• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/fs/ubifs/
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 *          Artem Bityutskiy (���������������� ����������)
21 */
22
23/*
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
28 *
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
33 *
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39 * selected for garbage collection, which consists of marking the clean nodes in
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43 * mounted.
44 */
45
46#include "ubifs.h"
47#include <linux/crc16.h>
48#include <linux/math64.h>
49#include <linux/slab.h>
50
51/**
52 * do_calc_lpt_geom - calculate sizes for the LPT area.
53 * @c: the UBIFS file-system description object
54 *
55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56 * properties of the flash and whether LPT is "big" (c->big_lpt).
57 */
58static void do_calc_lpt_geom(struct ubifs_info *c)
59{
60	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61	long long sz, tot_wastage;
62
63	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65
66	c->lpt_hght = 1;
67	n = UBIFS_LPT_FANOUT;
68	while (n < max_pnode_cnt) {
69		c->lpt_hght += 1;
70		n <<= UBIFS_LPT_FANOUT_SHIFT;
71	}
72
73	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74
75	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76	c->nnode_cnt = n;
77	for (i = 1; i < c->lpt_hght; i++) {
78		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79		c->nnode_cnt += n;
80	}
81
82	c->space_bits = fls(c->leb_size) - 3;
83	c->lpt_lnum_bits = fls(c->lpt_lebs);
84	c->lpt_offs_bits = fls(c->leb_size - 1);
85	c->lpt_spc_bits = fls(c->leb_size);
86
87	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88	c->pcnt_bits = fls(n - 1);
89
90	c->lnum_bits = fls(c->max_leb_cnt - 1);
91
92	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93	       (c->big_lpt ? c->pcnt_bits : 0) +
94	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95	c->pnode_sz = (bits + 7) / 8;
96
97	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98	       (c->big_lpt ? c->pcnt_bits : 0) +
99	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100	c->nnode_sz = (bits + 7) / 8;
101
102	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103	       c->lpt_lebs * c->lpt_spc_bits * 2;
104	c->ltab_sz = (bits + 7) / 8;
105
106	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107	       c->lnum_bits * c->lsave_cnt;
108	c->lsave_sz = (bits + 7) / 8;
109
110	/* Calculate the minimum LPT size */
111	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113	c->lpt_sz += c->ltab_sz;
114	if (c->big_lpt)
115		c->lpt_sz += c->lsave_sz;
116
117	/* Add wastage */
118	sz = c->lpt_sz;
119	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120	sz += per_leb_wastage;
121	tot_wastage = per_leb_wastage;
122	while (sz > c->leb_size) {
123		sz += per_leb_wastage;
124		sz -= c->leb_size;
125		tot_wastage += per_leb_wastage;
126	}
127	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128	c->lpt_sz += tot_wastage;
129}
130
131/**
132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133 * @c: the UBIFS file-system description object
134 *
135 * This function returns %0 on success and a negative error code on failure.
136 */
137int ubifs_calc_lpt_geom(struct ubifs_info *c)
138{
139	int lebs_needed;
140	long long sz;
141
142	do_calc_lpt_geom(c);
143
144	/* Verify that lpt_lebs is big enough */
145	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147	if (lebs_needed > c->lpt_lebs) {
148		ubifs_err("too few LPT LEBs");
149		return -EINVAL;
150	}
151
152	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153	if (c->ltab_sz > c->leb_size) {
154		ubifs_err("LPT ltab too big");
155		return -EINVAL;
156	}
157
158	c->check_lpt_free = c->big_lpt;
159	return 0;
160}
161
162/**
163 * calc_dflt_lpt_geom - calculate default LPT geometry.
164 * @c: the UBIFS file-system description object
165 * @main_lebs: number of main area LEBs is passed and returned here
166 * @big_lpt: whether the LPT area is "big" is returned here
167 *
168 * The size of the LPT area depends on parameters that themselves are dependent
169 * on the size of the LPT area. This function, successively recalculates the LPT
170 * area geometry until the parameters and resultant geometry are consistent.
171 *
172 * This function returns %0 on success and a negative error code on failure.
173 */
174static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175			      int *big_lpt)
176{
177	int i, lebs_needed;
178	long long sz;
179
180	/* Start by assuming the minimum number of LPT LEBs */
181	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182	c->main_lebs = *main_lebs - c->lpt_lebs;
183	if (c->main_lebs <= 0)
184		return -EINVAL;
185
186	/* And assume we will use the small LPT model */
187	c->big_lpt = 0;
188
189	/*
190	 * Calculate the geometry based on assumptions above and then see if it
191	 * makes sense
192	 */
193	do_calc_lpt_geom(c);
194
195	/* Small LPT model must have lpt_sz < leb_size */
196	if (c->lpt_sz > c->leb_size) {
197		/* Nope, so try again using big LPT model */
198		c->big_lpt = 1;
199		do_calc_lpt_geom(c);
200	}
201
202	/* Now check there are enough LPT LEBs */
203	for (i = 0; i < 64 ; i++) {
204		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206		if (lebs_needed > c->lpt_lebs) {
207			/* Not enough LPT LEBs so try again with more */
208			c->lpt_lebs = lebs_needed;
209			c->main_lebs = *main_lebs - c->lpt_lebs;
210			if (c->main_lebs <= 0)
211				return -EINVAL;
212			do_calc_lpt_geom(c);
213			continue;
214		}
215		if (c->ltab_sz > c->leb_size) {
216			ubifs_err("LPT ltab too big");
217			return -EINVAL;
218		}
219		*main_lebs = c->main_lebs;
220		*big_lpt = c->big_lpt;
221		return 0;
222	}
223	return -EINVAL;
224}
225
226/**
227 * pack_bits - pack bit fields end-to-end.
228 * @addr: address at which to pack (passed and next address returned)
229 * @pos: bit position at which to pack (passed and next position returned)
230 * @val: value to pack
231 * @nrbits: number of bits of value to pack (1-32)
232 */
233static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
234{
235	uint8_t *p = *addr;
236	int b = *pos;
237
238	ubifs_assert(nrbits > 0);
239	ubifs_assert(nrbits <= 32);
240	ubifs_assert(*pos >= 0);
241	ubifs_assert(*pos < 8);
242	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243	if (b) {
244		*p |= ((uint8_t)val) << b;
245		nrbits += b;
246		if (nrbits > 8) {
247			*++p = (uint8_t)(val >>= (8 - b));
248			if (nrbits > 16) {
249				*++p = (uint8_t)(val >>= 8);
250				if (nrbits > 24) {
251					*++p = (uint8_t)(val >>= 8);
252					if (nrbits > 32)
253						*++p = (uint8_t)(val >>= 8);
254				}
255			}
256		}
257	} else {
258		*p = (uint8_t)val;
259		if (nrbits > 8) {
260			*++p = (uint8_t)(val >>= 8);
261			if (nrbits > 16) {
262				*++p = (uint8_t)(val >>= 8);
263				if (nrbits > 24)
264					*++p = (uint8_t)(val >>= 8);
265			}
266		}
267	}
268	b = nrbits & 7;
269	if (b == 0)
270		p++;
271	*addr = p;
272	*pos = b;
273}
274
275/**
276 * ubifs_unpack_bits - unpack bit fields.
