• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/fs/ubifs/
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (���������������� ����������)
20 *          Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include <linux/math64.h>
38#include <linux/writeback.h>
39#include "ubifs.h"
40
41/*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45#define UBIFS_KMALLOC_OK (128*1024)
46
47/* Slab cache for UBIFS inodes */
48struct kmem_cache *ubifs_inode_slab;
49
50/* UBIFS TNC shrinker description */
51static struct shrinker ubifs_shrinker_info = {
52	.shrink = ubifs_shrinker,
53	.seeks = DEFAULT_SEEKS,
54};
55
56/**
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
60 *
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
65 */
66static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67{
68	int err;
69	const struct ubifs_inode *ui = ubifs_inode(inode);
70
71	if (inode->i_size > c->max_inode_sz) {
72		ubifs_err("inode is too large (%lld)",
73			  (long long)inode->i_size);
74		return 1;
75	}
76
77	if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78		ubifs_err("unknown compression type %d", ui->compr_type);
79		return 2;
80	}
81
82	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83		return 3;
84
85	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86		return 4;
87
88	if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89		return 5;
90
91	if (!ubifs_compr_present(ui->compr_type)) {
92		ubifs_warn("inode %lu uses '%s' compression, but it was not "
93			   "compiled in", inode->i_ino,
94			   ubifs_compr_name(ui->compr_type));
95	}
96
97	err = dbg_check_dir_size(c, inode);
98	return err;
99}
100
101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102{
103	int err;
104	union ubifs_key key;
105	struct ubifs_ino_node *ino;
106	struct ubifs_info *c = sb->s_fs_info;
107	struct inode *inode;
108	struct ubifs_inode *ui;
109
110	dbg_gen("inode %lu", inum);
111
112	inode = iget_locked(sb, inum);
113	if (!inode)
114		return ERR_PTR(-ENOMEM);
115	if (!(inode->i_state & I_NEW))
116		return inode;
117	ui = ubifs_inode(inode);
118
119	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120	if (!ino) {
121		err = -ENOMEM;
122		goto out;
123	}
124
125	ino_key_init(c, &key, inode->i_ino);
126
127	err = ubifs_tnc_lookup(c, &key, ino);
128	if (err)
129		goto out_ino;
130
131	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132	inode->i_nlink = le32_to_cpu(ino->nlink);
133	inode->i_uid   = le32_to_cpu(ino->uid);
134	inode->i_gid   = le32_to_cpu(ino->gid);
135	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141	inode->i_mode = le32_to_cpu(ino->mode);
142	inode->i_size = le64_to_cpu(ino->size);
143
144	ui->data_len    = le32_to_cpu(ino->data_len);
145	ui->flags       = le32_to_cpu(ino->flags);
146	ui->compr_type  = le16_to_cpu(ino->compr_type);
147	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151	ui->synced_i_size = ui->ui_size = inode->i_size;
152
153	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154
155	err = validate_inode(c, inode);
156	if (err)
157		goto out_invalid;
158
159	/* Disable read-ahead */
160	inode->i_mapping->backing_dev_info = &c->bdi;
161
162	switch (inode->i_mode & S_IFMT) {
163	case S_IFREG:
164		inode->i_mapping->a_ops = &ubifs_file_address_operations;
165		inode->i_op = &ubifs_file_inode_operations;
166		inode->i_fop = &ubifs_file_operations;
167		if (ui->xattr) {
168			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169			if (!ui->data) {
170				err = -ENOMEM;
171				goto out_ino;
172			}
173			memcpy(ui->data, ino->data, ui->data_len);
174			((char *)ui->data)[ui->data_len] = '\0';
175		} else if (ui->data_len != 0) {
176			err = 10;
177			goto out_invalid;
178		}
179		break;
180	case S_IFDIR:
181		inode->i_op  = &ubifs_dir_inode_operations;
182		inode->i_fop = &ubifs_dir_operations;
183		if (ui->data_len != 0) {
184			err = 11;
185			goto out_invalid;
186		}
187		break;
188	case S_IFLNK:
189		inode->i_op = &ubifs_symlink_inode_operations;
190		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191			err = 12;
192			goto out_invalid;
193		}
194		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195		if (!ui->data) {
196			err = -ENOMEM;
197			goto out_ino;
198		}
199		memcpy(ui->data, ino->data, ui->data_len);
200		((char *)ui->data)[ui->data_len] = '\0';
201		break;
202	case S_IFBLK:
203	case S_IFCHR:
204	{
205		dev_t rdev;
206		union ubifs_dev_desc *dev;
207
208		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209		if (!ui->data) {
210			err = -ENOMEM;
211			goto out_ino;
212		}
213
214		dev = (union ubifs_dev_desc *)ino->data;
215		if (ui->data_len == sizeof(dev->new))
216			rdev = new_decode_dev(le32_to_cpu(dev->new));
217		else if (ui->data_len == sizeof(dev->huge))
218			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219		else {
220			err = 13;
221			goto out_invalid;
222		}
223		memcpy(ui->data, ino->data, ui->data_len);
224		inode->i_op = &ubifs_file_inode_operations;
225		init_special_inode(inode, inode->i_mode, rdev);
226		break;
227	}
228	case S_IFSOCK:
229	case S_IFIFO:
230		inode->i_op = &ubifs_file_inode_operations;
231		init_special_inode(inode, inode->i_mode, 0);
232		if (ui->data_len != 0) {
233			err = 14;
234			goto out_invalid;
235		}
236		break;
237	default:
238		err = 15;
239		goto out_invalid;
240	}
241
242	kfree(ino);
243	ubifs_set_inode_flags(inode);
244	unlock_new_inode(inode);
245	return inode;
246
247out_invalid:
248	ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249	dbg_dump_node(c, ino);
250	dbg_dump_inode(c, inode);
251	err = -EINVAL;
252out_ino:
253	kfree(ino);
254out:
255	ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256	iget_failed(inode);
257	return ERR_PTR(err);
258}
259
260static struct inode *ubifs_alloc_inode(struct super_block *sb)
261{
262	struct ubifs_inode *ui;
263
264	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265	if (!ui)
266		return NULL;
267
268	memset((void *)ui + sizeof(struct inode), 0,
269	       sizeof(struct ubifs_inode) - sizeof(struct inode));
270	mutex_init(&ui->ui_mutex);
271	spin_lock_init(&ui->ui_lock);
272	return &ui->vfs_inode;
273};
274
275static void ubifs_destroy_inode(struct inode *inode)
276{
277	struct ubifs_inode *ui = ubifs_inode(inode);
278
279	kfree(ui->data);
280	kmem_cache_free(ubifs_inode_slab, inode);
281}
282
283/*
284 * Note, Linux write-back code calls this without 'i_mutex'.
285 */
286static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
287{
288	int err = 0;
289	struct ubifs_info *c = inode->i_sb->s_fs_info;
290	struct ubifs_inode *ui = ubifs_inode(inode);
291
292	ubifs_assert(!ui->xattr);
293	if (is_bad_inode(inode))
294		return 0;
295
296	mutex_lock(&ui->ui_mutex);
297	/*
298	 * Due to races between write-back forced by budgeting
299	 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300	 * have already been synchronized, do not do this again. This might
301	 * also happen if it was synchronized in an VFS operation, e.g.
302	 * 'ubifs_link()'.
303	 */
304	if (!ui->dirty) {
305		mutex_unlock(&ui->ui_mutex);
306		return 0;
307	}
308
309	/*
310	 * As an optimization, do not write orphan inodes to the media just
311	 * because this is not needed.
312	 */
313	dbg_gen("inode %lu, mode %#x, nlink %u",
314		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315	if (inode->i_nlink) {
316		err = ubifs_jnl_write_inode(c, inode);
317		if (err)
318			ubifs_err("can't write inode %lu, error %d",
319				  inode->i_ino, err);
320		else
321			err = dbg_check_inode_size(c, inode, ui->ui_size);
322	}
323
324	ui->dirty = 0;
325	mutex_unlock(&ui->ui_mutex);
326	ubifs_release_dirty_inode_budget(c, ui);
327	return err;
328}
329
330static void ubifs_evict_inode(struct inode *inode)
331{
332	int err;
333	struct ubifs_info *c = inode->i_sb->s_fs_info;
334	struct ubifs_inode *ui = ubifs_inode(inode);
335
336	if (ui->xattr)
337		/*
338		 * Extended attribute inode deletions are fully handled in
339		 * 'ubifs_removexattr()'. These inodes are special and have
340		 * limited usage, so there is nothing to do here.
