• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/include/linux/
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/range.h>
16#include <linux/pfn.h>
17
18struct mempolicy;
19struct anon_vma;
20struct file_ra_state;
21struct user_struct;
22struct writeback_control;
23
24#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
29extern unsigned long totalram_pages;
30extern void * high_memory;
31extern int page_cluster;
32
33#ifdef CONFIG_SYSCTL
34extern int sysctl_legacy_va_layout;
35#else
36#define sysctl_legacy_va_layout 0
37#endif
38
39#include <asm/page.h>
40#include <asm/pgtable.h>
41#include <asm/processor.h>
42
43#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45/* to align the pointer to the (next) page boundary */
46#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47
48/*
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
55 */
56
57extern struct kmem_cache *vm_area_cachep;
58
59#ifndef CONFIG_MMU
60extern struct rb_root nommu_region_tree;
61extern struct rw_semaphore nommu_region_sem;
62
63extern unsigned int kobjsize(const void *objp);
64#endif
65
66/*
67 * vm_flags in vm_area_struct, see mm_types.h.
68 */
69#define VM_READ		0x00000001	/* currently active flags */
70#define VM_WRITE	0x00000002
71#define VM_EXEC		0x00000004
72#define VM_SHARED	0x00000008
73
74/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75#define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
76#define VM_MAYWRITE	0x00000020
77#define VM_MAYEXEC	0x00000040
78#define VM_MAYSHARE	0x00000080
79
80#define VM_GROWSDOWN	0x00000100	/* general info on the segment */
81#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
82#define VM_GROWSUP	0x00000200
83#else
84#define VM_GROWSUP	0x00000000
85#endif
86#define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
87#define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
88
89#define VM_EXECUTABLE	0x00001000
90#define VM_LOCKED	0x00002000
91#define VM_IO           0x00004000	/* Memory mapped I/O or similar */
92
93					/* Used by sys_madvise() */
94#define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
95#define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
96
97#define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
98#define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
99#define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
100#define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
101#define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
102#define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
103#define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
104#define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
105#define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
106#define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
107
108#define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
109#define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
110#define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
111#define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
112#define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
113
114/* Bits set in the VMA until the stack is in its final location */
115#define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
116
117#ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
118#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
119#endif
120
121#ifdef CONFIG_STACK_GROWSUP
122#define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123#else
124#define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
125#endif
126
127#define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
128#define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
129#define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
130#define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
131#define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
132
133/*
134 * special vmas that are non-mergable, non-mlock()able
135 */
136#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
137
138/*
139 * mapping from the currently active vm_flags protection bits (the
140 * low four bits) to a page protection mask..
141 */
142extern pgprot_t protection_map[16];
143
144#define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
145#define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
146#define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
147
148/*
149 * This interface is used by x86 PAT code to identify a pfn mapping that is
150 * linear over entire vma. This is to optimize PAT code that deals with
151 * marking the physical region with a particular prot. This is not for generic
152 * mm use. Note also that this check will not work if the pfn mapping is
153 * linear for a vma starting at physical address 0. In which case PAT code
154 * falls back to slow path of reserving physical range page by page.
155 */
156static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
157{
158	return (vma->vm_flags & VM_PFN_AT_MMAP);
159}
160
161static inline int is_pfn_mapping(struct vm_area_struct *vma)
162{
163	return (vma->vm_flags & VM_PFNMAP);
164}
165
166/*
167 * vm_fault is filled by the the pagefault handler and passed to the vma's
168 * ->fault function. The vma's ->fault is responsible for returning a bitmask
169 * of VM_FAULT_xxx flags that give details about how the fault was handled.
170 *
171 * pgoff should be used in favour of virtual_address, if possible. If pgoff
172 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
173 * mapping support.
174 */
175struct vm_fault {
176	unsigned int flags;		/* FAULT_FLAG_xxx flags */
177	pgoff_t pgoff;			/* Logical page offset based on vma */
178	void __user *virtual_address;	/* Faulting virtual address */
179
180	struct page *page;		/* ->fault handlers should return a
181					 * page here, unless VM_FAULT_NOPAGE
182					 * is set (which is also implied by
183					 * VM_FAULT_ERROR).
184					 */
185};
186
187/*
188 * These are the virtual MM functions - opening of an area, closing and
189 * unmapping it (needed to keep files on disk up-to-date etc), pointer
190 * to the functions called when a no-page or a wp-page exception occurs.
191 */
192struct vm_operations_struct {
193	void (*open)(struct vm_area_struct * area);
194	void (*close)(struct vm_area_struct * area);
195	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
196
197	/* notification that a previously read-only page is about to become
198	 * writable, if an error is returned it will cause a SIGBUS */
199	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
200
201	/* called by access_process_vm when get_user_pages() fails, typically
202	 * for use by special VMAs that can switch between memory and hardware
203	 */
204	int (*access)(struct vm_area_struct *vma, unsigned long addr,
205		      void *buf, int len, int write);
206#ifdef CONFIG_NUMA
207	/*
208	 * set_policy() op must add a reference to any non-NULL @new mempolicy
209	 * to hold the policy upon return.  Caller should pass NULL @new to
210	 * remove a policy and fall back to surrounding context--i.e. do not
211	 * install a MPOL_DEFAULT policy, nor the task or system default
212	 * mempolicy.
213	 */
214	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
215
216	/*
217	 * get_policy() op must add reference [mpol_get()] to any policy at
218	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
219	 * in mm/mempolicy.c will do this automatically.