277 * @addr: address at which to unpack (passed and next address returned)
278 * @pos: bit position at which to unpack (passed and next position returned)
279 * @nrbits: number of bits of value to unpack (1-32)
280 *
281 * This functions returns the value unpacked.
282 */
283uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
284{
285	const int k = 32 - nrbits;
286	uint8_t *p = *addr;
287	int b = *pos;
288	uint32_t uninitialized_var(val);
289	const int bytes = (nrbits + b + 7) >> 3;
290
291	ubifs_assert(nrbits > 0);
292	ubifs_assert(nrbits <= 32);
293	ubifs_assert(*pos >= 0);
294	ubifs_assert(*pos < 8);
295	if (b) {
296		switch (bytes) {
297		case 2:
298			val = p[1];
299			break;
300		case 3:
301			val = p[1] | ((uint32_t)p[2] << 8);
302			break;
303		case 4:
304			val = p[1] | ((uint32_t)p[2] << 8) |
305				     ((uint32_t)p[3] << 16);
306			break;
307		case 5:
308			val = p[1] | ((uint32_t)p[2] << 8) |
309				     ((uint32_t)p[3] << 16) |
310				     ((uint32_t)p[4] << 24);
311		}
312		val <<= (8 - b);
313		val |= *p >> b;
314		nrbits += b;
315	} else {
316		switch (bytes) {
317		case 1:
318			val = p[0];
319			break;
320		case 2:
321			val = p[0] | ((uint32_t)p[1] << 8);
322			break;
323		case 3:
324			val = p[0] | ((uint32_t)p[1] << 8) |
325				     ((uint32_t)p[2] << 16);
326			break;
327		case 4:
328			val = p[0] | ((uint32_t)p[1] << 8) |
329				     ((uint32_t)p[2] << 16) |
330				     ((uint32_t)p[3] << 24);
331			break;
332		}
333	}
334	val <<= k;
335	val >>= k;
336	b = nrbits & 7;
337	p += nrbits >> 3;
338	*addr = p;
339	*pos = b;
340	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341	return val;
342}
343
344/**
345 * ubifs_pack_pnode - pack all the bit fields of a pnode.
346 * @c: UBIFS file-system description object
347 * @buf: buffer into which to pack
348 * @pnode: pnode to pack
349 */
350void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351		      struct ubifs_pnode *pnode)
352{
353	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354	int i, pos = 0;
355	uint16_t crc;
356
357	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358	if (c->big_lpt)
359		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362			  c->space_bits);
363		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364			  c->space_bits);
365		if (pnode->lprops[i].flags & LPROPS_INDEX)
366			pack_bits(&addr, &pos, 1, 1);
367		else
368			pack_bits(&addr, &pos, 0, 1);
369	}
370	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372	addr = buf;
373	pos = 0;
374	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
375}
376
377/**
378 * ubifs_pack_nnode - pack all the bit fields of a nnode.
379 * @c: UBIFS file-system description object
380 * @buf: buffer into which to pack
381 * @nnode: nnode to pack
382 */
383void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384		      struct ubifs_nnode *nnode)
385{
386	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387	int i, pos = 0;
388	uint16_t crc;
389
390	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391	if (c->big_lpt)
392		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394		int lnum = nnode->nbranch[i].lnum;
395
396		if (lnum == 0)
397			lnum = c->lpt_last + 1;
398		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400			  c->lpt_offs_bits);
401	}
402	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404	addr = buf;
405	pos = 0;
406	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
407}
408
409/**
410 * ubifs_pack_ltab - pack the LPT's own lprops table.
411 * @c: UBIFS file-system description object
412 * @buf: buffer into which to pack
413 * @ltab: LPT's own lprops table to pack
414 */
415void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416		     struct ubifs_lpt_lprops *ltab)
417{
418	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419	int i, pos = 0;
420	uint16_t crc;
421
422	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423	for (i = 0; i < c->lpt_lebs; i++) {
424		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
426	}
427	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429	addr = buf;
430	pos = 0;
431	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
432}
433
434/**
435 * ubifs_pack_lsave - pack the LPT's save table.
436 * @c: UBIFS file-system description object
437 * @buf: buffer into which to pack
438 * @lsave: LPT's save table to pack
439 */
440void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
441{
442	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443	int i, pos = 0;
444	uint16_t crc;
445
446	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447	for (i = 0; i < c->lsave_cnt; i++)
448		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451	addr = buf;
452	pos = 0;
453	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
454}
455
456/**
457 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458 * @c: UBIFS file-system description object
459 * @lnum: LEB number to which to add dirty space
460 * @dirty: amount of dirty space to add
461 */
462void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
463{
464	if (!dirty || !lnum)
465		return;
466	dbg_lp("LEB %d add %d to %d",
467	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469	c->ltab[lnum - c->lpt_first].dirty += dirty;
470}
471
472/**
473 * set_ltab - set LPT LEB properties.
474 * @c: UBIFS file-system description object
475 * @lnum: LEB number
476 * @free: amount of free space
477 * @dirty: amount of dirty space
478 */
479static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
480{
481	dbg_lp("LEB %d free %d dirty %d to %d %d",
482	       lnum, c->ltab[lnum - c->lpt_first].free,
483	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485	c->ltab[lnum - c->lpt_first].free = free;
486	c->ltab[lnum - c->lpt_first].dirty = dirty;
487}
488
489/**
490 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491 * @c: UBIFS file-system description object
492 * @nnode: nnode for which to add dirt
493 */
494void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
495{
496	struct ubifs_nnode *np = nnode->parent;
497
498	if (np)
499		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500				   c->nnode_sz);
501	else {
502		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504			c->lpt_drty_flgs |= LTAB_DIRTY;
505			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
506		}
507	}
508}
509
510/**
511 * add_pnode_dirt - add dirty space to LPT LEB properties.
512 * @c: UBIFS file-system description object
513 * @pnode: pnode for which to add dirt
514 */
515static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
516{
517	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518			   c->pnode_sz);
519}
520
521/**
522 * calc_nnode_num - calculate nnode number.
523 * @row: the row in the tree (root is zero)
524 * @col: the column in the row (leftmost is zero)
525 *
526 * The nnode number is a number that uniquely identifies a nnode and can be used
527 * easily to traverse the tree from the root to that nnode.
528 *
529 * This function calculates and returns the nnode number for the nnode at @row
530 * and @col.
