *sk);
695
696extern int sk_wait_data(struct sock *sk, long *timeo);
697
698struct request_sock_ops;
699struct timewait_sock_ops;
700struct inet_hashinfo;
701struct raw_hashinfo;
702
703/* Networking protocol blocks we attach to sockets.
704 * socket layer -> transport layer interface
705 * transport -> network interface is defined by struct inet_proto
706 */
707struct proto {
708	void			(*close)(struct sock *sk,
709					long timeout);
710	int			(*connect)(struct sock *sk,
711				        struct sockaddr *uaddr,
712					int addr_len);
713	int			(*disconnect)(struct sock *sk, int flags);
714
715	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
716
717	int			(*ioctl)(struct sock *sk, int cmd,
718					 unsigned long arg);
719	int			(*init)(struct sock *sk);
720	void			(*destroy)(struct sock *sk);
721	void			(*shutdown)(struct sock *sk, int how);
722	int			(*setsockopt)(struct sock *sk, int level,
723					int optname, char __user *optval,
724					unsigned int optlen);
725	int			(*getsockopt)(struct sock *sk, int level,
726					int optname, char __user *optval,
727					int __user *option);
728#ifdef CONFIG_COMPAT
729	int			(*compat_setsockopt)(struct sock *sk,
730					int level,
731					int optname, char __user *optval,
732					unsigned int optlen);
733	int			(*compat_getsockopt)(struct sock *sk,
734					int level,
735					int optname, char __user *optval,
736					int __user *option);
737#endif
738	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
739					   struct msghdr *msg, size_t len);
740	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
741					   struct msghdr *msg,
742					size_t len, int noblock, int flags,
743					int *addr_len);
744	int			(*sendpage)(struct sock *sk, struct page *page,
745					int offset, size_t size, int flags);
746	int			(*bind)(struct sock *sk,
747					struct sockaddr *uaddr, int addr_len);
748
749	int			(*backlog_rcv) (struct sock *sk,
750						struct sk_buff *skb);
751
752	/* Keeping track of sk's, looking them up, and port selection methods. */
753	void			(*hash)(struct sock *sk);
754	void			(*unhash)(struct sock *sk);
755	void			(*rehash)(struct sock *sk);
756	int			(*get_port)(struct sock *sk, unsigned short snum);
757
758	/* Keeping track of sockets in use */
759#ifdef CONFIG_PROC_FS
760	unsigned int		inuse_idx;
761#endif
762
763	/* Memory pressure */
764	void			(*enter_memory_pressure)(struct sock *sk);
765	atomic_t		*memory_allocated;	/* Current allocated memory. */
766	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
767	/*
768	 * Pressure flag: try to collapse.
769	 * Technical note: it is used by multiple contexts non atomically.
770	 * All the __sk_mem_schedule() is of this nature: accounting
771	 * is strict, actions are advisory and have some latency.
772	 */
773	int			*memory_pressure;
774	int			*sysctl_mem;
775	int			*sysctl_wmem;
776	int			*sysctl_rmem;
777	int			max_header;
778	bool			no_autobind;
779
780	struct kmem_cache	*slab;
781	unsigned int		obj_size;
782	int			slab_flags;
783
784	struct percpu_counter	*orphan_count;
785
786	struct request_sock_ops	*rsk_prot;
787	struct timewait_sock_ops *twsk_prot;
788
789	union {
790		struct inet_hashinfo	*hashinfo;
791		struct udp_table	*udp_table;
792		struct raw_hashinfo	*raw_hash;
793	} h;
794
795	struct module		*owner;
796
797	char			name[32];
798
799	struct list_head	node;
800#ifdef SOCK_REFCNT_DEBUG
801	atomic_t		socks;
802#endif
803};
804
805extern int proto_register(struct proto *prot, int alloc_slab);
806extern void proto_unregister(struct proto *prot);
807
808#ifdef SOCK_REFCNT_DEBUG
809static inline void sk_refcnt_debug_inc(struct sock *sk)
810{
811	atomic_inc(&sk->sk_prot->socks);
812}
813
814static inline void sk_refcnt_debug_dec(struct sock *sk)
815{
816	atomic_dec(&sk->sk_prot->socks);
817	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
818	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
819}
820
821static inline void sk_refcnt_debug_release(const struct sock *sk)
822{
823	if (atomic_read(&sk->sk_refcnt) != 1)
824		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
825		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
826}
827#else /* SOCK_REFCNT_DEBUG */
828#define sk_refcnt_debug_inc(sk) do { } while (0)
829#define sk_refcnt_debug_dec(sk) do { } while (0)
830#define sk_refcnt_debug_release(sk) do { } while (0)
831#endif /* SOCK_REFCNT_DEBUG */
832
833
834#ifdef CONFIG_PROC_FS
835/* Called with local bh disabled */
836extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
837extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
838#else
839static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
840		int inc)
841{
842}
843#endif
844
845
846/* With per-bucket locks this operation is not-atomic, so that
847 * this version is not worse.