341		 */
342		goto out;
343
344	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
345	ubifs_assert(!atomic_read(&inode->i_count));
346
347	truncate_inode_pages(&inode->i_data, 0);
348
349	if (inode->i_nlink)
350		goto done;
351
352	if (is_bad_inode(inode))
353		goto out;
354
355	ui->ui_size = inode->i_size = 0;
356	err = ubifs_jnl_delete_inode(c, inode);
357	if (err)
358		/*
359		 * Worst case we have a lost orphan inode wasting space, so a
360		 * simple error message is OK here.
361		 */
362		ubifs_err("can't delete inode %lu, error %d",
363			  inode->i_ino, err);
364
365out:
366	if (ui->dirty)
367		ubifs_release_dirty_inode_budget(c, ui);
368	else {
369		/* We've deleted something - clean the "no space" flags */
370		c->nospace = c->nospace_rp = 0;
371		smp_wmb();
372	}
373done:
374	end_writeback(inode);
375}
376
377static void ubifs_dirty_inode(struct inode *inode)
378{
379	struct ubifs_inode *ui = ubifs_inode(inode);
380
381	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
382	if (!ui->dirty) {
383		ui->dirty = 1;
384		dbg_gen("inode %lu",  inode->i_ino);
385	}
386}
387
388static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
389{
390	struct ubifs_info *c = dentry->d_sb->s_fs_info;
391	unsigned long long free;
392	__le32 *uuid = (__le32 *)c->uuid;
393
394	free = ubifs_get_free_space(c);
395	dbg_gen("free space %lld bytes (%lld blocks)",
396		free, free >> UBIFS_BLOCK_SHIFT);
397
398	buf->f_type = UBIFS_SUPER_MAGIC;
399	buf->f_bsize = UBIFS_BLOCK_SIZE;
400	buf->f_blocks = c->block_cnt;
401	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
402	if (free > c->report_rp_size)
403		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
404	else
405		buf->f_bavail = 0;
406	buf->f_files = 0;
407	buf->f_ffree = 0;
408	buf->f_namelen = UBIFS_MAX_NLEN;
409	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
410	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
411	ubifs_assert(buf->f_bfree <= c->block_cnt);
412	return 0;
413}
414
415static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
416{
417	struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
418
419	if (c->mount_opts.unmount_mode == 2)
420		seq_printf(s, ",fast_unmount");
421	else if (c->mount_opts.unmount_mode == 1)
422		seq_printf(s, ",norm_unmount");
423
424	if (c->mount_opts.bulk_read == 2)
425		seq_printf(s, ",bulk_read");
426	else if (c->mount_opts.bulk_read == 1)
427		seq_printf(s, ",no_bulk_read");
428
429	if (c->mount_opts.chk_data_crc == 2)
430		seq_printf(s, ",chk_data_crc");
431	else if (c->mount_opts.chk_data_crc == 1)
432		seq_printf(s, ",no_chk_data_crc");
433
434	if (c->mount_opts.override_compr) {
435		seq_printf(s, ",compr=%s",
436			   ubifs_compr_name(c->mount_opts.compr_type));
437	}
438
439	return 0;
440}
441
442static int ubifs_sync_fs(struct super_block *sb, int wait)
443{
444	int i, err;
445	struct ubifs_info *c = sb->s_fs_info;
446
447	/*
448	 * Zero @wait is just an advisory thing to help the file system shove
449	 * lots of data into the queues, and there will be the second
450	 * '->sync_fs()' call, with non-zero @wait.
451	 */
452	if (!wait)
453		return 0;
454
455	/*
456	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
457	 * do this if it waits for an already running commit.
458	 */
459	for (i = 0; i < c->jhead_cnt; i++) {
460		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
461		if (err)
462			return err;
463	}
464
465	/*
466	 * Strictly speaking, it is not necessary to commit the journal here,
467	 * synchronizing write-buffers would be enough. But committing makes
468	 * UBIFS free space predictions much more accurate, so we want to let
469	 * the user be able to get more accurate results of 'statfs()' after
470	 * they synchronize the file system.
471	 */
472	err = ubifs_run_commit(c);
473	if (err)
474		return err;
475
476	return ubi_sync(c->vi.ubi_num);
477}
478
479/**
480 * init_constants_early - initialize UBIFS constants.
481 * @c: UBIFS file-system description object
482 *
483 * This function initialize UBIFS constants which do not need the superblock to
484 * be read. It also checks that the UBI volume satisfies basic UBIFS
485 * requirements. Returns zero in case of success and a negative error code in
486 * case of failure.
487 */
488static int init_constants_early(struct ubifs_info *c)
489{
490	if (c->vi.corrupted) {
491		ubifs_warn("UBI volume is corrupted - read-only mode");
492		c->ro_media = 1;
493	}
494
495	if (c->di.ro_mode) {
496		ubifs_msg("read-only UBI device");
497		c->ro_media = 1;
498	}
499
500	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
501		ubifs_msg("static UBI volume - read-only mode");
502		c->ro_media = 1;
503	}
504
505	c->leb_cnt = c->vi.size;
506	c->leb_size = c->vi.usable_leb_size;
507	c->half_leb_size = c->leb_size / 2;
508	c->min_io_size = c->di.min_io_size;
509	c->min_io_shift = fls(c->min_io_size) - 1;
510
511	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
512		ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
513			  c->leb_size, UBIFS_MIN_LEB_SZ);
514		return -EINVAL;
515	}
516
517	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
518		ubifs_err("too few LEBs (%d), min. is %d",
519			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
520		return -EINVAL;
521	}
522
523	if (!is_power_of_2(c->min_io_size)) {
524		ubifs_err("bad min. I/O size %d", c->min_io_size);
525		return -EINVAL;
526	}
527
528	/*
529	 * UBIFS aligns all node to 8-byte boundary, so to make function in
530	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
531	 * less than 8.
532	 */
533	if (c->min_io_size < 8) {
534		c->min_io_size = 8;
535		c->min_io_shift = 3;
536	}
537
538	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
539	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
540
541	/*
542	 * Initialize node length ranges which are mostly needed for node
543	 * length validation.
544	 */
545	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
546	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
547	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
548	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
549	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
550	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
551
552	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
553	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
554	c->ranges[UBIFS_ORPH_NODE].min_len =
555				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
556	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
557	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
558	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
559	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
560	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
561	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
562	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
563	/*
564	 * Minimum indexing node size is amended later when superblock is
565	 * read and the key length is known.
566	 */
567	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
568	/*
569	 * Maximum indexing node size is amended later when superblock is
570	 * read and the fanout is known.
571	 */
572	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
573
574	/*
575	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
576	 * about these values.
577	 */
578	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
579	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
580
581	/*
582	 * Calculate how many bytes would be wasted at the end of LEB if it was
583	 * fully filled with data nodes of maximum size. This is used in
584	 * calculations when reporting free space.
585	 */
586	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
587
588	/* Buffer size for bulk-reads */
589	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
590	if (c->max_bu_buf_len > c->leb_size)
591		c->max_bu_buf_len = c->leb_size;
592	return 0;
593}
594
595/**
596 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
597 * @c: UBIFS file-system description object
598 * @lnum: LEB the write-buffer was synchronized to
599 * @free: how many free bytes left in this LEB
600 * @pad: how many bytes were padded
601 *
602 * This is a callback function which is called by the I/O unit when the
603 * write-buffer is synchronized. We need this to correctly maintain space
604 * accounting in bud logical eraseblocks. This function returns zero in case of
605 * success and a negative error code in case of failure.
606 *
607 * This function actually belongs to the journal, but we keep it here because
608 * we want to keep it static.
609 */
610static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
611{
612	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
613}
614
615/*
616 * init_constants_sb - initialize UBIFS constants.
617 * @c: UBIFS file-system description object
618 *
619 * This is a helper function which initializes various UBIFS constants after
620 * the superblock has been read. It also checks various UBIFS parameters and
621 * makes sure they are all right. Returns zero in case of success and a
622 * negative error code in case of failure.