531 */
532static int calc_nnode_num(int row, int col)
533{
534	int num, bits;
535
536	num = 1;
537	while (row--) {
538		bits = (col & (UBIFS_LPT_FANOUT - 1));
539		col >>= UBIFS_LPT_FANOUT_SHIFT;
540		num <<= UBIFS_LPT_FANOUT_SHIFT;
541		num |= bits;
542	}
543	return num;
544}
545
546/**
547 * calc_nnode_num_from_parent - calculate nnode number.
548 * @c: UBIFS file-system description object
549 * @parent: parent nnode
550 * @iip: index in parent
551 *
552 * The nnode number is a number that uniquely identifies a nnode and can be used
553 * easily to traverse the tree from the root to that nnode.
554 *
555 * This function calculates and returns the nnode number based on the parent's
556 * nnode number and the index in parent.
557 */
558static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559				      struct ubifs_nnode *parent, int iip)
560{
561	int num, shft;
562
563	if (!parent)
564		return 1;
565	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566	num = parent->num ^ (1 << shft);
567	num |= (UBIFS_LPT_FANOUT + iip) << shft;
568	return num;
569}
570
571/**
572 * calc_pnode_num_from_parent - calculate pnode number.
573 * @c: UBIFS file-system description object
574 * @parent: parent nnode
575 * @iip: index in parent
576 *
577 * The pnode number is a number that uniquely identifies a pnode and can be used
578 * easily to traverse the tree from the root to that pnode.
579 *
580 * This function calculates and returns the pnode number based on the parent's
581 * nnode number and the index in parent.
582 */
583static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584				      struct ubifs_nnode *parent, int iip)
585{
586	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
587
588	for (i = 0; i < n; i++) {
589		num <<= UBIFS_LPT_FANOUT_SHIFT;
590		num |= pnum & (UBIFS_LPT_FANOUT - 1);
591		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
592	}
593	num <<= UBIFS_LPT_FANOUT_SHIFT;
594	num |= iip;
595	return num;
596}
597
598/**
599 * ubifs_create_dflt_lpt - create default LPT.
600 * @c: UBIFS file-system description object
601 * @main_lebs: number of main area LEBs is passed and returned here
602 * @lpt_first: LEB number of first LPT LEB
603 * @lpt_lebs: number of LEBs for LPT is passed and returned here
604 * @big_lpt: use big LPT model is passed and returned here
605 *
606 * This function returns %0 on success and a negative error code on failure.
607 */
608int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609			  int *lpt_lebs, int *big_lpt)
610{
611	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612	int blnum, boffs, bsz, bcnt;
613	struct ubifs_pnode *pnode = NULL;
614	struct ubifs_nnode *nnode = NULL;
615	void *buf = NULL, *p;
616	struct ubifs_lpt_lprops *ltab = NULL;
617	int *lsave = NULL;
618
619	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620	if (err)
621		return err;
622	*lpt_lebs = c->lpt_lebs;
623
624	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625	c->lpt_first = lpt_first;
626	/* Needed by 'set_ltab()' */
627	c->lpt_last = lpt_first + c->lpt_lebs - 1;
628	/* Needed by 'ubifs_pack_lsave()' */
629	c->main_first = c->leb_cnt - *main_lebs;
630
631	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
632	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634	buf = vmalloc(c->leb_size);
635	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
636	if (!pnode || !nnode || !buf || !ltab || !lsave) {
637		err = -ENOMEM;
638		goto out;
639	}
640
641	ubifs_assert(!c->ltab);
642	c->ltab = ltab; /* Needed by set_ltab */
643
644	/* Initialize LPT's own lprops */
645	for (i = 0; i < c->lpt_lebs; i++) {
646		ltab[i].free = c->leb_size;
647		ltab[i].dirty = 0;
648		ltab[i].tgc = 0;
649		ltab[i].cmt = 0;
650	}
651
652	lnum = lpt_first;
653	p = buf;
654	/* Number of leaf nodes (pnodes) */
655	cnt = c->pnode_cnt;
656
657	/*
658	 * The first pnode contains the LEB properties for the LEBs that contain
659	 * the root inode node and the root index node of the index tree.
660	 */
661	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
662	iopos = ALIGN(node_sz, c->min_io_size);
663	pnode->lprops[0].free = c->leb_size - iopos;
664	pnode->lprops[0].dirty = iopos - node_sz;
665	pnode->lprops[0].flags = LPROPS_INDEX;
666
667	node_sz = UBIFS_INO_NODE_SZ;
668	iopos = ALIGN(node_sz, c->min_io_size);
669	pnode->lprops[1].free = c->leb_size - iopos;
670	pnode->lprops[1].dirty = iopos - node_sz;
671
672	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
673		pnode->lprops[i].free = c->leb_size;
674
675	/* Add first pnode */
676	ubifs_pack_pnode(c, p, pnode);
677	p += c->pnode_sz;
678	len = c->pnode_sz;
679	pnode->num += 1;
680
681	/* Reset pnode values for remaining pnodes */
682	pnode->lprops[0].free = c->leb_size;
683	pnode->lprops[0].dirty = 0;
684	pnode->lprops[0].flags = 0;
685
686	pnode->lprops[1].free = c->leb_size;
687	pnode->lprops[1].dirty = 0;
688
689	/*
690	 * To calculate the internal node branches, we keep information about
691	 * the level below.
692	 */
693	blnum = lnum; /* LEB number of level below */
694	boffs = 0; /* Offset of level below */
695	bcnt = cnt; /* Number of nodes in level below */
696	bsz = c->pnode_sz; /* Size of nodes in level below */
697
698	/* Add all remaining pnodes */
699	for (i = 1; i < cnt; i++) {
700		if (len + c->pnode_sz > c->leb_size) {
701			alen = ALIGN(len, c->min_io_size);
702			set_ltab(c, lnum, c->leb_size - alen, alen - len);
703			memset(p, 0xff, alen - len);
704			err = ubi_leb_change(c->ubi, lnum++, buf, alen,
705					     UBI_SHORTTERM);
706			if (err)
707				goto out;
708			p = buf;
709			len = 0;
710		}
711		ubifs_pack_pnode(c, p, pnode);
712		p += c->pnode_sz;
713		len += c->pnode_sz;
714		/*
715		 * pnodes are simply numbered left to right starting at zero,
716		 * which means the pnode number can be used easily to traverse
717		 * down the tree to the corresponding pnode.