848 */
849static inline void __sk_prot_rehash(struct sock *sk)
850{
851	sk->sk_prot->unhash(sk);
852	sk->sk_prot->hash(sk);
853}
854
855/* About 10 seconds */
856#define SOCK_DESTROY_TIME (10*HZ)
857
858/* Sockets 0-1023 can't be bound to unless you are superuser */
859#define PROT_SOCK	1024
860
861#define SHUTDOWN_MASK	3
862#define RCV_SHUTDOWN	1
863#define SEND_SHUTDOWN	2
864
865#define SOCK_SNDBUF_LOCK	1
866#define SOCK_RCVBUF_LOCK	2
867#define SOCK_BINDADDR_LOCK	4
868#define SOCK_BINDPORT_LOCK	8
869
870/* sock_iocb: used to kick off async processing of socket ios */
871struct sock_iocb {
872	struct list_head	list;
873
874	int			flags;
875	int			size;
876	struct socket		*sock;
877	struct sock		*sk;
878	struct scm_cookie	*scm;
879	struct msghdr		*msg, async_msg;
880	struct kiocb		*kiocb;
881};
882
883static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
884{
885	return (struct sock_iocb *)iocb->private;
886}
887
888static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
889{
890	return si->kiocb;
891}
892
893struct socket_alloc {
894	struct socket socket;
895	struct inode vfs_inode;
896};
897
898static inline struct socket *SOCKET_I(struct inode *inode)
899{
900	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
901}
902
903static inline struct inode *SOCK_INODE(struct socket *socket)
904{
905	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
906}
907
908/*
909 * Functions for memory accounting
910 */
911extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
912extern void __sk_mem_reclaim(struct sock *sk);
913
914#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
915#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
916#define SK_MEM_SEND	0
917#define SK_MEM_RECV	1
918
919static inline int sk_mem_pages(int amt)
920{
921	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
922}
923
924static inline int sk_has_account(struct sock *sk)
925{
926	/* return true if protocol supports memory accounting */
927	return !!sk->sk_prot->memory_allocated;
928}
929
930static inline int sk_wmem_schedule(struct sock *sk, int size)
931{
932	if (!sk_has_account(sk))
933		return 1;
934	return size <= sk->sk_forward_alloc ||
935		__sk_mem_schedule(sk, size, SK_MEM_SEND);
936}
937
938static inline int sk_rmem_schedule(struct sock *sk, int size)
939{
940	if (!sk_has_account(sk))
941		return 1;
942	return size <= sk->sk_forward_alloc ||
943		__sk_mem_schedule(sk, size, SK_MEM_RECV);
944}
945
946static inline void sk_mem_reclaim(struct sock *sk)
947{
948	if (!sk_has_account(sk))
949		return;
950	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
951		__sk_mem_reclaim(sk);
952}
953
954static inline void sk_mem_reclaim_partial(struct sock *sk)
955{
956	if (!sk_has_account(sk))
957		return;
958	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
959		__sk_mem_reclaim(sk);
960}
961
962static inline void sk_mem_charge(struct sock *sk, int size)
963{
964	if (!sk_has_account(sk))
965		return;
966	sk->sk_forward_alloc -= size;
967}
968
969static inline void sk_mem_uncharge(struct sock *sk, int size)
970{
971	if (!sk_has_account(sk))
972		return;
973	sk->sk_forward_alloc += size;
974}
975
976static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
977{
978	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
979	sk->sk_wmem_queued -= skb->truesize;
980	sk_mem_uncharge(sk, skb->truesize);
981	__kfree_skb(skb);
982}
983
984/* Used by processes to "lock" a socket state, so that
985 * interrupts and bottom half handlers won't change it
986 * from under us. It essentially blocks any incoming
987 * packets, so that we won't get any new data or any
988 * packets that change the state of the socket.