220	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
221	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
222	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
223	 * must return NULL--i.e., do not "fallback" to task or system default
224	 * policy.
225	 */
226	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
227					unsigned long addr);
228	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
229		const nodemask_t *to, unsigned long flags);
230#endif
231};
232
233struct mmu_gather;
234struct inode;
235
236#define page_private(page)		((page)->private)
237#define set_page_private(page, v)	((page)->private = (v))
238
239#include <linux/page-flags.h>
240
241/*
242 * Methods to modify the page usage count.
243 *
244 * What counts for a page usage:
245 * - cache mapping   (page->mapping)
246 * - private data    (page->private)
247 * - page mapped in a task's page tables, each mapping
248 *   is counted separately
249 *
250 * Also, many kernel routines increase the page count before a critical
251 * routine so they can be sure the page doesn't go away from under them.
252 */
253
254/*
255 * Drop a ref, return true if the refcount fell to zero (the page has no users)
256 */
257static inline int put_page_testzero(struct page *page)
258{
259	VM_BUG_ON(atomic_read(&page->_count) == 0);
260	return atomic_dec_and_test(&page->_count);
261}
262
263/*
264 * Try to grab a ref unless the page has a refcount of zero, return false if
265 * that is the case.
266 */
267static inline int get_page_unless_zero(struct page *page)
268{
269	return atomic_inc_not_zero(&page->_count);
270}
271
272extern int page_is_ram(unsigned long pfn);
273
274/* Support for virtually mapped pages */
275struct page *vmalloc_to_page(const void *addr);
276unsigned long vmalloc_to_pfn(const void *addr);
277
278/*
279 * Determine if an address is within the vmalloc range
280 *
281 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
282 * is no special casing required.
283 */
284static inline int is_vmalloc_addr(const void *x)
285{
286#ifdef CONFIG_MMU
287	unsigned long addr = (unsigned long)x;
288
289	return addr >= VMALLOC_START && addr < VMALLOC_END;
290#else
291	return 0;
292#endif
293}
294#ifdef CONFIG_MMU
295extern int is_vmalloc_or_module_addr(const void *x);
296#else
297static inline int is_vmalloc_or_module_addr(const void *x)
298{
299	return 0;
300}
301#endif
302
303static inline struct page *compound_head(struct page *page)
304{
305	if (unlikely(PageTail(page)))
306		return page->first_page;
307	return page;
308}
309
310static inline int page_count(struct page *page)
311{
312	return atomic_read(&compound_head(page)->_count);
313}
314
315static inline void get_page(struct page *page)
316{
317	page = compound_head(page);
318	VM_BUG_ON(atomic_read(&page->_count) == 0);
319	atomic_inc(&page->_count);
320}
321
322static inline struct page *virt_to_head_page(const void *x)
323{
324	struct page *page = virt_to_page(x);
325	return compound_head(page);
326}
327
328/*
329 * Setup the page count before being freed into the page allocator for
330 * the first time (boot or memory hotplug)
331 */
332static inline void init_page_count(struct page *page)
333{
334	atomic_set(&page->_count, 1);
335}
336
337void put_page(struct page *page);
338void put_pages_list(struct list_head *pages);
339
340void split_page(struct page *page, unsigned int order);
341int split_free_page(struct page *page);
342
343/*
344 * Compound pages have a destructor function.  Provide a
345 * prototype for that function and accessor functions.
346 * These are _only_ valid on the head of a PG_compound page.
347 */
348typedef void compound_page_dtor(struct page *);
349
350static inline void set_compound_page_dtor(struct page *page,
351						compound_page_dtor *dtor)
352{
353	page[1].lru.next = (void *)dtor;
354}
355
356static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
357{
358	return (compound_page_dtor *)page[1].lru.next;
359}
360
361static inline int compound_order(struct page *page)
362{
363	if (!PageHead(page))
364		return 0;
365	return (unsigned long)page[1].lru.prev;
366}
367
368static inline void set_compound_order(struct page *page, unsigned long order)
369{
370	page[1].lru.prev = (void *)order;
371}
372
373/*
374 * Multiple processes may "see" the same page. E.g. for untouched
375 * mappings of /dev/null, all processes see the same page full of
376 * zeroes, and text pages of executables and shared libraries have
377 * only one copy in memory, at most, normally.
378 *
379 * For the non-reserved pages, page_count(page) denotes a reference count.
380 *   page_count() == 0 means the page is free. page->lru is then used for
381 *   freelist management in the buddy allocator.
382 *   page_count() > 0  means the page has been allocated.
383 *
384 * Pages are allocated by the slab allocator in order to provide memory
385 * to kmalloc and kmem_cache_alloc. In this case, the management of the
386 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
387 * unless a particular usage is carefully commented. (the responsibility of
388 * freeing the kmalloc memory is the caller's, of course).
389 *
390 * A page may be used by anyone else who does a __get_free_page().
391 * In this case, page_count still tracks the references, and should only
392 * be used through the normal accessor functions. The top bits of page->flags
393 * and page->virtual store page management information, but all other fields
394 * are unused and could be used privately, carefully. The management of this
395 * page is the responsibility of the one who allocated it, and those who have
396 * subsequently been given references to it.
397 *
398 * The other pages (we may call them "pagecache pages") are completely
399 * managed by the Linux memory manager: I/O, buffers, swapping etc.
400 * The following discussion applies only to them.
401 *
402 * A pagecache page contains an opaque `private' member, which belongs to the
403 * page's address_space. Usually, this is the address of a circular list of
404 * the page's disk buffers. PG_private must be set to tell the VM to call
405 * into the filesystem to release these pages.