718		 */
719		pnode->num += 1;
720	}
721
722	row = 0;
723	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
724		row += 1;
725	/* Add all nnodes, one level at a time */
726	while (1) {
727		/* Number of internal nodes (nnodes) at next level */
728		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
729		for (i = 0; i < cnt; i++) {
730			if (len + c->nnode_sz > c->leb_size) {
731				alen = ALIGN(len, c->min_io_size);
732				set_ltab(c, lnum, c->leb_size - alen,
733					    alen - len);
734				memset(p, 0xff, alen - len);
735				err = ubi_leb_change(c->ubi, lnum++, buf, alen,
736						     UBI_SHORTTERM);
737				if (err)
738					goto out;
739				p = buf;
740				len = 0;
741			}
742			/* Only 1 nnode at this level, so it is the root */
743			if (cnt == 1) {
744				c->lpt_lnum = lnum;
745				c->lpt_offs = len;
746			}
747			/* Set branches to the level below */
748			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
749				if (bcnt) {
750					if (boffs + bsz > c->leb_size) {
751						blnum += 1;
752						boffs = 0;
753					}
754					nnode->nbranch[j].lnum = blnum;
755					nnode->nbranch[j].offs = boffs;
756					boffs += bsz;
757					bcnt--;
758				} else {
759					nnode->nbranch[j].lnum = 0;
760					nnode->nbranch[j].offs = 0;
761				}
762			}
763			nnode->num = calc_nnode_num(row, i);
764			ubifs_pack_nnode(c, p, nnode);
765			p += c->nnode_sz;
766			len += c->nnode_sz;
767		}
768		/* Only 1 nnode at this level, so it is the root */
769		if (cnt == 1)
770			break;
771		/* Update the information about the level below */
772		bcnt = cnt;
773		bsz = c->nnode_sz;
774		row -= 1;
775	}
776
777	if (*big_lpt) {
778		/* Need to add LPT's save table */
779		if (len + c->lsave_sz > c->leb_size) {
780			alen = ALIGN(len, c->min_io_size);
781			set_ltab(c, lnum, c->leb_size - alen, alen - len);
782			memset(p, 0xff, alen - len);
783			err = ubi_leb_change(c->ubi, lnum++, buf, alen,
784					     UBI_SHORTTERM);
785			if (err)
786				goto out;
787			p = buf;
788			len = 0;
789		}
790
791		c->lsave_lnum = lnum;
792		c->lsave_offs = len;
793
794		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
795			lsave[i] = c->main_first + i;
796		for (; i < c->lsave_cnt; i++)
797			lsave[i] = c->main_first;
798
799		ubifs_pack_lsave(c, p, lsave);
800		p += c->lsave_sz;
801		len += c->lsave_sz;
802	}
803
804	/* Need to add LPT's own LEB properties table */
805	if (len + c->ltab_sz > c->leb_size) {
806		alen = ALIGN(len, c->min_io_size);
807		set_ltab(c, lnum, c->leb_size - alen, alen - len);
808		memset(p, 0xff, alen - len);
809		err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM);
810		if (err)
811			goto out;
812		p = buf;
813		len = 0;
814	}
815
816	c->ltab_lnum = lnum;
817	c->ltab_offs = len;
818
819	/* Update ltab before packing it */
820	len += c->ltab_sz;
821	alen = ALIGN(len, c->min_io_size);
822	set_ltab(c, lnum, c->leb_size - alen, alen - len);
823
824	ubifs_pack_ltab(c, p, ltab);
825	p += c->ltab_sz;
826
827	/* Write remaining buffer */
828	memset(p, 0xff, alen - len);
829	err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM);
830	if (err)
831		goto out;
832
833	c->nhead_lnum = lnum;
834	c->nhead_offs = ALIGN(len, c->min_io_size);
835
836	dbg_lp("space_bits %d", c->space_bits);
837	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
838	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
839	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
840	dbg_lp("pcnt_bits %d", c->pcnt_bits);
841	dbg_lp("lnum_bits %d", c->lnum_bits);
842	dbg_lp("pnode_sz %d", c->pnode_sz);
843	dbg_lp("nnode_sz %d", c->nnode_sz);
844	dbg_lp("ltab_sz %d", c->ltab_sz);
845	dbg_lp("lsave_sz %d", c->lsave_sz);
846	dbg_lp("lsave_cnt %d", c->lsave_cnt);
847	dbg_lp("lpt_hght %d", c->lpt_hght);
848	dbg_lp("big_lpt %d", c->big_lpt);
849	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
850	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
851	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
852	if (c->big_lpt)
853		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
854out:
855	c->ltab = NULL;
856	kfree(lsave);
857	vfree(ltab);
858	vfree(buf);
859	kfree(nnode);
860	kfree(pnode);
861	return err;
862}
863
864/**
865 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
866 * @c: UBIFS file-system description object
867 * @pnode: pnode
868 *
869 * When a pnode is loaded into memory, the LEB properties it contains are added,
870 * by this function, to the LEB category lists and heaps.
871 */
872static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
873{
874	int i;
875
876	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
877		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
878		int lnum = pnode->lprops[i].lnum;
879
880		if (!lnum)
881			return;
882		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
883	}
884}
885
886/**
887 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
888 * @c: UBIFS file-system description object
889 * @old_pnode: pnode copied
890 * @new_pnode: pnode copy
891 *
892 * During commit it is sometimes necessary to copy a pnode
893 * (see dirty_cow_pnode).  When that happens, references in
894 * category lists and heaps must be replaced.  This function does that.
895 */
896static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
897			 struct ubifs_pnode *new_pnode)
898{
899	int i;
900
901	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
902		if (!new_pnode->lprops[i].lnum)
903			return;
904		ubifs_replace_cat(c, &old_pnode->lprops[i],
905				  &new_pnode->lprops[i]);
906	}
907}
908
909/**
910 * check_lpt_crc - check LPT node crc is correct.
911 * @c: UBIFS file-system description object
912 * @buf: buffer containing node
913 * @len: length of node
914 *
915 * This function returns %0 on success and a negative error code on failure.
916 */
917static int check_lpt_crc(void *buf, int len)
918{
919	int pos = 0;
920	uint8_t *addr = buf;
921	uint16_t crc, calc_crc;
922
923	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
924	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
925			 len - UBIFS_LPT_CRC_BYTES);
926	if (crc != calc_crc) {
927		ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
928			  calc_crc);
929		dbg_dump_stack();
930		return -EINVAL;
931	}
932	return 0;
933}
934
935/**
936 * check_lpt_type - check LPT node type is correct.
937 * @c: UBIFS file-system description object
938 * @addr: address of type bit field is passed and returned updated here
939 * @pos: position of type bit field is passed and returned updated here
940 * @type: expected type
941 *
942 * This function returns %0 on success and a negative error code on failure.
943 */
944static int check_lpt_type(uint8_t **addr, int *pos, int type)
945{
946	int node_type;
947
948	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
949	if (node_type != type) {
950		ubifs_err("invalid type (%d) in LPT node type %d", node_type,
951			  type);
952		dbg_dump_stack();
953		return -EINVAL;
954	}
955	return 0;
956}
957
958/**
959 * unpack_pnode - unpack a pnode.