989 *
990 * While locked, BH processing will add new packets to
991 * the backlog queue.  This queue is processed by the
992 * owner of the socket lock right before it is released.
993 *
994 * Since ~2.3.5 it is also exclusive sleep lock serializing
995 * accesses from user process context.
996 */
997#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
998
999/*
1000 * Macro so as to not evaluate some arguments when
1001 * lockdep is not enabled.
1002 *
1003 * Mark both the sk_lock and the sk_lock.slock as a
1004 * per-address-family lock class.
1005 */
1006#define sock_lock_init_class_and_name(sk, sname, skey, name, key) 	\
1007do {									\
1008	sk->sk_lock.owned = 0;						\
1009	init_waitqueue_head(&sk->sk_lock.wq);				\
1010	spin_lock_init(&(sk)->sk_lock.slock);				\
1011	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1012			sizeof((sk)->sk_lock));				\
1013	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1014		       	(skey), (sname));				\
1015	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1016} while (0)
1017
1018extern void lock_sock_nested(struct sock *sk, int subclass);
1019
1020static inline void lock_sock(struct sock *sk)
1021{
1022	lock_sock_nested(sk, 0);
1023}
1024
1025extern void release_sock(struct sock *sk);
1026
1027/* BH context may only use the following locking interface. */
1028#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1029#define bh_lock_sock_nested(__sk) \
1030				spin_lock_nested(&((__sk)->sk_lock.slock), \
1031				SINGLE_DEPTH_NESTING)
1032#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1033
1034extern bool lock_sock_fast(struct sock *sk);
1035/**
1036 * unlock_sock_fast - complement of lock_sock_fast
1037 * @sk: socket
1038 * @slow: slow mode
1039 *
1040 * fast unlock socket for user context.
1041 * If slow mode is on, we call regular release_sock()
1042 */
1043static inline void unlock_sock_fast(struct sock *sk, bool slow)
1044{
1045	if (slow)
1046		release_sock(sk);
1047	else
1048		spin_unlock_bh(&sk->sk_lock.slock);
1049}
1050
1051
1052extern struct sock		*sk_alloc(struct net *net, int family,
1053					  gfp_t priority,
1054					  struct proto *prot);
1055extern void			sk_free(struct sock *sk);
1056extern void			sk_release_kernel(struct sock *sk);
1057extern struct sock		*sk_clone(const struct sock *sk,
1058					  const gfp_t priority);
1059
1060extern struct sk_buff		*sock_wmalloc(struct sock *sk,
1061					      unsigned long size, int force,
1062					      gfp_t priority);
1063extern struct sk_buff		*sock_rmalloc(struct sock *sk,
1064					      unsigned long size, int force,
1065					      gfp_t priority);
1066extern void			sock_wfree(struct sk_buff *skb);
1067extern void			sock_rfree(struct sk_buff *skb);
1068
1069extern int			sock_setsockopt(struct socket *sock, int level,
1070						int op, char __user *optval,
1071						unsigned int optlen);
1072
1073extern int			sock_getsockopt(struct socket *sock, int level,
1074						int op, char __user *optval,
1075						int __user *optlen);
1076extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
1077						     unsigned long size,
1078						     int noblock,
1079						     int *errcode);
1080extern struct sk_buff 		*sock_alloc_send_pskb(struct sock *sk,
1081						      unsigned long header_len,
1082						      unsigned long data_len,
1083						      int noblock,
1084						      int *errcode);
1085extern void *sock_kmalloc(struct sock *sk, int size,
1086			  gfp_t priority);
1087extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1088extern void sk_send_sigurg(struct sock *sk);
1089
1090#ifdef CONFIG_CGROUPS
1091extern void sock_update_classid(struct sock *sk);
1092#else
1093static inline void sock_update_classid(struct sock *sk)
1094{
1095}
1096#endif
1097
1098/*
1099 * Functions to fill in entries in struct proto_ops when a protocol
1100 * does not implement a particular function.