623 */
624static int init_constants_sb(struct ubifs_info *c)
625{
626	int tmp, err;
627	long long tmp64;
628
629	c->main_bytes = (long long)c->main_lebs * c->leb_size;
630	c->max_znode_sz = sizeof(struct ubifs_znode) +
631				c->fanout * sizeof(struct ubifs_zbranch);
632
633	tmp = ubifs_idx_node_sz(c, 1);
634	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
635	c->min_idx_node_sz = ALIGN(tmp, 8);
636
637	tmp = ubifs_idx_node_sz(c, c->fanout);
638	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
639	c->max_idx_node_sz = ALIGN(tmp, 8);
640
641	/* Make sure LEB size is large enough to fit full commit */
642	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
643	tmp = ALIGN(tmp, c->min_io_size);
644	if (tmp > c->leb_size) {
645		dbg_err("too small LEB size %d, at least %d needed",
646			c->leb_size, tmp);
647		return -EINVAL;
648	}
649
650	/*
651	 * Make sure that the log is large enough to fit reference nodes for
652	 * all buds plus one reserved LEB.
653	 */
654	tmp64 = c->max_bud_bytes + c->leb_size - 1;
655	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
656	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
657	tmp /= c->leb_size;
658	tmp += 1;
659	if (c->log_lebs < tmp) {
660		dbg_err("too small log %d LEBs, required min. %d LEBs",
661			c->log_lebs, tmp);
662		return -EINVAL;
663	}
664
665	/*
666	 * When budgeting we assume worst-case scenarios when the pages are not
667	 * be compressed and direntries are of the maximum size.
668	 *
669	 * Note, data, which may be stored in inodes is budgeted separately, so
670	 * it is not included into 'c->inode_budget'.
671	 */
672	c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
673	c->inode_budget = UBIFS_INO_NODE_SZ;
674	c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
675
676	/*
677	 * When the amount of flash space used by buds becomes
678	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
679	 * The writers are unblocked when the commit is finished. To avoid
680	 * writers to be blocked UBIFS initiates background commit in advance,
681	 * when number of bud bytes becomes above the limit defined below.
682	 */
683	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
684
685	/*
686	 * Ensure minimum journal size. All the bytes in the journal heads are
687	 * considered to be used, when calculating the current journal usage.
688	 * Consequently, if the journal is too small, UBIFS will treat it as
689	 * always full.
690	 */
691	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
692	if (c->bg_bud_bytes < tmp64)
693		c->bg_bud_bytes = tmp64;
694	if (c->max_bud_bytes < tmp64 + c->leb_size)
695		c->max_bud_bytes = tmp64 + c->leb_size;
696
697	err = ubifs_calc_lpt_geom(c);
698	if (err)
699		return err;
700
701	/* Initialize effective LEB size used in budgeting calculations */
702	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
703	return 0;
704}
705
706/*
707 * init_constants_master - initialize UBIFS constants.
708 * @c: UBIFS file-system description object
709 *
710 * This is a helper function which initializes various UBIFS constants after
711 * the master node has been read. It also checks various UBIFS parameters and
712 * makes sure they are all right.
713 */
714static void init_constants_master(struct ubifs_info *c)
715{
716	long long tmp64;
717
718	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
719	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
720
721	/*
722	 * Calculate total amount of FS blocks. This number is not used
723	 * internally because it does not make much sense for UBIFS, but it is
724	 * necessary to report something for the 'statfs()' call.
725	 *
726	 * Subtract the LEB reserved for GC, the LEB which is reserved for
727	 * deletions, minimum LEBs for the index, and assume only one journal
728	 * head is available.
729	 */
730	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
731	tmp64 *= (long long)c->leb_size - c->leb_overhead;
732	tmp64 = ubifs_reported_space(c, tmp64);
733	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
734}
735
736/**
737 * take_gc_lnum - reserve GC LEB.
738 * @c: UBIFS file-system description object
739 *
740 * This function ensures that the LEB reserved for garbage collection is marked
741 * as "taken" in lprops. We also have to set free space to LEB size and dirty
742 * space to zero, because lprops may contain out-of-date information if the
743 * file-system was un-mounted before it has been committed. This function
744 * returns zero in case of success and a negative error code in case of
745 * failure.
746 */
747static int take_gc_lnum(struct ubifs_info *c)
748{
749	int err;
750
751	if (c->gc_lnum == -1) {
752		ubifs_err("no LEB for GC");
753		return -EINVAL;
754	}
755
756	/* And we have to tell lprops that this LEB is taken */
757	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
758				  LPROPS_TAKEN, 0, 0);
759	return err;
760}
761
762/**
763 * alloc_wbufs - allocate write-buffers.
764 * @c: UBIFS file-system description object
765 *
766 * This helper function allocates and initializes UBIFS write-buffers. Returns
767 * zero in case of success and %-ENOMEM in case of failure.
768 */
769static int alloc_wbufs(struct ubifs_info *c)
770{
771	int i, err;
772
773	c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
774			   GFP_KERNEL);
775	if (!c->jheads)
776		return -ENOMEM;
777
778	/* Initialize journal heads */
779	for (i = 0; i < c->jhead_cnt; i++) {
780		INIT_LIST_HEAD(&c->jheads[i].buds_list);
781		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
782		if (err)
783			return err;
784
785		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
786		c->jheads[i].wbuf.jhead = i;
787	}
788
789	c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
790	/*
791	 * Garbage Collector head likely contains long-term data and
792	 * does not need to be synchronized by timer.
793	 */
794	c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
795	c->jheads[GCHD].wbuf.no_timer = 1;
796
797	return 0;
798}
799
800/**
801 * free_wbufs - free write-buffers.
802 * @c: UBIFS file-system description object
803 */
804static void free_wbufs(struct ubifs_info *c)
805{
806	int i;
807
808	if (c->jheads) {
809		for (i = 0; i < c->jhead_cnt; i++) {
810			kfree(c->jheads[i].wbuf.buf);
811			kfree(c->jheads[i].wbuf.inodes);
812		}
813		kfree(c->jheads);
814		c->jheads = NULL;
815	}
816}
817
818/**
819 * free_orphans - free orphans.
820 * @c: UBIFS file-system description object
821 */
822static void free_orphans(struct ubifs_info *c)
823{
824	struct ubifs_orphan *orph;
825
826	while (c->orph_dnext) {
827		orph = c->orph_dnext;
828		c->orph_dnext = orph->dnext;
829		list_del(&orph->list);
830		kfree(orph);
831	}
832
833	while (!list_empty(&c->orph_list)) {
834		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
835		list_del(&orph->list);
836		kfree(orph);
837		dbg_err("orphan list not empty at unmount");
838	}
839
840	vfree(c->orph_buf);
841	c->orph_buf = NULL;
842}
843
844/**
845 * free_buds - free per-bud objects.
846 * @c: UBIFS file-system description object
847 */
848static void free_buds(struct ubifs_info *c)
849{
850	struct rb_node *this = c->buds.rb_node;
851	struct ubifs_bud *bud;
852
853	while (this) {
854		if (this->rb_left)
855			this = this->rb_left;
856		else if (this->rb_right)
857			this = this->rb_right;
858		else {
859			bud = rb_entry(this, struct ubifs_bud, rb);
860			this = rb_parent(this);
861			if (this) {
862				if (this->rb_left == &bud->rb)
863					this->rb_left = NULL;
864				else
865					this->rb_right = NULL;
866			}
867			kfree(bud);
868		}
869	}
870}
871
872/**
873 * check_volume_empty - check if the UBI volume is empty.
874 * @c: UBIFS file-system description object
875 *
876 * This function checks if the UBIFS volume is empty by looking if its LEBs are
877 * mapped or not. The result of checking is stored in the @c->empty variable.
878 * Returns zero in case of success and a negative error code in case of
879 * failure.
880 */
881static int check_volume_empty(struct ubifs_info *c)
882{
883	int lnum, err;
884
885	c->empty = 1;
886	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
887		err = ubi_is_mapped(c->ubi, lnum);
888		if (unlikely(err < 0))
889			return err;
890		if (err == 1) {
891			c->empty = 0;
892			break;
893		}
894
895		cond_resched();
896	}
897
898	return 0;
899}
900
901/*
902 * UBIFS mount options.