406 *
407 * A page may belong to an inode's memory mapping. In this case, page->mapping
408 * is the pointer to the inode, and page->index is the file offset of the page,
409 * in units of PAGE_CACHE_SIZE.
410 *
411 * If pagecache pages are not associated with an inode, they are said to be
412 * anonymous pages. These may become associated with the swapcache, and in that
413 * case PG_swapcache is set, and page->private is an offset into the swapcache.
414 *
415 * In either case (swapcache or inode backed), the pagecache itself holds one
416 * reference to the page. Setting PG_private should also increment the
417 * refcount. The each user mapping also has a reference to the page.
418 *
419 * The pagecache pages are stored in a per-mapping radix tree, which is
420 * rooted at mapping->page_tree, and indexed by offset.
421 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
422 * lists, we instead now tag pages as dirty/writeback in the radix tree.
423 *
424 * All pagecache pages may be subject to I/O:
425 * - inode pages may need to be read from disk,
426 * - inode pages which have been modified and are MAP_SHARED may need
427 *   to be written back to the inode on disk,
428 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
429 *   modified may need to be swapped out to swap space and (later) to be read
430 *   back into memory.
431 */
432
433/*
434 * The zone field is never updated after free_area_init_core()
435 * sets it, so none of the operations on it need to be atomic.
436 */
437
438
439/*
440 * page->flags layout:
441 *
442 * There are three possibilities for how page->flags get
443 * laid out.  The first is for the normal case, without
444 * sparsemem.  The second is for sparsemem when there is
445 * plenty of space for node and section.  The last is when
446 * we have run out of space and have to fall back to an
447 * alternate (slower) way of determining the node.
448 *
449 * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
450 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
451 * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
452 */
453#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
454#define SECTIONS_WIDTH		SECTIONS_SHIFT
455#else
456#define SECTIONS_WIDTH		0
457#endif
458
459#define ZONES_WIDTH		ZONES_SHIFT
460
461#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
462#define NODES_WIDTH		NODES_SHIFT
463#else
464#ifdef CONFIG_SPARSEMEM_VMEMMAP
465#error "Vmemmap: No space for nodes field in page flags"
466#endif
467#define NODES_WIDTH		0
468#endif
469
470/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
471#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
472#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
473#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
474
475/*
476 * We are going to use the flags for the page to node mapping if its in
477 * there.  This includes the case where there is no node, so it is implicit.
478 */
479#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
480#define NODE_NOT_IN_PAGE_FLAGS
481#endif
482
483#ifndef PFN_SECTION_SHIFT
484#define PFN_SECTION_SHIFT 0
485#endif
486
487/*
488 * Define the bit shifts to access each section.  For non-existant
489 * sections we define the shift as 0; that plus a 0 mask ensures
490 * the compiler will optimise away reference to them.
491 */
492#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
493#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
494#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
495
496/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
497#ifdef NODE_NOT_IN_PAGEFLAGS
498#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
499#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
500						SECTIONS_PGOFF : ZONES_PGOFF)
501#else
502#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
503#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
504						NODES_PGOFF : ZONES_PGOFF)
505#endif
506
507#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
508
509#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
510#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
511#endif
512
513#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
514#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
515#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
516#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
517
518static inline enum zone_type page_zonenum(struct page *page)
519{
520	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
521}
522
523/*
524 * The identification function is only used by the buddy allocator for
525 * determining if two pages could be buddies. We are not really
526 * identifying a zone since we could be using a the section number
527 * id if we have not node id available in page flags.
528 * We guarantee only that it will return the same value for two
529 * combinable pages in a zone.
530 */
531static inline int page_zone_id(struct page *page)
532{
533	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
534}
535
536static inline int zone_to_nid(struct zone *zone)
537{
538#ifdef CONFIG_NUMA
539	return zone->node;
540#else
541	return 0;
542#endif
543}
544
545#ifdef NODE_NOT_IN_PAGE_FLAGS
546extern int page_to_nid(struct page *page);
547#else
548static inline int page_to_nid(struct page *page)
549{
550	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
551}
552#endif
553
554static inline struct zone *page_zone(struct page *page)
555{
556	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
557}
558
559#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
560static inline unsigned long page_to_section(struct page *page)
561{
562	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
563}
564#endif
565
566static inline void set_page_zone(struct page *page, enum zone_type zone)
567{
568	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
569	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
570}
571
572static inline void set_page_node(struct page *page, unsigned long node)
573{
574	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
575	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
576}
577
578static inline void set_page_section(struct page *page, unsigned long section)
579{
580	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
581	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
582}
583
584static inline void set_page_links(struct page *page, enum zone_type zone,
585	unsigned long node, unsigned long pfn)
586{
587	set_page_zone(page, zone);
588	set_page_node(page, node);
589	set_page_section(page, pfn_to_section_nr(pfn));
590}
591
592/*
593 * Some inline functions in vmstat.h depend on page_zone()
594 */
595#include <linux/vmstat.h>
596
597static __always_inline void *lowmem_page_address(struct page *page)
598{
599	return __va(PFN_PHYS(page_to_pfn(page)));
600}
601
602#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
603#define HASHED_PAGE_VIRTUAL
604#endif
605
606#if defined(WANT_PAGE_VIRTUAL)
607#define page_address(page) ((page)->virtual)
608#define set_page_address(page, address)			\
609	do {						\
610		(page)->virtual = (address);		\
611	} while(0)
612#define page_address_init()  do { } while(0)
613#endif
614
615#if defined(HASHED_PAGE_VIRTUAL)
616void *page_address(struct page *page);
617void set_page_address(struct page *page, void *virtual);
618void page_address_init(void);
619#endif
620
621#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
622#define page_address(page) lowmem_page_address(page)
623#define set_page_address(page, address)  do { } while(0)
624#define page_address_init()  do { } while(0)
625#endif
626
627/*
628 * On an anonymous page mapped into a user virtual memory area,
629 * page->mapping points to its anon_vma, not to a struct address_space;
630 * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
631 *
632 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
633 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
634 * and then page->mapping points, not to an anon_vma, but to a private
635 * structure which KSM associates with that merged page.  See ksm.h.