1101 */
1102extern int                      sock_no_bind(struct socket *,
1103					     struct sockaddr *, int);
1104extern int                      sock_no_connect(struct socket *,
1105						struct sockaddr *, int, int);
1106extern int                      sock_no_socketpair(struct socket *,
1107						   struct socket *);
1108extern int                      sock_no_accept(struct socket *,
1109					       struct socket *, int);
1110extern int                      sock_no_getname(struct socket *,
1111						struct sockaddr *, int *, int);
1112extern unsigned int             sock_no_poll(struct file *, struct socket *,
1113					     struct poll_table_struct *);
1114extern int                      sock_no_ioctl(struct socket *, unsigned int,
1115					      unsigned long);
1116extern int			sock_no_listen(struct socket *, int);
1117extern int                      sock_no_shutdown(struct socket *, int);
1118extern int			sock_no_getsockopt(struct socket *, int , int,
1119						   char __user *, int __user *);
1120extern int			sock_no_setsockopt(struct socket *, int, int,
1121						   char __user *, unsigned int);
1122extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1123						struct msghdr *, size_t);
1124extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1125						struct msghdr *, size_t, int);
1126extern int			sock_no_mmap(struct file *file,
1127					     struct socket *sock,
1128					     struct vm_area_struct *vma);
1129extern ssize_t			sock_no_sendpage(struct socket *sock,
1130						struct page *page,
1131						int offset, size_t size,
1132						int flags);
1133
1134/*
1135 * Functions to fill in entries in struct proto_ops when a protocol
1136 * uses the inet style.
1137 */
1138extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1139				  char __user *optval, int __user *optlen);
1140extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1141			       struct msghdr *msg, size_t size, int flags);
1142extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1143				  char __user *optval, unsigned int optlen);
1144extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1145		int optname, char __user *optval, int __user *optlen);
1146extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1147		int optname, char __user *optval, unsigned int optlen);
1148
1149extern void sk_common_release(struct sock *sk);
1150
1151/*
1152 *	Default socket callbacks and setup code
1153 */
1154
1155/* Initialise core socket variables */
1156extern void sock_init_data(struct socket *sock, struct sock *sk);
1157
1158extern void sk_filter_release_rcu(struct rcu_head *rcu);
1159
1160/**
1161 *	sk_filter_release - release a socket filter
1162 *	@fp: filter to remove
1163 *
1164 *	Remove a filter from a socket and release its resources.
1165 */
1166
1167static inline void sk_filter_release(struct sk_filter *fp)
1168{
1169	if (atomic_dec_and_test(&fp->refcnt))
1170		call_rcu_bh(&fp->rcu, sk_filter_release_rcu);
1171}
1172
1173static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1174{
1175	unsigned int size = sk_filter_len(fp);
1176
1177	atomic_sub(size, &sk->sk_omem_alloc);
1178	sk_filter_release(fp);
1179}
1180
1181static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1182{
1183	atomic_inc(&fp->refcnt);
1184	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1185}
1186
1187/*
1188 * Socket reference counting postulates.
1189 *
1190 * * Each user of socket SHOULD hold a reference count.
1191 * * Each access point to socket (an hash table bucket, reference from a list,
1192 *   running timer, skb in flight MUST hold a reference count.
1193 * * When reference count hits 0, it means it will never increase back.
1194 * * When reference count hits 0, it means that no references from
1195 *   outside exist to this socket and current process on current CPU
1196 *   is last user and may/should destroy this socket.
1197 * * sk_free is called from any context: process, BH, IRQ. When
1198 *   it is called, socket has no references from outside -> sk_free
1199 *   may release descendant resources allocated by the socket, but
1200 *   to the time when it is called, socket is NOT referenced by any
1201 *   hash tables, lists etc.