903 *
904 * Opt_fast_unmount: do not run a journal commit before un-mounting
905 * Opt_norm_unmount: run a journal commit before un-mounting
906 * Opt_bulk_read: enable bulk-reads
907 * Opt_no_bulk_read: disable bulk-reads
908 * Opt_chk_data_crc: check CRCs when reading data nodes
909 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
910 * Opt_override_compr: override default compressor
911 * Opt_err: just end of array marker
912 */
913enum {
914	Opt_fast_unmount,
915	Opt_norm_unmount,
916	Opt_bulk_read,
917	Opt_no_bulk_read,
918	Opt_chk_data_crc,
919	Opt_no_chk_data_crc,
920	Opt_override_compr,
921	Opt_err,
922};
923
924static const match_table_t tokens = {
925	{Opt_fast_unmount, "fast_unmount"},
926	{Opt_norm_unmount, "norm_unmount"},
927	{Opt_bulk_read, "bulk_read"},
928	{Opt_no_bulk_read, "no_bulk_read"},
929	{Opt_chk_data_crc, "chk_data_crc"},
930	{Opt_no_chk_data_crc, "no_chk_data_crc"},
931	{Opt_override_compr, "compr=%s"},
932	{Opt_err, NULL},
933};
934
935/**
936 * parse_standard_option - parse a standard mount option.
937 * @option: the option to parse
938 *
939 * Normally, standard mount options like "sync" are passed to file-systems as
940 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
941 * be present in the options string. This function tries to deal with this
942 * situation and parse standard options. Returns 0 if the option was not
943 * recognized, and the corresponding integer flag if it was.
944 *
945 * UBIFS is only interested in the "sync" option, so do not check for anything
946 * else.
947 */
948static int parse_standard_option(const char *option)
949{
950	ubifs_msg("parse %s", option);
951	if (!strcmp(option, "sync"))
952		return MS_SYNCHRONOUS;
953	return 0;
954}
955
956/**
957 * ubifs_parse_options - parse mount parameters.
958 * @c: UBIFS file-system description object
959 * @options: parameters to parse
960 * @is_remount: non-zero if this is FS re-mount
961 *
962 * This function parses UBIFS mount options and returns zero in case success
963 * and a negative error code in case of failure.
964 */
965static int ubifs_parse_options(struct ubifs_info *c, char *options,
966			       int is_remount)
967{
968	char *p;
969	substring_t args[MAX_OPT_ARGS];
970
971	if (!options)
972		return 0;
973
974	while ((p = strsep(&options, ","))) {
975		int token;
976
977		if (!*p)
978			continue;
979
980		token = match_token(p, tokens, args);
981		switch (token) {
982		/*
983		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
984		 * We accept them in order to be backward-compatible. But this
985		 * should be removed at some point.
986		 */
987		case Opt_fast_unmount:
988			c->mount_opts.unmount_mode = 2;
989			break;
990		case Opt_norm_unmount:
991			c->mount_opts.unmount_mode = 1;
992			break;
993		case Opt_bulk_read:
994			c->mount_opts.bulk_read = 2;
995			c->bulk_read = 1;
996			break;
997		case Opt_no_bulk_read:
998			c->mount_opts.bulk_read = 1;
999			c->bulk_read = 0;
1000			break;
1001		case Opt_chk_data_crc:
1002			c->mount_opts.chk_data_crc = 2;
1003			c->no_chk_data_crc = 0;
1004			break;
1005		case Opt_no_chk_data_crc:
1006			c->mount_opts.chk_data_crc = 1;
1007			c->no_chk_data_crc = 1;
1008			break;
1009		case Opt_override_compr:
1010		{
1011			char *name = match_strdup(&args[0]);
1012
1013			if (!name)
1014				return -ENOMEM;
1015			if (!strcmp(name, "none"))
1016				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1017			else if (!strcmp(name, "lzo"))
1018				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1019			else if (!strcmp(name, "zlib"))
1020				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1021			else {
1022				ubifs_err("unknown compressor \"%s\"", name);
1023				kfree(name);
1024				return -EINVAL;
1025			}
1026			kfree(name);
1027			c->mount_opts.override_compr = 1;
1028			c->default_compr = c->mount_opts.compr_type;
1029			break;
1030		}
1031		default:
1032		{
1033			unsigned long flag;
1034			struct super_block *sb = c->vfs_sb;
1035
1036			flag = parse_standard_option(p);
1037			if (!flag) {
1038				ubifs_err("unrecognized mount option \"%s\" "
1039					  "or missing value", p);
1040				return -EINVAL;
1041			}
1042			sb->s_flags |= flag;
1043			break;
1044		}
1045		}
1046	}
1047
1048	return 0;
1049}
1050
1051/**
1052 * destroy_journal - destroy journal data structures.
1053 * @c: UBIFS file-system description object
1054 *
1055 * This function destroys journal data structures including those that may have
1056 * been created by recovery functions.
1057 */
1058static void destroy_journal(struct ubifs_info *c)
1059{
1060	while (!list_empty(&c->unclean_leb_list)) {
1061		struct ubifs_unclean_leb *ucleb;
1062
1063		ucleb = list_entry(c->unclean_leb_list.next,
1064				   struct ubifs_unclean_leb, list);
1065		list_del(&ucleb->list);
1066		kfree(ucleb);
1067	}
1068	while (!list_empty(&c->old_buds)) {
1069		struct ubifs_bud *bud;
1070
1071		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1072		list_del(&bud->list);
1073		kfree(bud);
1074	}
1075	ubifs_destroy_idx_gc(c);
1076	ubifs_destroy_size_tree(c);
1077	ubifs_tnc_close(c);
1078	free_buds(c);
1079}
1080
1081/**
1082 * bu_init - initialize bulk-read information.
1083 * @c: UBIFS file-system description object
1084 */
1085static void bu_init(struct ubifs_info *c)
1086{
1087	ubifs_assert(c->bulk_read == 1);
1088
1089	if (c->bu.buf)
1090		return; /* Already initialized */
1091
1092again:
1093	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1094	if (!c->bu.buf) {
1095		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1096			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1097			goto again;
1098		}
1099
1100		/* Just disable bulk-read */
1101		ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1102			   "disabling it", c->max_bu_buf_len);
1103		c->mount_opts.bulk_read = 1;
1104		c->bulk_read = 0;
1105		return;
1106	}
1107}
1108
1109/**
1110 * check_free_space - check if there is enough free space to mount.
1111 * @c: UBIFS file-system description object
1112 *
1113 * This function makes sure UBIFS has enough free space to be mounted in
1114 * read/write mode. UBIFS must always have some free space to allow deletions.
1115 */
1116static int check_free_space(struct ubifs_info *c)
1117{
1118	ubifs_assert(c->dark_wm > 0);
1119	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1120		ubifs_err("insufficient free space to mount in read/write mode");
1121		dbg_dump_budg(c);
1122		dbg_dump_lprops(c);
1123		return -ENOSPC;
1124	}
1125	return 0;
1126}
1127
1128/**
1129 * mount_ubifs - mount UBIFS file-system.
1130 * @c: UBIFS file-system description object
1131 *
1132 * This function mounts UBIFS file system. Returns zero in case of success and
1133 * a negative error code in case of failure.
1134 *
1135 * Note, the function does not de-allocate resources it it fails half way
1136 * through, and the caller has to do this instead.
1137 */
1138static int mount_ubifs(struct ubifs_info *c)
1139{
1140	struct super_block *sb = c->vfs_sb;
1141	int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1142	long long x;
1143	size_t sz;
1144
1145	err = init_constants_early(c);
1146	if (err)
1147		return err;
1148
1149	err = ubifs_debugging_init(c);
1150	if (err)
1151		return err;
1152
1153	err = check_volume_empty(c);
1154	if (err)
1155		goto out_free;
1156
1157	if (c->empty && (mounted_read_only || c->ro_media)) {
1158		/*
1159		 * This UBI volume is empty, and read-only, or the file system
1160		 * is mounted read-only - we cannot format it.
1161		 */
1162		ubifs_err("can't format empty UBI volume: read-only %s",
1163			  c->ro_media ? "UBI volume" : "mount");
1164		err = -EROFS;
1165		goto out_free;
1166	}
1167
1168	if (c->ro_media && !mounted_read_only) {
1169		ubifs_err("cannot mount read-write - read-only media");
1170		err = -EROFS;
1171		goto out_free;
1172	}
1173
1174	/*
1175	 * The requirement for the buffer is that it should fit indexing B-tree
1176	 * height amount of integers. We assume the height if the TNC tree will
1177	 * never exceed 64.