960 * @c: UBIFS file-system description object
961 * @buf: buffer containing packed pnode to unpack
962 * @pnode: pnode structure to fill
963 *
964 * This function returns %0 on success and a negative error code on failure.
965 */
966static int unpack_pnode(const struct ubifs_info *c, void *buf,
967			struct ubifs_pnode *pnode)
968{
969	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
970	int i, pos = 0, err;
971
972	err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
973	if (err)
974		return err;
975	if (c->big_lpt)
976		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
977	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
978		struct ubifs_lprops * const lprops = &pnode->lprops[i];
979
980		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
981		lprops->free <<= 3;
982		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
983		lprops->dirty <<= 3;
984
985		if (ubifs_unpack_bits(&addr, &pos, 1))
986			lprops->flags = LPROPS_INDEX;
987		else
988			lprops->flags = 0;
989		lprops->flags |= ubifs_categorize_lprops(c, lprops);
990	}
991	err = check_lpt_crc(buf, c->pnode_sz);
992	return err;
993}
994
995/**
996 * ubifs_unpack_nnode - unpack a nnode.
997 * @c: UBIFS file-system description object
998 * @buf: buffer containing packed nnode to unpack
999 * @nnode: nnode structure to fill
1000 *
1001 * This function returns %0 on success and a negative error code on failure.
1002 */
1003int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1004		       struct ubifs_nnode *nnode)
1005{
1006	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1007	int i, pos = 0, err;
1008
1009	err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
1010	if (err)
1011		return err;
1012	if (c->big_lpt)
1013		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1014	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1015		int lnum;
1016
1017		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1018		       c->lpt_first;
1019		if (lnum == c->lpt_last + 1)
1020			lnum = 0;
1021		nnode->nbranch[i].lnum = lnum;
1022		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1023						     c->lpt_offs_bits);
1024	}
1025	err = check_lpt_crc(buf, c->nnode_sz);
1026	return err;
1027}
1028
1029/**
1030 * unpack_ltab - unpack the LPT's own lprops table.
1031 * @c: UBIFS file-system description object
1032 * @buf: buffer from which to unpack
1033 *
1034 * This function returns %0 on success and a negative error code on failure.
1035 */
1036static int unpack_ltab(const struct ubifs_info *c, void *buf)
1037{
1038	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1039	int i, pos = 0, err;
1040
1041	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1042	if (err)
1043		return err;
1044	for (i = 0; i < c->lpt_lebs; i++) {
1045		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1046		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1047
1048		if (free < 0 || free > c->leb_size || dirty < 0 ||
1049		    dirty > c->leb_size || free + dirty > c->leb_size)
1050			return -EINVAL;
1051
1052		c->ltab[i].free = free;
1053		c->ltab[i].dirty = dirty;
1054		c->ltab[i].tgc = 0;
1055		c->ltab[i].cmt = 0;
1056	}
1057	err = check_lpt_crc(buf, c->ltab_sz);
1058	return err;
1059}
1060
1061/**
1062 * unpack_lsave - unpack the LPT's save table.
1063 * @c: UBIFS file-system description object
1064 * @buf: buffer from which to unpack
1065 *
1066 * This function returns %0 on success and a negative error code on failure.
1067 */
1068static int unpack_lsave(const struct ubifs_info *c, void *buf)
1069{
1070	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1071	int i, pos = 0, err;
1072
1073	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1074	if (err)
1075		return err;
1076	for (i = 0; i < c->lsave_cnt; i++) {
1077		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1078
1079		if (lnum < c->main_first || lnum >= c->leb_cnt)
1080			return -EINVAL;
1081		c->lsave[i] = lnum;
1082	}
1083	err = check_lpt_crc(buf, c->lsave_sz);
1084	return err;
1085}
1086
1087/**
1088 * validate_nnode - validate a nnode.
1089 * @c: UBIFS file-system description object
1090 * @nnode: nnode to validate
1091 * @parent: parent nnode (or NULL for the root nnode)
1092 * @iip: index in parent
1093 *
1094 * This function returns %0 on success and a negative error code on failure.
1095 */
1096static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1097			  struct ubifs_nnode *parent, int iip)
1098{
1099	int i, lvl, max_offs;
1100
1101	if (c->big_lpt) {
1102		int num = calc_nnode_num_from_parent(c, parent, iip);
1103
1104		if (nnode->num != num)
1105			return -EINVAL;
1106	}
1107	lvl = parent ? parent->level - 1 : c->lpt_hght;
1108	if (lvl < 1)
1109		return -EINVAL;
1110	if (lvl == 1)
1111		max_offs = c->leb_size - c->pnode_sz;
1112	else
1113		max_offs = c->leb_size - c->nnode_sz;
1114	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1115		int lnum = nnode->nbranch[i].lnum;
1116		int offs = nnode->nbranch[i].offs;
1117
1118		if (lnum == 0) {
1119			if (offs != 0)
1120				return -EINVAL;
1121			continue;
1122		}
1123		if (lnum < c->lpt_first || lnum > c->lpt_last)
1124			return -EINVAL;
1125		if (offs < 0 || offs > max_offs)
1126			return -EINVAL;
1127	}
1128	return 0;
1129}
1130
1131/**
1132 * validate_pnode - validate a pnode.
1133 * @c: UBIFS file-system description object
1134 * @pnode: pnode to validate
1135 * @parent: parent nnode
1136 * @iip: index in parent
1137 *
1138 * This function returns %0 on success and a negative error code on failure.
1139 */
1140static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1141			  struct ubifs_nnode *parent, int iip)
1142{
1143	int i;
1144
1145	if (c->big_lpt) {
1146		int num = calc_pnode_num_from_parent(c, parent, iip);
1147
1148		if (pnode->num != num)
1149			return -EINVAL;
1150	}
1151	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1152		int free = pnode->lprops[i].free;
1153		int dirty = pnode->lprops[i].dirty;
1154
1155		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1156		    (free & 7))
1157			return -EINVAL;
1158		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1159			return -EINVAL;
1160		if (dirty + free > c->leb_size)
1161			return -EINVAL;
1162	}
1163	return 0;
1164}
1165
1166/**
1167 * set_pnode_lnum - set LEB numbers on a pnode.
1168 * @c: UBIFS file-system description object
1169 * @pnode: pnode to update
1170 *
1171 * This function calculates the LEB numbers for the LEB properties it contains
1172 * based on the pnode number.
1173 */
1174static void set_pnode_lnum(const struct ubifs_info *c,
1175			   struct ubifs_pnode *pnode)
1176{
1177	int i, lnum;
1178
1179	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1180	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1181		if (lnum >= c->leb_cnt)
1182			return;
1183		pnode->lprops[i].lnum = lnum++;
1184	}
1185}
1186
1187/**
1188 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1189 * @c: UBIFS file-system description object
1190 * @parent: parent nnode (or NULL for the root)
1191 * @iip: index in parent
1192 *
1193 * This function returns %0 on success and a negative error code on failure.