1202 * * Packets, delivered from outside (from network or from another process)
1203 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1204 *   when they sit in queue. Otherwise, packets will leak to hole, when
1205 *   socket is looked up by one cpu and unhasing is made by another CPU.
1206 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1207 *   (leak to backlog). Packet socket does all the processing inside
1208 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1209 *   use separate SMP lock, so that they are prone too.
1210 */
1211
1212/* Ungrab socket and destroy it, if it was the last reference. */
1213static inline void sock_put(struct sock *sk)
1214{
1215	if (atomic_dec_and_test(&sk->sk_refcnt))
1216		sk_free(sk);
1217}
1218
1219extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1220			  const int nested);
1221
1222static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1223{
1224	sk->sk_tx_queue_mapping = tx_queue;
1225}
1226
1227static inline void sk_tx_queue_clear(struct sock *sk)
1228{
1229	sk->sk_tx_queue_mapping = -1;
1230}
1231
1232static inline int sk_tx_queue_get(const struct sock *sk)
1233{
1234	return sk ? sk->sk_tx_queue_mapping : -1;
1235}
1236
1237static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1238{
1239	sk_tx_queue_clear(sk);
1240	sk->sk_socket = sock;
1241}
1242
1243static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1244{
1245	return &sk->sk_wq->wait;
1246}
1247/* Detach socket from process context.
1248 * Announce socket dead, detach it from wait queue and inode.
1249 * Note that parent inode held reference count on this struct sock,
1250 * we do not release it in this function, because protocol
1251 * probably wants some additional cleanups or even continuing
1252 * to work with this socket (TCP).
1253 */
1254static inline void sock_orphan(struct sock *sk)
1255{
1256	write_lock_bh(&sk->sk_callback_lock);
1257	sock_set_flag(sk, SOCK_DEAD);
1258	sk_set_socket(sk, NULL);
1259	sk->sk_wq  = NULL;
1260	write_unlock_bh(&sk->sk_callback_lock);
1261}
1262
1263static inline void sock_graft(struct sock *sk, struct socket *parent)
1264{
1265	write_lock_bh(&sk->sk_callback_lock);
1266	rcu_assign_pointer(sk->sk_wq, parent->wq);
1267	parent->sk = sk;
1268	sk_set_socket(sk, parent);
1269	security_sock_graft(sk, parent);
1270	write_unlock_bh(&sk->sk_callback_lock);
1271}
1272
1273extern int sock_i_uid(struct sock *sk);
1274extern unsigned long sock_i_ino(struct sock *sk);
1275
1276static inline struct dst_entry *
1277__sk_dst_get(struct sock *sk)
1278{
1279	return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1280						       sock_owned_by_user(sk) ||
1281						       lockdep_is_held(&sk->sk_lock.slock));
1282}
1283
1284static inline struct dst_entry *
1285sk_dst_get(struct sock *sk)
1286{
1287	struct dst_entry *dst;
1288
1289	rcu_read_lock();
1290	dst = rcu_dereference(sk->sk_dst_cache);
1291	if (dst)
1292		dst_hold(dst);
1293	rcu_read_unlock();
1294	return dst;
1295}
1296
1297extern void sk_reset_txq(struct sock *sk);
1298
1299static inline void dst_negative_advice(struct sock *sk)
1300{
1301	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1302
1303	if (dst && dst->ops->negative_advice) {
1304		ndst = dst->ops->negative_advice(dst);
1305
1306		if (ndst != dst) {
1307			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1308			sk_reset_txq(sk);
1309		}
1310	}
1311}
1312
1313static inline void
1314__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1315{
1316	struct dst_entry *old_dst;
1317
1318	sk_tx_queue_clear(sk);
1319	/*
1320	 * This can be called while sk is owned by the caller only,
1321	 * with no state that can be checked in a rcu_dereference_check() cond
1322	 */
1323	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1324	rcu_assign_pointer(sk->sk_dst_cache, dst);
1325	dst_release(old_dst);
1326}
1327
1328static inline void
1329sk_dst_set(struct sock *sk, struct dst_entry *dst)