1178	 */
1179	err = -ENOMEM;
1180	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1181	if (!c->bottom_up_buf)
1182		goto out_free;
1183
1184	c->sbuf = vmalloc(c->leb_size);
1185	if (!c->sbuf)
1186		goto out_free;
1187
1188	if (!mounted_read_only) {
1189		c->ileb_buf = vmalloc(c->leb_size);
1190		if (!c->ileb_buf)
1191			goto out_free;
1192	}
1193
1194	if (c->bulk_read == 1)
1195		bu_init(c);
1196
1197	/*
1198	 * We have to check all CRCs, even for data nodes, when we mount the FS
1199	 * (specifically, when we are replaying).
1200	 */
1201	c->always_chk_crc = 1;
1202
1203	err = ubifs_read_superblock(c);
1204	if (err)
1205		goto out_free;
1206
1207	/*
1208	 * Make sure the compressor which is set as default in the superblock
1209	 * or overridden by mount options is actually compiled in.
1210	 */
1211	if (!ubifs_compr_present(c->default_compr)) {
1212		ubifs_err("'compressor \"%s\" is not compiled in",
1213			  ubifs_compr_name(c->default_compr));
1214		err = -ENOTSUPP;
1215		goto out_free;
1216	}
1217
1218	err = init_constants_sb(c);
1219	if (err)
1220		goto out_free;
1221
1222	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1223	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1224	c->cbuf = kmalloc(sz, GFP_NOFS);
1225	if (!c->cbuf) {
1226		err = -ENOMEM;
1227		goto out_free;
1228	}
1229
1230	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1231	if (!mounted_read_only) {
1232		err = alloc_wbufs(c);
1233		if (err)
1234			goto out_cbuf;
1235
1236		/* Create background thread */
1237		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1238		if (IS_ERR(c->bgt)) {
1239			err = PTR_ERR(c->bgt);
1240			c->bgt = NULL;
1241			ubifs_err("cannot spawn \"%s\", error %d",
1242				  c->bgt_name, err);
1243			goto out_wbufs;
1244		}
1245		wake_up_process(c->bgt);
1246	}
1247
1248	err = ubifs_read_master(c);
1249	if (err)
1250		goto out_master;
1251
1252	init_constants_master(c);
1253
1254	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1255		ubifs_msg("recovery needed");
1256		c->need_recovery = 1;
1257		if (!mounted_read_only) {
1258			err = ubifs_recover_inl_heads(c, c->sbuf);
1259			if (err)
1260				goto out_master;
1261		}
1262	} else if (!mounted_read_only) {
1263		/*
1264		 * Set the "dirty" flag so that if we reboot uncleanly we
1265		 * will notice this immediately on the next mount.
1266		 */
1267		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1268		err = ubifs_write_master(c);
1269		if (err)
1270			goto out_master;
1271	}
1272
1273	err = ubifs_lpt_init(c, 1, !mounted_read_only);
1274	if (err)
1275		goto out_lpt;
1276
1277	err = dbg_check_idx_size(c, c->old_idx_sz);
1278	if (err)
1279		goto out_lpt;
1280
1281	err = ubifs_replay_journal(c);
1282	if (err)
1283		goto out_journal;
1284
1285	/* Calculate 'min_idx_lebs' after journal replay */
1286	c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1287
1288	err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1289	if (err)
1290		goto out_orphans;
1291
1292	if (!mounted_read_only) {
1293		int lnum;
1294
1295		err = check_free_space(c);
1296		if (err)
1297			goto out_orphans;
1298
1299		/* Check for enough log space */
1300		lnum = c->lhead_lnum + 1;
1301		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1302			lnum = UBIFS_LOG_LNUM;
1303		if (lnum == c->ltail_lnum) {
1304			err = ubifs_consolidate_log(c);
1305			if (err)
1306				goto out_orphans;
1307		}
1308
1309		if (c->need_recovery) {
1310			err = ubifs_recover_size(c);
1311			if (err)
1312				goto out_orphans;
1313			err = ubifs_rcvry_gc_commit(c);
1314			if (err)
1315				goto out_orphans;
1316		} else {
1317			err = take_gc_lnum(c);
1318			if (err)
1319				goto out_orphans;
1320
1321			/*
1322			 * GC LEB may contain garbage if there was an unclean
1323			 * reboot, and it should be un-mapped.
1324			 */
1325			err = ubifs_leb_unmap(c, c->gc_lnum);
1326			if (err)
1327				goto out_orphans;
1328		}
1329
1330		err = dbg_check_lprops(c);
1331		if (err)
1332			goto out_orphans;
1333	} else if (c->need_recovery) {
1334		err = ubifs_recover_size(c);
1335		if (err)
1336			goto out_orphans;
1337	} else {
1338		/*
1339		 * Even if we mount read-only, we have to set space in GC LEB
1340		 * to proper value because this affects UBIFS free space
1341		 * reporting. We do not want to have a situation when
1342		 * re-mounting from R/O to R/W changes amount of free space.
1343		 */
1344		err = take_gc_lnum(c);
1345		if (err)
1346			goto out_orphans;
1347	}
1348
1349	spin_lock(&ubifs_infos_lock);
1350	list_add_tail(&c->infos_list, &ubifs_infos);
1351	spin_unlock(&ubifs_infos_lock);
1352
1353	if (c->need_recovery) {
1354		if (mounted_read_only)
1355			ubifs_msg("recovery deferred");
1356		else {
1357			c->need_recovery = 0;
1358			ubifs_msg("recovery completed");
1359			/*
1360			 * GC LEB has to be empty and taken at this point. But
1361			 * the journal head LEBs may also be accounted as
1362			 * "empty taken" if they are empty.
1363			 */
1364			ubifs_assert(c->lst.taken_empty_lebs > 0);
1365		}
1366	} else
1367		ubifs_assert(c->lst.taken_empty_lebs > 0);
1368
1369	err = dbg_check_filesystem(c);
1370	if (err)
1371		goto out_infos;
1372
1373	err = dbg_debugfs_init_fs(c);
1374	if (err)
1375		goto out_infos;
1376
1377	c->always_chk_crc = 0;
1378
1379	ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1380		  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1381	if (mounted_read_only)
1382		ubifs_msg("mounted read-only");
1383	x = (long long)c->main_lebs * c->leb_size;
1384	ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1385		  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1386	x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1387	ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1388		  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1389	ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1390		  c->fmt_version, c->ro_compat_version,
1391		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1392	ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1393	ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1394		c->report_rp_size, c->report_rp_size >> 10);
1395
1396	dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1397	dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1398	dbg_msg("LEB size:            %d bytes (%d KiB)",
1399		c->leb_size, c->leb_size >> 10);
1400	dbg_msg("data journal heads:  %d",
1401		c->jhead_cnt - NONDATA_JHEADS_CNT);
1402	dbg_msg("UUID:                %pUB", c->uuid);
1403	dbg_msg("big_lpt              %d", c->big_lpt);
1404	dbg_msg("log LEBs:            %d (%d - %d)",
1405		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1406	dbg_msg("LPT area LEBs:       %d (%d - %d)",
1407		c->lpt_lebs, c->lpt_first, c->lpt_last);
1408	dbg_msg("orphan area LEBs:    %d (%d - %d)",
1409		c->orph_lebs, c->orph_first, c->orph_last);
1410	dbg_msg("main area LEBs:      %d (%d - %d)",
1411		c->main_lebs, c->main_first, c->leb_cnt - 1);
1412	dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1413	dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1414		c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1415	dbg_msg("key hash type:       %d", c->key_hash_type);
1416	dbg_msg("tree fanout:         %d", c->fanout);
1417	dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1418	dbg_msg("first main LEB:      %d", c->main_first);
1419	dbg_msg("max. znode size      %d", c->max_znode_sz);
1420	dbg_msg("max. index node size %d", c->max_idx_node_sz);
1421	dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1422		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1423	dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1424		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1425	dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1426		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1427	dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu",
1428	        UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1429		UBIFS_MAX_DENT_NODE_SZ);
1430	dbg_msg("dead watermark:      %d", c->dead_wm);
1431	dbg_msg("dark watermark:      %d", c->dark_wm);
1432	dbg_msg("LEB overhead:        %d", c->leb_overhead);
1433	x = (long long)c->main_lebs * c->dark_wm;
1434	dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1435		x, x >> 10, x >> 20);
1436	dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1437		c->max_bud_bytes, c->max_bud_bytes >> 10,
1438		c->max_bud_bytes >> 20);
1439	dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1440		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1441		c->bg_bud_bytes >> 20);
1442	dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1443		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1444	dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1445	dbg_msg("commit number:       %llu", c->cmt_no);
1446
1447	return 0;
1448
1449out_infos:
1450	spin_lock(&ubifs_infos_lock);
1451	list_del(&c->infos_list);
1452	spin_unlock(&ubifs_infos_lock);
1453out_orphans:
1454	free_orphans(c);
1455out_journal:
1456	destroy_journal(c);
1457out_lpt:
1458	ubifs_lpt_free(c, 0);
1459out_master:
1460	kfree(c->mst_node);
1461	kfree(c->rcvrd_mst_node);
1462	if (c->bgt)
1463		kthread_stop(c->bgt);
1464out_wbufs:
1465	free_wbufs(c);
1466out_cbuf:
1467	kfree(c->cbuf);
1468out_free:
1469	kfree(c->bu.buf);
1470	vfree(c->ileb_buf);
1471	vfree(c->sbuf);
1472	kfree(c->bottom_up_buf);
1473	ubifs_debugging_exit(c);
1474	return err;
1475}
1476
1477/**
1478 * ubifs_umount - un-mount UBIFS file-system.
