• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/fs/ubifs/
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file contains miscelanious TNC-related functions shared betweend
25 * different files. This file does not form any logically separate TNC
26 * sub-system. The file was created because there is a lot of TNC code and
27 * putting it all in one file would make that file too big and unreadable.
28 */
29
30#include "ubifs.h"
31
32/**
33 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
34 * @zr: root of the subtree to traverse
35 * @znode: previous znode
36 *
37 * This function implements levelorder TNC traversal. The LNC is ignored.
38 * Returns the next element or %NULL if @znode is already the last one.
39 */
40struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
41					      struct ubifs_znode *znode)
42{
43	int level, iip, level_search = 0;
44	struct ubifs_znode *zn;
45
46	ubifs_assert(zr);
47
48	if (unlikely(!znode))
49		return zr;
50
51	if (unlikely(znode == zr)) {
52		if (znode->level == 0)
53			return NULL;
54		return ubifs_tnc_find_child(zr, 0);
55	}
56
57	level = znode->level;
58
59	iip = znode->iip;
60	while (1) {
61		ubifs_assert(znode->level <= zr->level);
62
63		/*
64		 * First walk up until there is a znode with next branch to
65		 * look at.
66		 */
67		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
68			znode = znode->parent;
69			iip = znode->iip;
70		}
71
72		if (unlikely(znode->parent == zr &&
73			     iip >= znode->parent->child_cnt)) {
74			/* This level is done, switch to the lower one */
75			level -= 1;
76			if (level_search || level < 0)
77				/*
78				 * We were already looking for znode at lower
79				 * level ('level_search'). As we are here
80				 * again, it just does not exist. Or all levels
81				 * were finished ('level < 0').
82				 */
83				return NULL;
84
85			level_search = 1;
86			iip = -1;
87			znode = ubifs_tnc_find_child(zr, 0);
88			ubifs_assert(znode);
89		}
90
91		/* Switch to the next index */
92		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
93		if (!zn) {
94			/* No more children to look at, we have walk up */
95			iip = znode->parent->child_cnt;
96			continue;
97		}
98
99		/* Walk back down to the level we came from ('level') */
100		while (zn->level != level) {
101			znode = zn;
102			zn = ubifs_tnc_find_child(zn, 0);
103			if (!zn) {
104				/*
105				 * This path is not too deep so it does not
106				 * reach 'level'. Try next path.
107				 */
108				iip = znode->iip;
109				break;
110			}
111		}
112
113		if (zn) {
114			ubifs_assert(zn->level >= 0);
115			return zn;
116		}
117	}
118}
119
120/**
121 * ubifs_search_zbranch - search znode branch.
122 * @c: UBIFS file-system description object
123 * @znode: znode to search in
124 * @key: key to search for
125 * @n: znode branch slot number is returned here
126 *
127 * This is a helper function which search branch with key @key in @znode using
128 * binary search. The result of the search may be:
129 *   o exact match, then %1 is returned, and the slot number of the branch is
130 *     stored in @n;
131 *   o no exact match, then %0 is returned and the slot number of the left
132 *     closest branch is returned in @n; the slot if all keys in this znode are
133 *     greater than @key, then %-1 is returned in @n.
134 */
135int ubifs_search_zbranch(const struct ubifs_info *c,
136			 const struct ubifs_znode *znode,
137			 const union ubifs_key *key, int *n)
138{
139	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
140	int uninitialized_var(cmp);
141	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
142
143	ubifs_assert(end > beg);
144
145	while (end > beg) {
146		mid = (beg + end) >> 1;
147		cmp = keys_cmp(c, key, &zbr[mid].key);
148		if (cmp > 0)
149			beg = mid + 1;
150		else if (cmp < 0)
151			end = mid;
152		else {
153			*n = mid;
154			return 1;
155		}
156	}
157
158	*n = end - 1;
159
160	/* The insert point is after *n */
161	ubifs_assert(*n >= -1 && *n < znode->child_cnt);
162	if (*n == -1)
163		ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
164	else
165		ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
166	if (*n + 1 < znode->child_cnt)
167		ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
168
169	return 0;
170}
171
172/**
173 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
174 * @znode: znode to start at (root of the sub-tree to traverse)
175 *
176 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
177 * ignored.