1194 */
1195int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1196{
1197	struct ubifs_nbranch *branch = NULL;
1198	struct ubifs_nnode *nnode = NULL;
1199	void *buf = c->lpt_nod_buf;
1200	int err, lnum, offs;
1201
1202	if (parent) {
1203		branch = &parent->nbranch[iip];
1204		lnum = branch->lnum;
1205		offs = branch->offs;
1206	} else {
1207		lnum = c->lpt_lnum;
1208		offs = c->lpt_offs;
1209	}
1210	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1211	if (!nnode) {
1212		err = -ENOMEM;
1213		goto out;
1214	}
1215	if (lnum == 0) {
1216		/*
1217		 * This nnode was not written which just means that the LEB
1218		 * properties in the subtree below it describe empty LEBs. We
1219		 * make the nnode as though we had read it, which in fact means
1220		 * doing almost nothing.
1221		 */
1222		if (c->big_lpt)
1223			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1224	} else {
1225		err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
1226		if (err)
1227			goto out;
1228		err = ubifs_unpack_nnode(c, buf, nnode);
1229		if (err)
1230			goto out;
1231	}
1232	err = validate_nnode(c, nnode, parent, iip);
1233	if (err)
1234		goto out;
1235	if (!c->big_lpt)
1236		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1237	if (parent) {
1238		branch->nnode = nnode;
1239		nnode->level = parent->level - 1;
1240	} else {
1241		c->nroot = nnode;
1242		nnode->level = c->lpt_hght;
1243	}
1244	nnode->parent = parent;
1245	nnode->iip = iip;
1246	return 0;
1247
1248out:
1249	ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
1250	kfree(nnode);
1251	return err;
1252}
1253
1254/**
1255 * read_pnode - read a pnode from flash and link it to the tree in memory.
1256 * @c: UBIFS file-system description object
1257 * @parent: parent nnode
1258 * @iip: index in parent
1259 *
1260 * This function returns %0 on success and a negative error code on failure.
1261 */
1262static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1263{
1264	struct ubifs_nbranch *branch;
1265	struct ubifs_pnode *pnode = NULL;
1266	void *buf = c->lpt_nod_buf;
1267	int err, lnum, offs;
1268
1269	branch = &parent->nbranch[iip];
1270	lnum = branch->lnum;
1271	offs = branch->offs;
1272	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1273	if (!pnode) {
1274		err = -ENOMEM;
1275		goto out;
1276	}
1277	if (lnum == 0) {
1278		/*
1279		 * This pnode was not written which just means that the LEB
1280		 * properties in it describe empty LEBs. We make the pnode as
1281		 * though we had read it.
1282		 */
1283		int i;
1284
1285		if (c->big_lpt)
1286			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1287		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1288			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1289
1290			lprops->free = c->leb_size;
1291			lprops->flags = ubifs_categorize_lprops(c, lprops);
1292		}
1293	} else {
1294		err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
1295		if (err)
1296			goto out;
1297		err = unpack_pnode(c, buf, pnode);
1298		if (err)
1299			goto out;
1300	}
1301	err = validate_pnode(c, pnode, parent, iip);
1302	if (err)
1303		goto out;
1304	if (!c->big_lpt)
1305		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1306	branch->pnode = pnode;
1307	pnode->parent = parent;
1308	pnode->iip = iip;
1309	set_pnode_lnum(c, pnode);
1310	c->pnodes_have += 1;
1311	return 0;
1312
1313out:
1314	ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
1315	dbg_dump_pnode(c, pnode, parent, iip);
1316	dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1317	kfree(pnode);
1318	return err;
1319}
1320
1321/**
1322 * read_ltab - read LPT's own lprops table.
1323 * @c: UBIFS file-system description object
1324 *
1325 * This function returns %0 on success and a negative error code on failure.
1326 */
1327static int read_ltab(struct ubifs_info *c)
1328{
1329	int err;
1330	void *buf;
1331
1332	buf = vmalloc(c->ltab_sz);
1333	if (!buf)
1334		return -ENOMEM;
1335	err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
1336	if (err)
1337		goto out;
1338	err = unpack_ltab(c, buf);
1339out:
1340	vfree(buf);
1341	return err;
1342}
1343
1344/**
1345 * read_lsave - read LPT's save table.
1346 * @c: UBIFS file-system description object
1347 *
1348 * This function returns %0 on success and a negative error code on failure.
1349 */
1350static int read_lsave(struct ubifs_info *c)
1351{
1352	int err, i;
1353	void *buf;
1354
1355	buf = vmalloc(c->lsave_sz);
1356	if (!buf)
1357		return -ENOMEM;
1358	err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz);
1359	if (err)
1360		goto out;
1361	err = unpack_lsave(c, buf);
1362	if (err)
1363		goto out;
1364	for (i = 0; i < c->lsave_cnt; i++) {
1365		int lnum = c->lsave[i];
1366
1367		/*
1368		 * Due to automatic resizing, the values in the lsave table
1369		 * could be beyond the volume size - just ignore them.
1370		 */
1371		if (lnum >= c->leb_cnt)
1372			continue;
1373		ubifs_lpt_lookup(c, lnum);
1374	}
1375out:
1376	vfree(buf);
1377	return err;
1378}
1379
1380/**
1381 * ubifs_get_nnode - get a nnode.
1382 * @c: UBIFS file-system description object
1383 * @parent: parent nnode (or NULL for the root)
1384 * @iip: index in parent
1385 *
1386 * This function returns a pointer to the nnode on success or a negative error
1387 * code on failure.
1388 */
1389struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1390				    struct ubifs_nnode *parent, int iip)
1391{
1392	struct ubifs_nbranch *branch;
1393	struct ubifs_nnode *nnode;
1394	int err;
1395
1396	branch = &parent->nbranch[iip];
1397	nnode = branch->nnode;
1398	if (nnode)
1399		return nnode;
1400	err = ubifs_read_nnode(c, parent, iip);
1401	if (err)
1402		return ERR_PTR(err);
1403	return branch->nnode;
1404}
1405
1406/**
1407 * ubifs_get_pnode - get a pnode.
1408 * @c: UBIFS file-system description object
1409 * @parent: parent nnode
1410 * @iip: index in parent
1411 *
1412 * This function returns a pointer to the pnode on success or a negative error
1413 * code on failure.
1414 */
1415struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1416				    struct ubifs_nnode *parent, int iip)
1417{
1418	struct ubifs_nbranch *branch;
1419	struct ubifs_pnode *pnode;
1420	int err;
1421
1422	branch = &parent->nbranch[iip];
1423	pnode = branch->pnode;
1424	if (pnode)
1425		return pnode;
1426	err = read_pnode(c, parent, iip);
1427	if (err)
1428		return ERR_PTR(err);
1429	update_cats(c, branch->pnode);
1430	return branch->pnode;
1431}
1432
1433/**
1434 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1435 * @c: UBIFS file-system description object
1436 * @lnum: LEB number to lookup
1437 *
1438 * This function returns a pointer to the LEB properties on success or a
1439 * negative error code on failure.