1330{
1331	spin_lock(&sk->sk_dst_lock);
1332	__sk_dst_set(sk, dst);
1333	spin_unlock(&sk->sk_dst_lock);
1334}
1335
1336static inline void
1337__sk_dst_reset(struct sock *sk)
1338{
1339	__sk_dst_set(sk, NULL);
1340}
1341
1342static inline void
1343sk_dst_reset(struct sock *sk)
1344{
1345	spin_lock(&sk->sk_dst_lock);
1346	__sk_dst_reset(sk);
1347	spin_unlock(&sk->sk_dst_lock);
1348}
1349
1350extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1351
1352extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1353
1354static inline int sk_can_gso(const struct sock *sk)
1355{
1356	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1357}
1358
1359extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1360
1361static inline void sk_nocaps_add(struct sock *sk, int flags)
1362{
1363	sk->sk_route_nocaps |= flags;
1364	sk->sk_route_caps &= ~flags;
1365}
1366
1367static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1368				   struct sk_buff *skb, struct page *page,
1369				   int off, int copy)
1370{
1371	if (skb->ip_summed == CHECKSUM_NONE) {
1372		int err = 0;
1373		__wsum csum = csum_and_copy_from_user(from,
1374						     page_address(page) + off,
1375							    copy, 0, &err);
1376		if (err)
1377			return err;
1378		skb->csum = csum_block_add(skb->csum, csum, skb->len);
1379	} else if (copy_from_user(page_address(page) + off, from, copy))
1380		return -EFAULT;
1381
1382	skb->len	     += copy;
1383	skb->data_len	     += copy;
1384	skb->truesize	     += copy;
1385	sk->sk_wmem_queued   += copy;
1386	sk_mem_charge(sk, copy);
1387	return 0;
1388}
1389
1390/**
1391 * sk_wmem_alloc_get - returns write allocations
1392 * @sk: socket
1393 *
1394 * Returns sk_wmem_alloc minus initial offset of one
1395 */
1396static inline int sk_wmem_alloc_get(const struct sock *sk)
1397{
1398	return atomic_read(&sk->sk_wmem_alloc) - 1;
1399}
1400
1401/**
1402 * sk_rmem_alloc_get - returns read allocations
1403 * @sk: socket
1404 *
1405 * Returns sk_rmem_alloc
1406 */
1407static inline int sk_rmem_alloc_get(const struct sock *sk)
1408{
1409	return atomic_read(&sk->sk_rmem_alloc);
1410}
1411
1412/**
1413 * sk_has_allocations - check if allocations are outstanding
1414 * @sk: socket
1415 *
1416 * Returns true if socket has write or read allocations
1417 */
1418static inline int sk_has_allocations(const struct sock *sk)
1419{
1420	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1421}
1422
1423/**
1424 * wq_has_sleeper - check if there are any waiting processes
1425 * @wq: struct socket_wq
1426 *
1427 * Returns true if socket_wq has waiting processes
1428 *
1429 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1430 * barrier call. They were added due to the race found within the tcp code.
1431 *
1432 * Consider following tcp code paths:
1433 *
1434 * CPU1                  CPU2
1435 *
1436 * sys_select            receive packet
1437 *   ...                 ...
1438 *   __add_wait_queue    update tp->rcv_nxt
1439 *   ...                 ...
1440 *   tp->rcv_nxt check   sock_def_readable
1441 *   ...                 {
1442 *   schedule               rcu_read_lock();
1443 *                          wq = rcu_dereference(sk->sk_wq);
1444 *                          if (wq && waitqueue_active(&wq->wait))
1445 *                              wake_up_interruptible(&wq->wait)
1446 *                          ...
1447 *                       }
1448 *
1449 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1450 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1451 * could then endup calling schedule and sleep forever if there are no more
1452 * data on the socket.
1453 *
1454 */
1455static inline bool wq_has_sleeper(struct socket_wq *wq)
1456{
1457
1458	/*
1459	 * We need to be sure we are in sync with the
1460	 * add_wait_queue modifications to the wait queue.
1461	 *
1462	 * This memory barrier is paired in the sock_poll_wait.