178 */
179struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
180{
181	if (unlikely(!znode))
182		return NULL;
183
184	while (znode->level > 0) {
185		struct ubifs_znode *child;
186
187		child = ubifs_tnc_find_child(znode, 0);
188		if (!child)
189			return znode;
190		znode = child;
191	}
192
193	return znode;
194}
195
196/**
197 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
198 * @znode: previous znode
199 *
200 * This function implements postorder TNC traversal. The LNC is ignored.
201 * Returns the next element or %NULL if @znode is already the last one.
202 */
203struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
204{
205	struct ubifs_znode *zn;
206
207	ubifs_assert(znode);
208	if (unlikely(!znode->parent))
209		return NULL;
210
211	/* Switch to the next index in the parent */
212	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
213	if (!zn)
214		/* This is in fact the last child, return parent */
215		return znode->parent;
216
217	/* Go to the first znode in this new subtree */
218	return ubifs_tnc_postorder_first(zn);
219}
220
221/**
222 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
223 * @znode: znode defining subtree to destroy
224 *
225 * This function destroys subtree of the TNC tree. Returns number of clean
226 * znodes in the subtree.
227 */
228long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
229{
230	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
231	long clean_freed = 0;
232	int n;
233
234	ubifs_assert(zn);
235	while (1) {
236		for (n = 0; n < zn->child_cnt; n++) {
237			if (!zn->zbranch[n].znode)
238				continue;
239
240			if (zn->level > 0 &&
241			    !ubifs_zn_dirty(zn->zbranch[n].znode))
242				clean_freed += 1;
243
244			cond_resched();
245			kfree(zn->zbranch[n].znode);
246		}
247
248		if (zn == znode) {
249			if (!ubifs_zn_dirty(zn))
250				clean_freed += 1;
251			kfree(zn);
252			return clean_freed;
253		}
254
255		zn = ubifs_tnc_postorder_next(zn);
256	}
257}
258
259/**
260 * read_znode - read an indexing node from flash and fill znode.
261 * @c: UBIFS file-system description object
262 * @lnum: LEB of the indexing node to read
263 * @offs: node offset
264 * @len: node length
265 * @znode: znode to read to
266 *
267 * This function reads an indexing node from the flash media and fills znode
268 * with the read data. Returns zero in case of success and a negative error
269 * code in case of failure. The read indexing node is validated and if anything
270 * is wrong with it, this function prints complaint messages and returns
271 * %-EINVAL.
272 */
273static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
274		      struct ubifs_znode *znode)
275{
276	int i, err, type, cmp;
277	struct ubifs_idx_node *idx;
278
279	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
280	if (!idx)
281		return -ENOMEM;
282
283	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
284	if (err < 0) {
285		kfree(idx);
286		return err;
287	}
288
289	znode->child_cnt = le16_to_cpu(idx->child_cnt);
290	znode->level = le16_to_cpu(idx->level);
291
292	dbg_tnc("LEB %d:%d, level %d, %d branch",
293		lnum, offs, znode->level, znode->child_cnt);
294
295	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
296		dbg_err("current fanout %d, branch count %d",
297			c->fanout, znode->child_cnt);
298		dbg_err("max levels %d, znode level %d",
299			UBIFS_MAX_LEVELS, znode->level);
300		err = 1;
301		goto out_dump;
302	}
303
304	for (i = 0; i < znode->child_cnt; i++) {
305		const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
306		struct ubifs_zbranch *zbr = &znode->zbranch[i];
307
308		key_read(c, &br->key, &zbr->key);
309		zbr->lnum = le32_to_cpu(br->lnum);
310		zbr->offs = le32_to_cpu(br->offs);
311		zbr->len  = le32_to_cpu(br->len);
312		zbr->znode = NULL;
313
314		/* Validate branch */
315
316		if (zbr->lnum < c->main_first ||
317		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
318		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
319			dbg_err("bad branch %d", i);
320			err = 2;
321			goto out_dump;
322		}
323
324		switch (key_type(c, &zbr->key)) {
325		case UBIFS_INO_KEY:
326		case UBIFS_DATA_KEY:
327		case UBIFS_DENT_KEY:
328		case UBIFS_XENT_KEY:
329			break;
330		default:
331			dbg_msg("bad key type at slot %d: %s", i,
332				DBGKEY(&zbr->key));
333			err = 3;
334			goto out_dump;
335		}
336
337		if (znode->level)
338			continue;
339
340		type = key_type(c, &zbr->key);
341		if (c->ranges[type].max_len == 0) {
342			if (zbr->len != c->ranges[type].len) {
343				dbg_err("bad target node (type %d) length (%d)",
344					type, zbr->len);
345				dbg_err("have to be %d", c->ranges[type].len);
346				err = 4;
347				goto out_dump;
348			}
349		} else if (zbr->len < c->ranges[type].min_len ||
350			   zbr->len > c->ranges[type].max_len) {
351			dbg_err("bad target node (type %d) length (%d)",
352				type, zbr->len);
353			dbg_err("have to be in range of %d-%d",
354				c->ranges[type].min_len,
355				c->ranges[type].max_len);
356			err = 5;
357			goto out_dump;
358		}
359	}
360
361	/*
362	 * Ensure that the next key is greater or equivalent to the
363	 * previous one.