636 *
637 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
638 *
639 * Please note that, confusingly, "page_mapping" refers to the inode
640 * address_space which maps the page from disk; whereas "page_mapped"
641 * refers to user virtual address space into which the page is mapped.
642 */
643#define PAGE_MAPPING_ANON	1
644#define PAGE_MAPPING_KSM	2
645#define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
646
647extern struct address_space swapper_space;
648static inline struct address_space *page_mapping(struct page *page)
649{
650	struct address_space *mapping = page->mapping;
651
652	VM_BUG_ON(PageSlab(page));
653	if (unlikely(PageSwapCache(page)))
654		mapping = &swapper_space;
655	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
656		mapping = NULL;
657	return mapping;
658}
659
660/* Neutral page->mapping pointer to address_space or anon_vma or other */
661static inline void *page_rmapping(struct page *page)
662{
663	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
664}
665
666static inline int PageAnon(struct page *page)
667{
668	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
669}
670
671/*
672 * Return the pagecache index of the passed page.  Regular pagecache pages
673 * use ->index whereas swapcache pages use ->private
674 */
675static inline pgoff_t page_index(struct page *page)
676{
677	if (unlikely(PageSwapCache(page)))
678		return page_private(page);
679	return page->index;
680}
681
682/*
683 * The atomic page->_mapcount, like _count, starts from -1:
684 * so that transitions both from it and to it can be tracked,
685 * using atomic_inc_and_test and atomic_add_negative(-1).
686 */
687static inline void reset_page_mapcount(struct page *page)
688{
689	atomic_set(&(page)->_mapcount, -1);
690}
691
692static inline int page_mapcount(struct page *page)
693{
694	return atomic_read(&(page)->_mapcount) + 1;
695}
696
697/*
698 * Return true if this page is mapped into pagetables.
699 */
700static inline int page_mapped(struct page *page)
701{
702	return atomic_read(&(page)->_mapcount) >= 0;
703}
704
705/*
706 * Different kinds of faults, as returned by handle_mm_fault().
707 * Used to decide whether a process gets delivered SIGBUS or
708 * just gets major/minor fault counters bumped up.
709 */
710
711#define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
712
713#define VM_FAULT_OOM	0x0001
714#define VM_FAULT_SIGBUS	0x0002
715#define VM_FAULT_MAJOR	0x0004
716#define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
717#define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned page */
718
719#define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
720#define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
721
722#define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
723
724/*
725 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
726 */
727extern void pagefault_out_of_memory(void);
728
729#define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
730
731extern void show_free_areas(void);
732
733int shmem_lock(struct file *file, int lock, struct user_struct *user);
734struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
735int shmem_zero_setup(struct vm_area_struct *);
736
737#ifndef CONFIG_MMU
738extern unsigned long shmem_get_unmapped_area(struct file *file,
739					     unsigned long addr,
740					     unsigned long len,
741					     unsigned long pgoff,
742					     unsigned long flags);
743#endif
744
745extern int can_do_mlock(void);
746extern int user_shm_lock(size_t, struct user_struct *);
747extern void user_shm_unlock(size_t, struct user_struct *);
748
749/*
750 * Parameter block passed down to zap_pte_range in exceptional cases.