1440 */
1441struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1442{
1443	int err, i, h, iip, shft;
1444	struct ubifs_nnode *nnode;
1445	struct ubifs_pnode *pnode;
1446
1447	if (!c->nroot) {
1448		err = ubifs_read_nnode(c, NULL, 0);
1449		if (err)
1450			return ERR_PTR(err);
1451	}
1452	nnode = c->nroot;
1453	i = lnum - c->main_first;
1454	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1455	for (h = 1; h < c->lpt_hght; h++) {
1456		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1457		shft -= UBIFS_LPT_FANOUT_SHIFT;
1458		nnode = ubifs_get_nnode(c, nnode, iip);
1459		if (IS_ERR(nnode))
1460			return ERR_CAST(nnode);
1461	}
1462	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1463	shft -= UBIFS_LPT_FANOUT_SHIFT;
1464	pnode = ubifs_get_pnode(c, nnode, iip);
1465	if (IS_ERR(pnode))
1466		return ERR_CAST(pnode);
1467	iip = (i & (UBIFS_LPT_FANOUT - 1));
1468	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1469	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1470	       pnode->lprops[iip].flags);
1471	return &pnode->lprops[iip];
1472}
1473
1474/**
1475 * dirty_cow_nnode - ensure a nnode is not being committed.
1476 * @c: UBIFS file-system description object
1477 * @nnode: nnode to check
1478 *
1479 * Returns dirtied nnode on success or negative error code on failure.
1480 */
1481static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1482					   struct ubifs_nnode *nnode)
1483{
1484	struct ubifs_nnode *n;
1485	int i;
1486
1487	if (!test_bit(COW_CNODE, &nnode->flags)) {
1488		/* nnode is not being committed */
1489		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1490			c->dirty_nn_cnt += 1;
1491			ubifs_add_nnode_dirt(c, nnode);
1492		}
1493		return nnode;
1494	}
1495
1496	/* nnode is being committed, so copy it */
1497	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1498	if (unlikely(!n))
1499		return ERR_PTR(-ENOMEM);
1500
1501	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1502	n->cnext = NULL;
1503	__set_bit(DIRTY_CNODE, &n->flags);
1504	__clear_bit(COW_CNODE, &n->flags);
1505
1506	/* The children now have new parent */
1507	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1508		struct ubifs_nbranch *branch = &n->nbranch[i];
1509
1510		if (branch->cnode)
1511			branch->cnode->parent = n;
1512	}
1513
1514	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1515	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1516
1517	c->dirty_nn_cnt += 1;
1518	ubifs_add_nnode_dirt(c, nnode);
1519	if (nnode->parent)
1520		nnode->parent->nbranch[n->iip].nnode = n;
1521	else
1522		c->nroot = n;
1523	return n;
1524}
1525
1526/**
1527 * dirty_cow_pnode - ensure a pnode is not being committed.
1528 * @c: UBIFS file-system description object
1529 * @pnode: pnode to check
1530 *
1531 * Returns dirtied pnode on success or negative error code on failure.
1532 */
1533static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1534					   struct ubifs_pnode *pnode)
1535{
1536	struct ubifs_pnode *p;
1537
1538	if (!test_bit(COW_CNODE, &pnode->flags)) {
1539		/* pnode is not being committed */
1540		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1541			c->dirty_pn_cnt += 1;
1542			add_pnode_dirt(c, pnode);
1543		}
1544		return pnode;
1545	}
1546
1547	/* pnode is being committed, so copy it */
1548	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1549	if (unlikely(!p))
1550		return ERR_PTR(-ENOMEM);
1551
1552	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1553	p->cnext = NULL;
1554	__set_bit(DIRTY_CNODE, &p->flags);
1555	__clear_bit(COW_CNODE, &p->flags);
1556	replace_cats(c, pnode, p);
1557
1558	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1559	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1560
1561	c->dirty_pn_cnt += 1;
1562	add_pnode_dirt(c, pnode);
1563	pnode->parent->nbranch[p->iip].pnode = p;
1564	return p;
1565}
1566
1567/**
1568 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1569 * @c: UBIFS file-system description object
1570 * @lnum: LEB number to lookup
1571 *
1572 * This function returns a pointer to the LEB properties on success or a
1573 * negative error code on failure.
1574 */
1575struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1576{
1577	int err, i, h, iip, shft;
1578	struct ubifs_nnode *nnode;
1579	struct ubifs_pnode *pnode;
1580
1581	if (!c->nroot) {
1582		err = ubifs_read_nnode(c, NULL, 0);
1583		if (err)
1584			return ERR_PTR(err);
1585	}
1586	nnode = c->nroot;
1587	nnode = dirty_cow_nnode(c, nnode);
1588	if (IS_ERR(nnode))
1589		return ERR_CAST(nnode);
1590	i = lnum - c->main_first;
1591	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1592	for (h = 1; h < c->lpt_hght; h++) {
1593		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1594		shft -= UBIFS_LPT_FANOUT_SHIFT;
1595		nnode = ubifs_get_nnode(c, nnode, iip);
1596		if (IS_ERR(nnode))
1597			return ERR_CAST(nnode);
1598		nnode = dirty_cow_nnode(c, nnode);
1599		if (IS_ERR(nnode))
1600			return ERR_CAST(nnode);
1601	}
1602	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1603	shft -= UBIFS_LPT_FANOUT_SHIFT;
1604	pnode = ubifs_get_pnode(c, nnode, iip);
1605	if (IS_ERR(pnode))
1606		return ERR_CAST(pnode);
1607	pnode = dirty_cow_pnode(c, pnode);
1608	if (IS_ERR(pnode))
1609		return ERR_CAST(pnode);
1610	iip = (i & (UBIFS_LPT_FANOUT - 1));
1611	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1612	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1613	       pnode->lprops[iip].flags);
1614	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1615	return &pnode->lprops[iip];
1616}
1617
1618/**
1619 * lpt_init_rd - initialize the LPT for reading.
1620 * @c: UBIFS file-system description object
1621 *
1622 * This function returns %0 on success and a negative error code on failure.