364	 */
365	for (i = 0; i < znode->child_cnt - 1; i++) {
366		const union ubifs_key *key1, *key2;
367
368		key1 = &znode->zbranch[i].key;
369		key2 = &znode->zbranch[i + 1].key;
370
371		cmp = keys_cmp(c, key1, key2);
372		if (cmp > 0) {
373			dbg_err("bad key order (keys %d and %d)", i, i + 1);
374			err = 6;
375			goto out_dump;
376		} else if (cmp == 0 && !is_hash_key(c, key1)) {
377			/* These can only be keys with colliding hash */
378			dbg_err("keys %d and %d are not hashed but equivalent",
379				i, i + 1);
380			err = 7;
381			goto out_dump;
382		}
383	}
384
385	kfree(idx);
386	return 0;
387
388out_dump:
389	ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
390	dbg_dump_node(c, idx);
391	kfree(idx);
392	return -EINVAL;
393}
394
395/**
396 * ubifs_load_znode - load znode to TNC cache.
397 * @c: UBIFS file-system description object
398 * @zbr: znode branch
399 * @parent: znode's parent
400 * @iip: index in parent
401 *
402 * This function loads znode pointed to by @zbr into the TNC cache and
403 * returns pointer to it in case of success and a negative error code in case
404 * of failure.
405 */
406struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
407				     struct ubifs_zbranch *zbr,
408				     struct ubifs_znode *parent, int iip)
409{
410	int err;
411	struct ubifs_znode *znode;
412
413	ubifs_assert(!zbr->znode);
414	/*
415	 * A slab cache is not presently used for znodes because the znode size
416	 * depends on the fanout which is stored in the superblock.
417	 */
418	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
419	if (!znode)
420		return ERR_PTR(-ENOMEM);
421
422	err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
423	if (err)
424		goto out;
425
426	atomic_long_inc(&c->clean_zn_cnt);
427
428	/*
429	 * Increment the global clean znode counter as well. It is OK that
430	 * global and per-FS clean znode counters may be inconsistent for some
431	 * short time (because we might be preempted at this point), the global
432	 * one is only used in shrinker.
433	 */
434	atomic_long_inc(&ubifs_clean_zn_cnt);
435
436	zbr->znode = znode;
437	znode->parent = parent;
438	znode->time = get_seconds();
439	znode->iip = iip;
440
441	return znode;
442
443out:
444	kfree(znode);
445	return ERR_PTR(err);
446}
447
448/**
449 * ubifs_tnc_read_node - read a leaf node from the flash media.
450 * @c: UBIFS file-system description object
451 * @zbr: key and position of the node
452 * @node: node is returned here
453 *
454 * This function reads a node defined by @zbr from the flash media. Returns
455 * zero in case of success or a negative negative error code in case of
456 * failure.
457 */
458int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
459			void *node)
460{
461	union ubifs_key key1, *key = &zbr->key;
462	int err, type = key_type(c, key);
463	struct ubifs_wbuf *wbuf;
464
465	/*
466	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
467	 * may even be in a write buffer, so we have to take care about this.
468	 */
469	wbuf = ubifs_get_wbuf(c, zbr->lnum);
470	if (wbuf)
471		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
472					   zbr->lnum, zbr->offs);
473	else
474		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
475				      zbr->offs);
476
477	if (err) {
478		dbg_tnc("key %s", DBGKEY(key));
479		return err;
480	}
481
482	/* Make sure the key of the read node is correct */
483	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
484	if (!keys_eq(c, key, &key1)) {
485		ubifs_err("bad key in node at LEB %d:%d",
486			  zbr->lnum, zbr->offs);
487		dbg_tnc("looked for key %s found node's key %s",
488			DBGKEY(key), DBGKEY1(&key1));
489		dbg_dump_node(c, node);
490		return -EINVAL;
491	}
492
493	return 0;
494}
495