751 */
752struct zap_details {
753	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
754	struct address_space *check_mapping;	/* Check page->mapping if set */
755	pgoff_t	first_index;			/* Lowest page->index to unmap */
756	pgoff_t last_index;			/* Highest page->index to unmap */
757	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
758	unsigned long truncate_count;		/* Compare vm_truncate_count */
759};
760
761struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
762		pte_t pte);
763
764int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
765		unsigned long size);
766unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
767		unsigned long size, struct zap_details *);
768unsigned long unmap_vmas(struct mmu_gather **tlb,
769		struct vm_area_struct *start_vma, unsigned long start_addr,
770		unsigned long end_addr, unsigned long *nr_accounted,
771		struct zap_details *);
772
773/**
774 * mm_walk - callbacks for walk_page_range
775 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
776 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
777 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
778 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
779 * @pte_hole: if set, called for each hole at all levels
780 * @hugetlb_entry: if set, called for each hugetlb entry
781 *
782 * (see walk_page_range for more details)
783 */
784struct mm_walk {
785	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
786	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
787	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
788	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
789	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
790	int (*hugetlb_entry)(pte_t *, unsigned long,
791			     unsigned long, unsigned long, struct mm_walk *);
792	struct mm_struct *mm;
793	void *private;
794};
795
796int walk_page_range(unsigned long addr, unsigned long end,
797		struct mm_walk *walk);
798void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
799		unsigned long end, unsigned long floor, unsigned long ceiling);
800int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
801			struct vm_area_struct *vma);
802void unmap_mapping_range(struct address_space *mapping,
803		loff_t const holebegin, loff_t const holelen, int even_cows);
804int follow_pfn(struct vm_area_struct *vma, unsigned long address,
805	unsigned long *pfn);
806int follow_phys(struct vm_area_struct *vma, unsigned long address,
807		unsigned int flags, unsigned long *prot, resource_size_t *phys);
808int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
809			void *buf, int len, int write);
810
811static inline void unmap_shared_mapping_range(struct address_space *mapping,
812		loff_t const holebegin, loff_t const holelen)
813{
814	unmap_mapping_range(mapping, holebegin, holelen, 0);
815}
816
817extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
818extern void truncate_setsize(struct inode *inode, loff_t newsize);
819extern int vmtruncate(struct inode *inode, loff_t offset);
820extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
821
822int truncate_inode_page(struct address_space *mapping, struct page *page);
823int generic_error_remove_page(struct address_space *mapping, struct page *page);
824
825int invalidate_inode_page(struct page *page);
826
827#ifdef CONFIG_MMU
828extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
829			unsigned long address, unsigned int flags);
830#else
831static inline int handle_mm_fault(struct mm_struct *mm,
832			struct vm_area_struct *vma, unsigned long address,
833			unsigned int flags)
834{
835	/* should never happen if there's no MMU */
836	BUG();
837	return VM_FAULT_SIGBUS;
838}
839#endif
840
841extern int make_pages_present(unsigned long addr, unsigned long end);
842extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
843
844int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
845			unsigned long start, int nr_pages, int write, int force,
846			struct page **pages, struct vm_area_struct **vmas);
847int get_user_pages_fast(unsigned long start, int nr_pages, int write,
848			struct page **pages);
849struct page *get_dump_page(unsigned long addr);
850
851extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
852extern void do_invalidatepage(struct page *page, unsigned long offset);
853
854int __set_page_dirty_nobuffers(struct page *page);
855int __set_page_dirty_no_writeback(struct page *page);
856int redirty_page_for_writepage(struct writeback_control *wbc,
857				struct page *page);
858void account_page_dirtied(struct page *page, struct address_space *mapping);
859int set_page_dirty(struct page *page);
860int set_page_dirty_lock(struct page *page);
861int clear_page_dirty_for_io(struct page *page);
862
863/* Is the vma a continuation of the stack vma above it? */
864static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
865{
866	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
867}
868
869extern unsigned long move_page_tables(struct vm_area_struct *vma,
870		unsigned long old_addr, struct vm_area_struct *new_vma,
871		unsigned long new_addr, unsigned long len);
872extern unsigned long do_mremap(unsigned long addr,
873			       unsigned long old_len, unsigned long new_len,
874			       unsigned long flags, unsigned long new_addr);
875extern int mprotect_fixup(struct vm_area_struct *vma,
876			  struct vm_area_struct **pprev, unsigned long start,
877			  unsigned long end, unsigned long newflags);
878
879/*
880 * doesn't attempt to fault and will return short.
881 */
882int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
883			  struct page **pages);
884/*
885 * per-process(per-mm_struct) statistics.
886 */
887#if defined(SPLIT_RSS_COUNTING)
888/*
889 * The mm counters are not protected by its page_table_lock,
890 * so must be incremented atomically.
891 */
892static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
893{
894	atomic_long_set(&mm->rss_stat.count[member], value);
895}
896
897unsigned long get_mm_counter(struct mm_struct *mm, int member);
898
899static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
900{
901	atomic_long_add(value, &mm->rss_stat.count[member]);
902}
903
904static inline void inc_mm_counter(struct mm_struct *mm, int member)
905{
906	atomic_long_inc(&mm->rss_stat.count[member]);
907}
908
909static inline void dec_mm_counter(struct mm_struct *mm, int member)
910{
911	atomic_long_dec(&mm->rss_stat.count[member]);
912}
913
914#else  /* !USE_SPLIT_PTLOCKS */
915/*
916 * The mm counters are protected by its page_table_lock,
917 * so can be incremented directly.
918 */
919static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
920{
921	mm->rss_stat.count[member] = value;
922}
923
924static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
925{
926	return mm->rss_stat.count[member];
927}
928
929static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
930{
931	mm->rss_stat.count[member] += value;
932}
933
934static inline void inc_mm_counter(struct mm_struct *mm, int member)
935{
936	mm->rss_stat.count[member]++;
937}
938
939static inline void dec_mm_counter(struct mm_struct *mm, int member)
940{
941	mm->rss_stat.count[member]--;
942}
943
944#endif /* !USE_SPLIT_PTLOCKS */
945
946static inline unsigned long get_mm_rss(struct mm_struct *mm)
947{
948	return get_mm_counter(mm, MM_FILEPAGES) +
949		get_mm_counter(mm, MM_ANONPAGES);
950}
951
952static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
953{
954	return max(mm->hiwater_rss, get_mm_rss(mm));
955}
956
957static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
958{
959	return max(mm->hiwater_vm, mm->total_vm);
960}
961
962static inline void update_hiwater_rss(struct mm_struct *mm)
963{
964	unsigned long _rss = get_mm_rss(mm);
965
966	if ((mm)->hiwater_rss < _rss)
967		(mm)->hiwater_rss = _rss;
968}
969
970static inline void update_hiwater_vm(struct mm_struct *mm)
971{
972	if (mm->hiwater_vm < mm->total_vm)
973		mm->hiwater_vm = mm->total_vm;
974}
975
976static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
977					 struct mm_struct *mm)
978{
979	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
980
981	if (*maxrss < hiwater_rss)
982		*maxrss = hiwater_rss;
983}
984
985#if defined(SPLIT_RSS_COUNTING)
986void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
987#else
988static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
989{
990}
991#endif
992
993/*
994 * A callback you can register to apply pressure to ageable caches.