1479 * @c: UBIFS file-system description object
1480 *
1481 * Note, this function is called to free allocated resourced when un-mounting,
1482 * as well as free resources when an error occurred while we were half way
1483 * through mounting (error path cleanup function). So it has to make sure the
1484 * resource was actually allocated before freeing it.
1485 */
1486static void ubifs_umount(struct ubifs_info *c)
1487{
1488	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1489		c->vi.vol_id);
1490
1491	dbg_debugfs_exit_fs(c);
1492	spin_lock(&ubifs_infos_lock);
1493	list_del(&c->infos_list);
1494	spin_unlock(&ubifs_infos_lock);
1495
1496	if (c->bgt)
1497		kthread_stop(c->bgt);
1498
1499	destroy_journal(c);
1500	free_wbufs(c);
1501	free_orphans(c);
1502	ubifs_lpt_free(c, 0);
1503
1504	kfree(c->cbuf);
1505	kfree(c->rcvrd_mst_node);
1506	kfree(c->mst_node);
1507	kfree(c->bu.buf);
1508	vfree(c->ileb_buf);
1509	vfree(c->sbuf);
1510	kfree(c->bottom_up_buf);
1511	ubifs_debugging_exit(c);
1512}
1513
1514/**
1515 * ubifs_remount_rw - re-mount in read-write mode.
1516 * @c: UBIFS file-system description object
1517 *
1518 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1519 * mode. This function allocates the needed resources and re-mounts UBIFS in
1520 * read-write mode.
1521 */
1522static int ubifs_remount_rw(struct ubifs_info *c)
1523{
1524	int err, lnum;
1525
1526	if (c->rw_incompat) {
1527		ubifs_err("the file-system is not R/W-compatible");
1528		ubifs_msg("on-flash format version is w%d/r%d, but software "
1529			  "only supports up to version w%d/r%d", c->fmt_version,
1530			  c->ro_compat_version, UBIFS_FORMAT_VERSION,
1531			  UBIFS_RO_COMPAT_VERSION);
1532		return -EROFS;
1533	}
1534
1535	mutex_lock(&c->umount_mutex);
1536	dbg_save_space_info(c);
1537	c->remounting_rw = 1;
1538	c->always_chk_crc = 1;
1539
1540	err = check_free_space(c);
1541	if (err)
1542		goto out;
1543
1544	if (c->old_leb_cnt != c->leb_cnt) {
1545		struct ubifs_sb_node *sup;
1546
1547		sup = ubifs_read_sb_node(c);
1548		if (IS_ERR(sup)) {
1549			err = PTR_ERR(sup);
1550			goto out;
1551		}
1552		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1553		err = ubifs_write_sb_node(c, sup);
1554		if (err)
1555			goto out;
1556	}
1557
1558	if (c->need_recovery) {
1559		ubifs_msg("completing deferred recovery");
1560		err = ubifs_write_rcvrd_mst_node(c);
1561		if (err)
1562			goto out;
1563		err = ubifs_recover_size(c);
1564		if (err)
1565			goto out;
1566		err = ubifs_clean_lebs(c, c->sbuf);
1567		if (err)
1568			goto out;
1569		err = ubifs_recover_inl_heads(c, c->sbuf);
1570		if (err)
1571			goto out;
1572	} else {
1573		/* A readonly mount is not allowed to have orphans */
1574		ubifs_assert(c->tot_orphans == 0);
1575		err = ubifs_clear_orphans(c);
1576		if (err)
1577			goto out;
1578	}
1579
1580	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1581		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1582		err = ubifs_write_master(c);
1583		if (err)
1584			goto out;
1585	}
1586
1587	c->ileb_buf = vmalloc(c->leb_size);
1588	if (!c->ileb_buf) {
1589		err = -ENOMEM;
1590		goto out;
1591	}
1592
1593	err = ubifs_lpt_init(c, 0, 1);
1594	if (err)
1595		goto out;
1596
1597	err = alloc_wbufs(c);
1598	if (err)
1599		goto out;
1600
1601	ubifs_create_buds_lists(c);
1602
1603	/* Create background thread */
1604	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1605	if (IS_ERR(c->bgt)) {
1606		err = PTR_ERR(c->bgt);
1607		c->bgt = NULL;
1608		ubifs_err("cannot spawn \"%s\", error %d",
1609			  c->bgt_name, err);
1610		goto out;
1611	}
1612	wake_up_process(c->bgt);
1613
1614	c->orph_buf = vmalloc(c->leb_size);
1615	if (!c->orph_buf) {
1616		err = -ENOMEM;
1617		goto out;
1618	}
1619
1620	/* Check for enough log space */
1621	lnum = c->lhead_lnum + 1;
1622	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1623		lnum = UBIFS_LOG_LNUM;
1624	if (lnum == c->ltail_lnum) {
1625		err = ubifs_consolidate_log(c);
1626		if (err)
1627			goto out;
1628	}
1629
1630	if (c->need_recovery)
1631		err = ubifs_rcvry_gc_commit(c);
1632	else
1633		err = ubifs_leb_unmap(c, c->gc_lnum);
1634	if (err)
1635		goto out;
1636
1637	if (c->need_recovery) {
1638		c->need_recovery = 0;
1639		ubifs_msg("deferred recovery completed");
1640	}
1641
1642	dbg_gen("re-mounted read-write");
1643	c->vfs_sb->s_flags &= ~MS_RDONLY;
1644	c->remounting_rw = 0;
1645	c->always_chk_crc = 0;
1646	err = dbg_check_space_info(c);
1647	mutex_unlock(&c->umount_mutex);
1648	return err;
1649
1650out:
1651	vfree(c->orph_buf);
1652	c->orph_buf = NULL;
1653	if (c->bgt) {
1654		kthread_stop(c->bgt);
1655		c->bgt = NULL;
1656	}
1657	free_wbufs(c);
1658	vfree(c->ileb_buf);
1659	c->ileb_buf = NULL;
1660	ubifs_lpt_free(c, 1);
1661	c->remounting_rw = 0;
1662	c->always_chk_crc = 0;
1663	mutex_unlock(&c->umount_mutex);
1664	return err;
1665}
1666
1667/**
1668 * ubifs_remount_ro - re-mount in read-only mode.
1669 * @c: UBIFS file-system description object
1670 *
1671 * We assume VFS has stopped writing. Possibly the background thread could be
1672 * running a commit, however kthread_stop will wait in that case.