1463	 */
1464	smp_mb();
1465	return wq && waitqueue_active(&wq->wait);
1466}
1467
1468/**
1469 * sock_poll_wait - place memory barrier behind the poll_wait call.
1470 * @filp:           file
1471 * @wait_address:   socket wait queue
1472 * @p:              poll_table
1473 *
1474 * See the comments in the wq_has_sleeper function.
1475 */
1476static inline void sock_poll_wait(struct file *filp,
1477		wait_queue_head_t *wait_address, poll_table *p)
1478{
1479	if (p && wait_address) {
1480		poll_wait(filp, wait_address, p);
1481		/*
1482		 * We need to be sure we are in sync with the
1483		 * socket flags modification.
1484		 *
1485		 * This memory barrier is paired in the wq_has_sleeper.
1486		*/
1487		smp_mb();
1488	}
1489}
1490
1491/*
1492 * 	Queue a received datagram if it will fit. Stream and sequenced
1493 *	protocols can't normally use this as they need to fit buffers in
1494 *	and play with them.
1495 *
1496 * 	Inlined as it's very short and called for pretty much every
1497 *	packet ever received.
1498 */
1499
1500static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1501{
1502	skb_orphan(skb);
1503	skb->sk = sk;
1504	skb->destructor = sock_wfree;
1505	/*
1506	 * We used to take a refcount on sk, but following operation
1507	 * is enough to guarantee sk_free() wont free this sock until
1508	 * all in-flight packets are completed
1509	 */
1510	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1511}
1512
1513static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1514{
1515	skb_orphan(skb);
1516	skb->sk = sk;
1517	skb->destructor = sock_rfree;
1518	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1519	sk_mem_charge(sk, skb->truesize);
1520}
1521
1522extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1523			   unsigned long expires);
1524
1525extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1526
1527extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1528
1529extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1530
1531/*
1532 *	Recover an error report and clear atomically
1533 */
1534
1535static inline int sock_error(struct sock *sk)
1536{
1537	int err;
1538	if (likely(!sk->sk_err))
1539		return 0;
1540	err = xchg(&sk->sk_err, 0);
1541	return -err;
1542}
1543
1544static inline unsigned long sock_wspace(struct sock *sk)
1545{
1546	int amt = 0;
1547
1548	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1549		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1550		if (amt < 0)
1551			amt = 0;
1552	}
1553	return amt;
1554}
1555
1556static inline void sk_wake_async(struct sock *sk, int how, int band)
1557{
1558	if (sock_flag(sk, SOCK_FASYNC))
1559		sock_wake_async(sk->sk_socket, how, band);
1560}
1561
1562#define SOCK_MIN_SNDBUF 2048
1563#define SOCK_MIN_RCVBUF 256
1564
1565static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1566{
1567	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1568		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1569		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1570	}
1571}
1572
1573struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1574
1575static inline struct page *sk_stream_alloc_page(struct sock *sk)
1576{
1577	struct page *page = NULL;
1578
1579	page = alloc_pages(sk->sk_allocation, 0);
1580	if (!page) {
1581		sk->sk_prot->enter_memory_pressure(sk);
1582		sk_stream_moderate_sndbuf(sk);
1583	}
1584	return page;
1585}
1586
1587/*
1588 *	Default write policy as shown to user space via poll/select/SIGIO
1589 */
1590static inline int sock_writeable(const struct sock *sk)
1591{
1592	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1593}
1594
1595static inline gfp_t gfp_any(void)
1596{
1597	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1598}
1599
1600static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1601{
1602	return noblock ? 0 : sk->sk_rcvtimeo;
1603}
1604
1605static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1606{
1607	return noblock ? 0 : sk->sk_sndtimeo;
1608}
1609
1610static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1611{
1612	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1613}
1614
1615/* Alas, with timeout socket operations are not restartable.
1616 * Compare this to poll().