995 *
996 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
997 * look through the least-recently-used 'nr_to_scan' entries and
998 * attempt to free them up.  It should return the number of objects
999 * which remain in the cache.  If it returns -1, it means it cannot do
1000 * any scanning at this time (eg. there is a risk of deadlock).
1001 *
1002 * The 'gfpmask' refers to the allocation we are currently trying to
1003 * fulfil.
1004 *
1005 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1006 * querying the cache size, so a fastpath for that case is appropriate.
1007 */
1008struct shrinker {
1009	int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1010	int seeks;	/* seeks to recreate an obj */
1011
1012	/* These are for internal use */
1013	struct list_head list;
1014	long nr;	/* objs pending delete */
1015};
1016#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1017extern void register_shrinker(struct shrinker *);
1018extern void unregister_shrinker(struct shrinker *);
1019
1020int vma_wants_writenotify(struct vm_area_struct *vma);
1021
1022extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
1023
1024#ifdef __PAGETABLE_PUD_FOLDED
1025static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1026						unsigned long address)
1027{
1028	return 0;
1029}
1030#else
1031int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1032#endif
1033
1034#ifdef __PAGETABLE_PMD_FOLDED
1035static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1036						unsigned long address)
1037{
1038	return 0;
1039}
1040#else
1041int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1042#endif
1043
1044int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1045int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1046
1047/*
1048 * The following ifdef needed to get the 4level-fixup.h header to work.
1049 * Remove it when 4level-fixup.h has been removed.
1050 */
1051#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1052static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1053{
1054	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1055		NULL: pud_offset(pgd, address);
1056}
1057
1058static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1059{
1060	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1061		NULL: pmd_offset(pud, address);
1062}
1063#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1064
1065#if USE_SPLIT_PTLOCKS
1066/*
1067 * We tuck a spinlock to guard each pagetable page into its struct page,
1068 * at page->private, with BUILD_BUG_ON to make sure that this will not
1069 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1070 * When freeing, reset page->mapping so free_pages_check won't complain.
1071 */
1072#define __pte_lockptr(page)	&((page)->ptl)
1073#define pte_lock_init(_page)	do {					\
1074	spin_lock_init(__pte_lockptr(_page));				\
1075} while (0)
1076#define pte_lock_deinit(page)	((page)->mapping = NULL)
1077#define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1078#else	/* !USE_SPLIT_PTLOCKS */
1079/*
1080 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1081 */
1082#define pte_lock_init(page)	do {} while (0)
1083#define pte_lock_deinit(page)	do {} while (0)
1084#define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1085#endif /* USE_SPLIT_PTLOCKS */
1086
1087static inline void pgtable_page_ctor(struct page *page)
1088{
1089	pte_lock_init(page);
1090	inc_zone_page_state(page, NR_PAGETABLE);
1091}
1092
1093static inline void pgtable_page_dtor(struct page *page)
1094{
1095	pte_lock_deinit(page);
1096	dec_zone_page_state(page, NR_PAGETABLE);
1097}
1098
1099#define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1100({							\
1101	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1102	pte_t *__pte = pte_offset_map(pmd, address);	\
1103	*(ptlp) = __ptl;				\
1104	spin_lock(__ptl);				\
1105	__pte;						\
1106})
1107
1108#define pte_unmap_unlock(pte, ptl)	do {		\
1109	spin_unlock(ptl);				\
1110	pte_unmap(pte);					\
1111} while (0)
1112
1113#define pte_alloc_map(mm, pmd, address)			\
1114	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1115		NULL: pte_offset_map(pmd, address))
1116
1117#define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1118	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
1119		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1120
1121#define pte_alloc_kernel(pmd, address)			\
1122	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1123		NULL: pte_offset_kernel(pmd, address))
1124
1125extern void free_area_init(unsigned long * zones_size);
1126extern void free_area_init_node(int nid, unsigned long * zones_size,
1127		unsigned long zone_start_pfn, unsigned long *zholes_size);
1128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1129/*
1130 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1131 * zones, allocate the backing mem_map and account for memory holes in a more
1132 * architecture independent manner. This is a substitute for creating the
1133 * zone_sizes[] and zholes_size[] arrays and passing them to
1134 * free_area_init_node()
1135 *
1136 * An architecture is expected to register range of page frames backed by
1137 * physical memory with add_active_range() before calling
1138 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1139 * usage, an architecture is expected to do something like
1140 *
1141 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1142 * 							 max_highmem_pfn};
1143 * for_each_valid_physical_page_range()
1144 * 	add_active_range(node_id, start_pfn, end_pfn)
1145 * free_area_init_nodes(max_zone_pfns);
1146 *
1147 * If the architecture guarantees that there are no holes in the ranges
1148 * registered with add_active_range(), free_bootmem_active_regions()
1149 * will call free_bootmem_node() for each registered physical page range.
1150 * Similarly sparse_memory_present_with_active_regions() calls
1151 * memory_present() for each range when SPARSEMEM is enabled.