1673 */
1674static void ubifs_remount_ro(struct ubifs_info *c)
1675{
1676	int i, err;
1677
1678	ubifs_assert(!c->need_recovery);
1679	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1680
1681	mutex_lock(&c->umount_mutex);
1682	if (c->bgt) {
1683		kthread_stop(c->bgt);
1684		c->bgt = NULL;
1685	}
1686
1687	dbg_save_space_info(c);
1688
1689	for (i = 0; i < c->jhead_cnt; i++) {
1690		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1691		hrtimer_cancel(&c->jheads[i].wbuf.timer);
1692	}
1693
1694	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1695	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1696	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1697	err = ubifs_write_master(c);
1698	if (err)
1699		ubifs_ro_mode(c, err);
1700
1701	free_wbufs(c);
1702	vfree(c->orph_buf);
1703	c->orph_buf = NULL;
1704	vfree(c->ileb_buf);
1705	c->ileb_buf = NULL;
1706	ubifs_lpt_free(c, 1);
1707	err = dbg_check_space_info(c);
1708	if (err)
1709		ubifs_ro_mode(c, err);
1710	mutex_unlock(&c->umount_mutex);
1711}
1712
1713static void ubifs_put_super(struct super_block *sb)
1714{
1715	int i;
1716	struct ubifs_info *c = sb->s_fs_info;
1717
1718	ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1719		  c->vi.vol_id);
1720
1721	/*
1722	 * The following asserts are only valid if there has not been a failure
1723	 * of the media. For example, there will be dirty inodes if we failed
1724	 * to write them back because of I/O errors.
1725	 */
1726	ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1727	ubifs_assert(c->budg_idx_growth == 0);
1728	ubifs_assert(c->budg_dd_growth == 0);
1729	ubifs_assert(c->budg_data_growth == 0);
1730
1731	/*
1732	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1733	 * and file system un-mount. Namely, it prevents the shrinker from
1734	 * picking this superblock for shrinking - it will be just skipped if
1735	 * the mutex is locked.
1736	 */
1737	mutex_lock(&c->umount_mutex);
1738	if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1739		/*
1740		 * First of all kill the background thread to make sure it does
1741		 * not interfere with un-mounting and freeing resources.
1742		 */
1743		if (c->bgt) {
1744			kthread_stop(c->bgt);
1745			c->bgt = NULL;
1746		}
1747
1748		/* Synchronize write-buffers */
1749		if (c->jheads)
1750			for (i = 0; i < c->jhead_cnt; i++)
1751				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1752
1753		/*
1754		 * On fatal errors c->ro_media is set to 1, in which case we do
1755		 * not write the master node.
1756		 */
1757		if (!c->ro_media) {
1758			/*
1759			 * We are being cleanly unmounted which means the
1760			 * orphans were killed - indicate this in the master
1761			 * node. Also save the reserved GC LEB number.
1762			 */
1763			int err;
1764
1765			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1766			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1767			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1768			err = ubifs_write_master(c);
1769			if (err)
1770				/*
1771				 * Recovery will attempt to fix the master area
1772				 * next mount, so we just print a message and
1773				 * continue to unmount normally.
1774				 */
1775				ubifs_err("failed to write master node, "
1776					  "error %d", err);
1777		}
1778	}
1779
1780	ubifs_umount(c);
1781	bdi_destroy(&c->bdi);
1782	ubi_close_volume(c->ubi);
1783	mutex_unlock(&c->umount_mutex);
1784	kfree(c);
1785}
1786
1787static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1788{
1789	int err;
1790	struct ubifs_info *c = sb->s_fs_info;
1791
1792	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1793
1794	err = ubifs_parse_options(c, data, 1);
1795	if (err) {
1796		ubifs_err("invalid or unknown remount parameter");
1797		return err;
1798	}
1799
1800	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1801		if (c->ro_media) {
1802			ubifs_msg("cannot re-mount due to prior errors");
1803			return -EROFS;
1804		}
1805		err = ubifs_remount_rw(c);
1806		if (err)
1807			return err;
1808	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1809		if (c->ro_media) {
1810			ubifs_msg("cannot re-mount due to prior errors");
1811			return -EROFS;
1812		}
1813		ubifs_remount_ro(c);
1814	}
1815
1816	if (c->bulk_read == 1)
1817		bu_init(c);
1818	else {
1819		dbg_gen("disable bulk-read");
1820		kfree(c->bu.buf);
1821		c->bu.buf = NULL;
1822	}
1823
1824	ubifs_assert(c->lst.taken_empty_lebs > 0);
1825	return 0;
1826}
1827
1828const struct super_operations ubifs_super_operations = {
1829	.alloc_inode   = ubifs_alloc_inode,
1830	.destroy_inode = ubifs_destroy_inode,
1831	.put_super     = ubifs_put_super,
1832	.write_inode   = ubifs_write_inode,
1833	.evict_inode   = ubifs_evict_inode,
1834	.statfs        = ubifs_statfs,
1835	.dirty_inode   = ubifs_dirty_inode,
1836	.remount_fs    = ubifs_remount_fs,
1837	.show_options  = ubifs_show_options,
1838	.sync_fs       = ubifs_sync_fs,
1839};
1840
1841/**
1842 * open_ubi - parse UBI device name string and open the UBI device.
1843 * @name: UBI volume name
1844 * @mode: UBI volume open mode
1845 *
1846 * The primary method of mounting UBIFS is by specifying the UBI volume
1847 * character device node path. However, UBIFS may also be mounted withoug any
1848 * character device node using one of the following methods:
1849 *
1850 * o ubiX_Y    - mount UBI device number X, volume Y;
1851 * o ubiY      - mount UBI device number 0, volume Y;
1852 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1853 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1854 *
1855 * Alternative '!' separator may be used instead of ':' (because some shells
1856 * like busybox may interpret ':' as an NFS host name separator). This function
1857 * returns UBI volume description object in case of success and a negative
1858 * error code in case of failure.
1859 */
1860static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1861{
1862	struct ubi_volume_desc *ubi;
1863	int dev, vol;
1864	char *endptr;
1865
1866	/* First, try to open using the device node path method */
1867	ubi = ubi_open_volume_path(name, mode);
1868	if (!IS_ERR(ubi))
1869		return ubi;
1870
1871	/* Try the "nodev" method */
1872	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1873		return ERR_PTR(-EINVAL);
1874
1875	/* ubi:NAME method */
1876	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1877		return ubi_open_volume_nm(0, name + 4, mode);
1878
1879	if (!isdigit(name[3]))
1880		return ERR_PTR(-EINVAL);
1881
1882	dev = simple_strtoul(name + 3, &endptr, 0);
1883
1884	/* ubiY method */
1885	if (*endptr == '\0')
1886		return ubi_open_volume(0, dev, mode);
1887
1888	/* ubiX_Y method */
1889	if (*endptr == '_' && isdigit(endptr[1])) {
1890		vol = simple_strtoul(endptr + 1, &endptr, 0);
1891		if (*endptr != '\0')
1892			return ERR_PTR(-EINVAL);
1893		return ubi_open_volume(dev, vol, mode);
1894	}
1895
1896	/* ubiX:NAME method */
1897	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1898		return ubi_open_volume_nm(dev, ++endptr, mode);
1899
1900	return ERR_PTR(-EINVAL);
1901}
1902
1903static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1904{
1905	struct ubi_volume_desc *ubi = sb->s_fs_info;
1906	struct ubifs_info *c;
1907	struct inode *root;
1908	int err;
1909
1910	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1911	if (!c)
1912		return -ENOMEM;
1913
1914	spin_lock_init(&c->cnt_lock);
1915	spin_lock_init(&c->cs_lock);
1916	spin_lock_init(&c->buds_lock);
1917	spin_lock_init(&c->space_lock);
1918	spin_lock_init(&c->orphan_lock);
1919	init_rwsem(&c->commit_sem);
1920	mutex_init(&c->lp_mutex);
1921	mutex_init(&c->tnc_mutex);
1922	mutex_init(&c->log_mutex);
1923	mutex_init(&c->mst_mutex);
1924	mutex_init(&c->umount_mutex);
1925	mutex_init(&c->bu_mutex);
1926	init_waitqueue_head(&c->cmt_wq);
1927	c->buds = RB_ROOT;
1928	c->old_idx = RB_ROOT;
1929	c->size_tree = RB_ROOT;
1930	c->orph_tree = RB_ROOT;
1931	INIT_LIST_HEAD(&c->infos_list);
1932	INIT_LIST_HEAD(&c->idx_gc);
1933	INIT_LIST_HEAD(&c->replay_list);
1934	INIT_LIST_HEAD(&c->replay_buds);
1935	INIT_LIST_HEAD(&c->uncat_list);
1936	INIT_LIST_HEAD(&c->empty_list);
1937	INIT_LIST_HEAD(&c->freeable_list);
1938	INIT_LIST_HEAD(&c->frdi_idx_list);
1939	INIT_LIST_HEAD(&c->unclean_leb_list);
1940	INIT_LIST_HEAD(&c->old_buds);
1941	INIT_LIST_HEAD(&c->orph_list);
1942	INIT_LIST_HEAD(&c->orph_new);
1943
1944	c->vfs_sb = sb;
1945	c->highest_inum = UBIFS_FIRST_INO;
1946	c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1947
1948	ubi_get_volume_info(ubi, &c->vi);
1949	ubi_get_device_info(c->vi.ubi_num, &c->di);
1950
1951	/* Re-open the UBI device in read-write mode */
1952	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1953	if (IS_ERR(c->ubi)) {
1954		err = PTR_ERR(c->ubi);
1955		goto out_free;
1956	}
1957
1958	/*
1959	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1960	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1961	 * which means the user would have to wait not just for their own I/O
1962	 * but the read-ahead I/O as well i.e. completely pointless.