1617 */
1618static inline int sock_intr_errno(long timeo)
1619{
1620	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1621}
1622
1623extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1624	struct sk_buff *skb);
1625
1626static __inline__ void
1627sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1628{
1629	ktime_t kt = skb->tstamp;
1630	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1631
1632	/*
1633	 * generate control messages if
1634	 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1635	 *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
1636	 * - software time stamp available and wanted
1637	 *   (SOCK_TIMESTAMPING_SOFTWARE)
1638	 * - hardware time stamps available and wanted
1639	 *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
1640	 *   SOCK_TIMESTAMPING_RAW_HARDWARE)
1641	 */
1642	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1643	    sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1644	    (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1645	    (hwtstamps->hwtstamp.tv64 &&
1646	     sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1647	    (hwtstamps->syststamp.tv64 &&
1648	     sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1649		__sock_recv_timestamp(msg, sk, skb);
1650	else
1651		sk->sk_stamp = kt;
1652}
1653
1654extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1655				     struct sk_buff *skb);
1656
1657static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1658					  struct sk_buff *skb)
1659{
1660#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
1661			   (1UL << SOCK_RCVTSTAMP)			| \
1662			   (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)	| \
1663			   (1UL << SOCK_TIMESTAMPING_SOFTWARE)		| \
1664			   (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) 	| \
1665			   (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1666
1667	if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1668		__sock_recv_ts_and_drops(msg, sk, skb);
1669	else
1670		sk->sk_stamp = skb->tstamp;
1671}
1672
1673/**
1674 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1675 * @msg:	outgoing packet
1676 * @sk:		socket sending this packet
1677 * @shtx:	filled with instructions for time stamping
1678 *
1679 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1680 * parameters are invalid.
1681 */
1682extern int sock_tx_timestamp(struct msghdr *msg,
1683			     struct sock *sk,
1684			     union skb_shared_tx *shtx);
1685
1686
1687/**
1688 * sk_eat_skb - Release a skb if it is no longer needed
1689 * @sk: socket to eat this skb from
1690 * @skb: socket buffer to eat
1691 * @copied_early: flag indicating whether DMA operations copied this data early
1692 *
1693 * This routine must be called with interrupts disabled or with the socket
1694 * locked so that the sk_buff queue operation is ok.
1695*/
1696#ifdef CONFIG_NET_DMA
1697static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1698{
1699	__skb_unlink(skb, &sk->sk_receive_queue);
1700	if (!copied_early)
1701		__kfree_skb(skb);
1702	else
1703		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
1704}
1705#else
1706static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1707{
1708	__skb_unlink(skb, &sk->sk_receive_queue);
1709	__kfree_skb(skb);
1710}
1711#endif
1712
1713static inline
1714struct net *sock_net(const struct sock *sk)
1715{
1716	return read_pnet(&sk->sk_net);
1717}
1718
1719static inline
1720void sock_net_set(struct sock *sk, struct net *net)
1721{
1722	write_pnet(&sk->sk_net, net);
1723}
1724
1725/*
1726 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1727 * They should not hold a referrence to a namespace in order to allow
1728 * to stop it.
1729 * Sockets after sk_change_net should be released using sk_release_kernel
1730 */
1731static inline void sk_change_net(struct sock *sk, struct net *net)
1732{
1733	put_net(sock_net(sk));
1734	sock_net_set(sk, hold_net(net));
1735}
1736
1737static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1738{
1739	if (unlikely(skb->sk)) {
1740		struct sock *sk = skb->sk;
1741
1742		skb->destructor = NULL;
1743		skb->sk = NULL;
1744		return sk;
1745	}
1746	return NULL;
1747}
1748
1749extern void sock_enable_timestamp(struct sock *sk, int flag);
1750extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1751extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1752
1753/*
1754 *	Enable debug/info messages
1755 */
1756extern int net_msg_warn;
1757#define NETDEBUG(fmt, args...) \
1758	do { if (net_msg_warn) printk(fmt,##args); } while (0)
1759
1760#define LIMIT_NETDEBUG(fmt, args...) \
1761	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1762
1763extern __u32 sysctl_wmem_max;
1764extern __u32 sysctl_rmem_max;
1765
1766extern void sk_init(void);
1767
1768extern int sysctl_optmem_max;
1769
1770extern __u32 sysctl_wmem_default;
1771extern __u32 sysctl_rmem_default;
1772
1773#endif	/* _SOCK_H */
1774