1152 *
1153 * See mm/page_alloc.c for more information on each function exposed by
1154 * CONFIG_ARCH_POPULATES_NODE_MAP
1155 */
1156extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1157extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1158					unsigned long end_pfn);
1159extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1160					unsigned long end_pfn);
1161extern void remove_all_active_ranges(void);
1162void sort_node_map(void);
1163unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1164						unsigned long end_pfn);
1165extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1166						unsigned long end_pfn);
1167extern void get_pfn_range_for_nid(unsigned int nid,
1168			unsigned long *start_pfn, unsigned long *end_pfn);
1169extern unsigned long find_min_pfn_with_active_regions(void);
1170extern void free_bootmem_with_active_regions(int nid,
1171						unsigned long max_low_pfn);
1172int add_from_early_node_map(struct range *range, int az,
1173				   int nr_range, int nid);
1174void *__alloc_memory_core_early(int nodeid, u64 size, u64 align,
1175				 u64 goal, u64 limit);
1176typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1177extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1178extern void sparse_memory_present_with_active_regions(int nid);
1179#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1180
1181#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1182	!defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1183static inline int __early_pfn_to_nid(unsigned long pfn)
1184{
1185	return 0;
1186}
1187#else
1188/* please see mm/page_alloc.c */
1189extern int __meminit early_pfn_to_nid(unsigned long pfn);
1190#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1191/* there is a per-arch backend function. */
1192extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1193#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1194#endif
1195
1196extern void set_dma_reserve(unsigned long new_dma_reserve);
1197extern void memmap_init_zone(unsigned long, int, unsigned long,
1198				unsigned long, enum memmap_context);
1199extern void setup_per_zone_wmarks(void);
1200extern void calculate_zone_inactive_ratio(struct zone *zone);
1201extern void mem_init(void);
1202extern void __init mmap_init(void);
1203extern void show_mem(void);
1204extern void si_meminfo(struct sysinfo * val);
1205extern void si_meminfo_node(struct sysinfo *val, int nid);
1206extern int after_bootmem;
1207
1208extern void setup_per_cpu_pageset(void);
1209
1210extern void zone_pcp_update(struct zone *zone);
1211
1212/* nommu.c */
1213extern atomic_long_t mmap_pages_allocated;
1214extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1215
1216/* prio_tree.c */
1217void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1218void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1219void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1220struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1221	struct prio_tree_iter *iter);
1222
1223#define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1224	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1225		(vma = vma_prio_tree_next(vma, iter)); )
1226
1227static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1228					struct list_head *list)
1229{
1230	vma->shared.vm_set.parent = NULL;
1231	list_add_tail(&vma->shared.vm_set.list, list);
1232}
1233
1234/* mmap.c */
1235extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1236extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1237	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1238extern struct vm_area_struct *vma_merge(struct mm_struct *,
1239	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1240	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1241	struct mempolicy *);
1242extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1243extern int split_vma(struct mm_struct *,
1244	struct vm_area_struct *, unsigned long addr, int new_below);
1245extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1246extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1247	struct rb_node **, struct rb_node *);
1248extern void unlink_file_vma(struct vm_area_struct *);
1249extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1250	unsigned long addr, unsigned long len, pgoff_t pgoff);
1251extern void exit_mmap(struct mm_struct *);
1252
1253extern int mm_take_all_locks(struct mm_struct *mm);
1254extern void mm_drop_all_locks(struct mm_struct *mm);
1255
1256#ifdef CONFIG_PROC_FS
1257/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1258extern void added_exe_file_vma(struct mm_struct *mm);
1259extern void removed_exe_file_vma(struct mm_struct *mm);
1260#else
1261static inline void added_exe_file_vma(struct mm_struct *mm)
1262{}
1263
1264static inline void removed_exe_file_vma(struct mm_struct *mm)
1265{}
1266#endif /* CONFIG_PROC_FS */
1267
1268extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1269extern int install_special_mapping(struct mm_struct *mm,
1270				   unsigned long addr, unsigned long len,
1271				   unsigned long flags, struct page **pages);
1272
1273extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1274
1275extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1276	unsigned long len, unsigned long prot,
1277	unsigned long flag, unsigned long pgoff);
1278extern unsigned long mmap_region(struct file *file, unsigned long addr,
1279	unsigned long len, unsigned long flags,
1280	unsigned int vm_flags, unsigned long pgoff);
1281
1282static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1283	unsigned long len, unsigned long prot,
1284	unsigned long flag, unsigned long offset)
1285{
1286	unsigned long ret = -EINVAL;
1287	if ((offset + PAGE_ALIGN(len)) < offset)
1288		goto out;
1289	if (!(offset & ~PAGE_MASK))
1290		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1291out:
1292	return ret;
1293}
1294
1295extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1296
1297extern unsigned long do_brk(unsigned long, unsigned long);
1298
1299/* filemap.c */
1300extern unsigned long page_unuse(struct page *);
1301extern void truncate_inode_pages(struct address_space *, loff_t);
1302extern void truncate_inode_pages_range(struct address_space *,
1303				       loff_t lstart, loff_t lend);
1304
1305/* generic vm_area_ops exported for stackable file systems */
1306extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1307
1308/* mm/page-writeback.c */
1309int write_one_page(struct page *page, int wait);
1310void task_dirty_inc(struct task_struct *tsk);
1311
1312/* readahead.c */
1313#define VM_MAX_READAHEAD	128	/* kbytes */