1963	 *
1964	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1965	 */
1966	c->bdi.name = "ubifs",
1967	c->bdi.capabilities = BDI_CAP_MAP_COPY;
1968	c->bdi.unplug_io_fn = default_unplug_io_fn;
1969	err  = bdi_init(&c->bdi);
1970	if (err)
1971		goto out_close;
1972	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1973			   c->vi.ubi_num, c->vi.vol_id);
1974	if (err)
1975		goto out_bdi;
1976
1977	err = ubifs_parse_options(c, data, 0);
1978	if (err)
1979		goto out_bdi;
1980
1981	sb->s_bdi = &c->bdi;
1982	sb->s_fs_info = c;
1983	sb->s_magic = UBIFS_SUPER_MAGIC;
1984	sb->s_blocksize = UBIFS_BLOCK_SIZE;
1985	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1986	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1987	if (c->max_inode_sz > MAX_LFS_FILESIZE)
1988		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1989	sb->s_op = &ubifs_super_operations;
1990
1991	mutex_lock(&c->umount_mutex);
1992	err = mount_ubifs(c);
1993	if (err) {
1994		ubifs_assert(err < 0);
1995		goto out_unlock;
1996	}
1997
1998	/* Read the root inode */
1999	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2000	if (IS_ERR(root)) {
2001		err = PTR_ERR(root);
2002		goto out_umount;
2003	}
2004
2005	sb->s_root = d_alloc_root(root);
2006	if (!sb->s_root)
2007		goto out_iput;
2008
2009	mutex_unlock(&c->umount_mutex);
2010	return 0;
2011
2012out_iput:
2013	iput(root);
2014out_umount:
2015	ubifs_umount(c);
2016out_unlock:
2017	mutex_unlock(&c->umount_mutex);
2018out_bdi:
2019	bdi_destroy(&c->bdi);
2020out_close:
2021	ubi_close_volume(c->ubi);
2022out_free:
2023	kfree(c);
2024	return err;
2025}
2026
2027static int sb_test(struct super_block *sb, void *data)
2028{
2029	dev_t *dev = data;
2030	struct ubifs_info *c = sb->s_fs_info;
2031
2032	return c->vi.cdev == *dev;
2033}
2034
2035static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
2036			const char *name, void *data, struct vfsmount *mnt)
2037{
2038	struct ubi_volume_desc *ubi;
2039	struct ubi_volume_info vi;
2040	struct super_block *sb;
2041	int err;
2042
2043	dbg_gen("name %s, flags %#x", name, flags);
2044
2045	/*
2046	 * Get UBI device number and volume ID. Mount it read-only so far
2047	 * because this might be a new mount point, and UBI allows only one
2048	 * read-write user at a time.
2049	 */
2050	ubi = open_ubi(name, UBI_READONLY);
2051	if (IS_ERR(ubi)) {
2052		ubifs_err("cannot open \"%s\", error %d",
2053			  name, (int)PTR_ERR(ubi));
2054		return PTR_ERR(ubi);
2055	}
2056	ubi_get_volume_info(ubi, &vi);
2057
2058	dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2059
2060	sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2061	if (IS_ERR(sb)) {
2062		err = PTR_ERR(sb);
2063		goto out_close;
2064	}
2065
2066	if (sb->s_root) {
2067		/* A new mount point for already mounted UBIFS */
2068		dbg_gen("this ubi volume is already mounted");
2069		if ((flags ^ sb->s_flags) & MS_RDONLY) {
2070			err = -EBUSY;
2071			goto out_deact;
2072		}
2073	} else {
2074		sb->s_flags = flags;
2075		/*
2076		 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2077		 * replaced by 'c'.
2078		 */
2079		sb->s_fs_info = ubi;
2080		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2081		if (err)
2082			goto out_deact;
2083		/* We do not support atime */
2084		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2085	}
2086
2087	/* 'fill_super()' opens ubi again so we must close it here */
2088	ubi_close_volume(ubi);
2089
2090	simple_set_mnt(mnt, sb);
2091	return 0;
2092
2093out_deact:
2094	deactivate_locked_super(sb);
2095out_close:
2096	ubi_close_volume(ubi);
2097	return err;
2098}
2099
2100static struct file_system_type ubifs_fs_type = {
2101	.name    = "ubifs",
2102	.owner   = THIS_MODULE,
2103	.get_sb  = ubifs_get_sb,
2104	.kill_sb = kill_anon_super,
2105};
2106
2107/*
2108 * Inode slab cache constructor.
2109 */
2110static void inode_slab_ctor(void *obj)
2111{
2112	struct ubifs_inode *ui = obj;
2113	inode_init_once(&ui->vfs_inode);
2114}
2115
2116static int __init ubifs_init(void)
2117{
2118	int err;
2119
2120	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2121
2122	/* Make sure node sizes are 8-byte aligned */
2123	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2124	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2125	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2126	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2127	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2128	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2129	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2130	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2131	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2132	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2133	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2134
2135	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2136	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2137	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2138	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2139	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2140	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2141
2142	/* Check min. node size */
2143	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2144	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2145	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2146	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2147
2148	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2149	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2150	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2151	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2152
2153	/* Defined node sizes */
2154	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2155	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2156	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2157	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2158
2159	/*
2160	 * We use 2 bit wide bit-fields to store compression type, which should
2161	 * be amended if more compressors are added. The bit-fields are:
2162	 * @compr_type in 'struct ubifs_inode', @default_compr in
2163	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2164	 */
2165	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2166
2167	/*
2168	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2169	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2170	 */
2171	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2172		ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2173			  " at least 4096 bytes",
2174			  (unsigned int)PAGE_CACHE_SIZE);
2175		return -EINVAL;
2176	}
2177
2178	err = register_filesystem(&ubifs_fs_type);
2179	if (err) {
2180		ubifs_err("cannot register file system, error %d", err);
2181		return err;
2182	}
2183
2184	err = -ENOMEM;
2185	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2186				sizeof(struct ubifs_inode), 0,
2187				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2188				&inode_slab_ctor);
2189	if (!ubifs_inode_slab)
2190		goto out_reg;
2191
2192	register_shrinker(&ubifs_shrinker_info);
2193
2194	err = ubifs_compressors_init();
2195	if (err)
2196		goto out_shrinker;
2197
2198	err = dbg_debugfs_init();
2199	if (err)
2200		goto out_compr;
2201
2202	return 0;
2203
2204out_compr:
2205	ubifs_compressors_exit();
2206out_shrinker:
2207	unregister_shrinker(&ubifs_shrinker_info);
2208	kmem_cache_destroy(ubifs_inode_slab);
2209out_reg:
2210	unregister_filesystem(&ubifs_fs_type);
2211	return err;
2212}
2213/* late_initcall to let compressors initialize first */
2214late_initcall(ubifs_init);
2215
2216static void __exit ubifs_exit(void)
2217{
2218	ubifs_assert(list_empty(&ubifs_infos));
2219	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2220
2221	dbg_debugfs_exit();
2222	ubifs_compressors_exit();
2223	unregister_shrinker(&ubifs_shrinker_info);
2224	kmem_cache_destroy(ubifs_inode_slab);
2225	unregister_filesystem(&ubifs_fs_type);
2226}
2227module_exit(ubifs_exit);
2228
2229MODULE_LICENSE("GPL");
2230MODULE_VERSION(__stringify(UBIFS_VERSION));
2231MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2232MODULE_DESCRIPTION("UBIFS - UBI File System");
2233