1314#define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1315
1316int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1317			pgoff_t offset, unsigned long nr_to_read);
1318
1319void page_cache_sync_readahead(struct address_space *mapping,
1320			       struct file_ra_state *ra,
1321			       struct file *filp,
1322			       pgoff_t offset,
1323			       unsigned long size);
1324
1325void page_cache_async_readahead(struct address_space *mapping,
1326				struct file_ra_state *ra,
1327				struct file *filp,
1328				struct page *pg,
1329				pgoff_t offset,
1330				unsigned long size);
1331
1332unsigned long max_sane_readahead(unsigned long nr);
1333unsigned long ra_submit(struct file_ra_state *ra,
1334			struct address_space *mapping,
1335			struct file *filp);
1336
1337/* Do stack extension */
1338extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1339#if VM_GROWSUP
1340extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1341#else
1342  #define expand_upwards(vma, address) do { } while (0)
1343#endif
1344extern int expand_stack_downwards(struct vm_area_struct *vma,
1345				  unsigned long address);
1346
1347/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1348extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1349extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1350					     struct vm_area_struct **pprev);
1351
1352/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1353   NULL if none.  Assume start_addr < end_addr. */
1354static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1355{
1356	struct vm_area_struct * vma = find_vma(mm,start_addr);
1357
1358	if (vma && end_addr <= vma->vm_start)
1359		vma = NULL;
1360	return vma;
1361}
1362
1363static inline unsigned long vma_pages(struct vm_area_struct *vma)
1364{
1365	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1366}
1367
1368#ifdef CONFIG_MMU
1369pgprot_t vm_get_page_prot(unsigned long vm_flags);
1370#else
1371static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1372{
1373	return __pgprot(0);
1374}
1375#endif
1376
1377struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1378int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1379			unsigned long pfn, unsigned long size, pgprot_t);
1380int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1381int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1382			unsigned long pfn);
1383int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1384			unsigned long pfn);
1385
1386struct page *follow_page(struct vm_area_struct *, unsigned long address,
1387			unsigned int foll_flags);
1388#define FOLL_WRITE	0x01	/* check pte is writable */
1389#define FOLL_TOUCH	0x02	/* mark page accessed */
1390#define FOLL_GET	0x04	/* do get_page on page */
1391#define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1392#define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1393
1394typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1395			void *data);
1396extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1397			       unsigned long size, pte_fn_t fn, void *data);
1398
1399#ifdef CONFIG_PROC_FS
1400void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1401#else
1402static inline void vm_stat_account(struct mm_struct *mm,
1403			unsigned long flags, struct file *file, long pages)
1404{
1405}
1406#endif /* CONFIG_PROC_FS */
1407
1408#ifdef CONFIG_DEBUG_PAGEALLOC
1409extern int debug_pagealloc_enabled;
1410
1411extern void kernel_map_pages(struct page *page, int numpages, int enable);
1412
1413static inline void enable_debug_pagealloc(void)
1414{
1415	debug_pagealloc_enabled = 1;
1416}
1417#ifdef CONFIG_HIBERNATION
1418extern bool kernel_page_present(struct page *page);
1419#endif /* CONFIG_HIBERNATION */
1420#else
1421static inline void
1422kernel_map_pages(struct page *page, int numpages, int enable) {}
1423static inline void enable_debug_pagealloc(void)
1424{
1425}
1426#ifdef CONFIG_HIBERNATION
1427static inline bool kernel_page_present(struct page *page) { return true; }
1428#endif /* CONFIG_HIBERNATION */
1429#endif
1430
1431extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1432#ifdef	__HAVE_ARCH_GATE_AREA
1433int in_gate_area_no_task(unsigned long addr);
1434int in_gate_area(struct task_struct *task, unsigned long addr);
1435#else
1436int in_gate_area_no_task(unsigned long addr);
1437#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1438#endif	/* __HAVE_ARCH_GATE_AREA */
1439
1440int drop_caches_sysctl_handler(struct ctl_table *, int,
1441					void __user *, size_t *, loff_t *);
1442unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1443			unsigned long lru_pages);
1444
1445#ifndef CONFIG_MMU
1446#define randomize_va_space 0
1447#else
1448extern int randomize_va_space;
1449#endif
1450
1451const char * arch_vma_name(struct vm_area_struct *vma);
1452void print_vma_addr(char *prefix, unsigned long rip);
1453
1454void sparse_mem_maps_populate_node(struct page **map_map,
1455				   unsigned long pnum_begin,
1456				   unsigned long pnum_end,
1457				   unsigned long map_count,
1458				   int nodeid);
1459
1460struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1461pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1462pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1463pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1464pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1465void *vmemmap_alloc_block(unsigned long size, int node);
1466void *vmemmap_alloc_block_buf(unsigned long size, int node);
1467void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1468int vmemmap_populate_basepages(struct page *start_page,
1469						unsigned long pages, int node);
1470int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1471void vmemmap_populate_print_last(void);
1472
1473
1474enum mf_flags {
1475	MF_COUNT_INCREASED = 1 << 0,
1476};
1477extern void memory_failure(unsigned long pfn, int trapno);
1478extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1479extern int unpoison_memory(unsigned long pfn);
1480extern int sysctl_memory_failure_early_kill;
1481extern int sysctl_memory_failure_recovery;
1482extern void shake_page(struct page *p, int access);
1483extern atomic_long_t mce_bad_pages;
1484extern int soft_offline_page(struct page *page, int flags);
1485#ifdef CONFIG_MEMORY_FAILURE
1486int is_hwpoison_address(unsigned long addr);
1487#else
1488static inline int is_hwpoison_address(unsigned long addr)
1489{
1490	return 0;
1491}
1492#endif
1493
1494extern void dump_page(struct page *page);
1495
1496#endif /* __KERNEL__ */
1497#endif /* _LINUX_MM_H */
1498