1623 */
1624static int lpt_init_rd(struct ubifs_info *c)
1625{
1626	int err, i;
1627
1628	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1629	if (!c->ltab)
1630		return -ENOMEM;
1631
1632	i = max_t(int, c->nnode_sz, c->pnode_sz);
1633	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1634	if (!c->lpt_nod_buf)
1635		return -ENOMEM;
1636
1637	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1638		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1639					     GFP_KERNEL);
1640		if (!c->lpt_heap[i].arr)
1641			return -ENOMEM;
1642		c->lpt_heap[i].cnt = 0;
1643		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1644	}
1645
1646	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1647	if (!c->dirty_idx.arr)
1648		return -ENOMEM;
1649	c->dirty_idx.cnt = 0;
1650	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1651
1652	err = read_ltab(c);
1653	if (err)
1654		return err;
1655
1656	dbg_lp("space_bits %d", c->space_bits);
1657	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1658	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1659	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1660	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1661	dbg_lp("lnum_bits %d", c->lnum_bits);
1662	dbg_lp("pnode_sz %d", c->pnode_sz);
1663	dbg_lp("nnode_sz %d", c->nnode_sz);
1664	dbg_lp("ltab_sz %d", c->ltab_sz);
1665	dbg_lp("lsave_sz %d", c->lsave_sz);
1666	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1667	dbg_lp("lpt_hght %d", c->lpt_hght);
1668	dbg_lp("big_lpt %d", c->big_lpt);
1669	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1670	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1671	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1672	if (c->big_lpt)
1673		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1674
1675	return 0;
1676}
1677
1678/**
1679 * lpt_init_wr - initialize the LPT for writing.
1680 * @c: UBIFS file-system description object
1681 *
1682 * 'lpt_init_rd()' must have been called already.
1683 *
1684 * This function returns %0 on success and a negative error code on failure.
1685 */
1686static int lpt_init_wr(struct ubifs_info *c)
1687{
1688	int err, i;
1689
1690	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1691	if (!c->ltab_cmt)
1692		return -ENOMEM;
1693
1694	c->lpt_buf = vmalloc(c->leb_size);
1695	if (!c->lpt_buf)
1696		return -ENOMEM;
1697
1698	if (c->big_lpt) {
1699		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1700		if (!c->lsave)
1701			return -ENOMEM;
1702		err = read_lsave(c);
1703		if (err)
1704			return err;
1705	}
1706
1707	for (i = 0; i < c->lpt_lebs; i++)
1708		if (c->ltab[i].free == c->leb_size) {
1709			err = ubifs_leb_unmap(c, i + c->lpt_first);
1710			if (err)
1711				return err;
1712		}
1713
1714	return 0;
1715}
1716
1717/**
1718 * ubifs_lpt_init - initialize the LPT.
1719 * @c: UBIFS file-system description object
1720 * @rd: whether to initialize lpt for reading
1721 * @wr: whether to initialize lpt for writing
1722 *
1723 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1724 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1725 * true.
1726 *
1727 * This function returns %0 on success and a negative error code on failure.
1728 */
1729int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1730{
1731	int err;
1732
1733	if (rd) {
1734		err = lpt_init_rd(c);
1735		if (err)
1736			return err;
1737	}
1738
1739	if (wr) {
1740		err = lpt_init_wr(c);
1741		if (err)
1742			return err;
1743	}
1744
1745	return 0;
1746}
1747
1748/**
1749 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1750 * @nnode: where to keep a nnode
1751 * @pnode: where to keep a pnode
1752 * @cnode: where to keep a cnode
1753 * @in_tree: is the node in the tree in memory
1754 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1755 * the tree
1756 * @ptr.pnode: ditto for pnode
1757 * @ptr.cnode: ditto for cnode
1758 */
1759struct lpt_scan_node {
1760	union {
1761		struct ubifs_nnode nnode;
1762		struct ubifs_pnode pnode;
1763		struct ubifs_cnode cnode;
1764	};
1765	int in_tree;
1766	union {
1767		struct ubifs_nnode *nnode;
1768		struct ubifs_pnode *pnode;
1769		struct ubifs_cnode *cnode;
1770	} ptr;
1771};
1772
1773/**
1774 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1775 * @c: the UBIFS file-system description object
1776 * @path: where to put the nnode
1777 * @parent: parent of the nnode
1778 * @iip: index in parent of the nnode
1779 *
1780 * This function returns a pointer to the nnode on success or a negative error
1781 * code on failure.
1782 */
1783static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1784					  struct lpt_scan_node *path,
1785					  struct ubifs_nnode *parent, int iip)
1786{
1787	struct ubifs_nbranch *branch;
1788	struct ubifs_nnode *nnode;
1789	void *buf = c->lpt_nod_buf;
1790	int err;
1791
1792	branch = &parent->nbranch[iip];
1793	nnode = branch->nnode;
1794	if (nnode) {
1795		path->in_tree = 1;
1796		path->ptr.nnode = nnode;
1797		return nnode;
1798	}
1799	nnode = &path->nnode;
1800	path->in_tree = 0;
1801	path->ptr.nnode = nnode;
1802	memset(nnode, 0, sizeof(struct ubifs_nnode));
1803	if (branch->lnum == 0) {
1804		/*
1805		 * This nnode was not written which just means that the LEB
1806		 * properties in the subtree below it describe empty LEBs. We
1807		 * make the nnode as though we had read it, which in fact means
1808		 * doing almost nothing.
1809		 */
1810		if (c->big_lpt)
1811			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1812	} else {
1813		err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1814			       c->nnode_sz);
1815		if (err)
1816			return ERR_PTR(err);
1817		err = ubifs_unpack_nnode(c, buf, nnode);
1818		if (err)
1819			return ERR_PTR(err);
1820	}
1821	err = validate_nnode(c, nnode, parent, iip);
1822	if (err)
1823		return ERR_PTR(err);
1824	if (!c->big_lpt)
1825		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1826	nnode->level = parent->level - 1;
1827	nnode->parent = parent;
1828	nnode->iip = iip;
1829	return nnode;
1830}
1831
1832/**
1833 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1834 * @c: the UBIFS file-system description object
1835 * @path: where to put the pnode
1836 * @parent: parent of the pnode
1837 * @iip: index in parent of the pnode
1838 *
1839 * This function returns a pointer to the pnode on success or a negative error
1840 * code on failure.
1841 */
1842static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1843					  struct lpt_scan_node *path,
1844					  struct ubifs_nnode *parent, int iip)
1845{
1846	struct ubifs_nbranch *branch;
1847	struct ubifs_pnode *pnode;
1848	void *buf = c->lpt_nod_buf;
1849	int err;
1850
1851	branch = &parent->nbranch[iip];
1852	pnode = branch->pnode;
1853	if (pnode) {
1854		path->in_tree = 1;
1855		path->ptr.pnode = pnode;
1856		return pnode;
1857	}
1858	pnode = &path->pnode;
1859	path->in_tree = 0;
1860	path->ptr.pnode = pnode;
1861	memset(pnode, 0, sizeof(struct ubifs_pnode));
1862	if (branch->lnum == 0) {
1863		/*
1864		 * This pnode was not written which just means that the LEB
1865		 * properties in it describe empty LEBs. We make the pnode as
1866		 * though we had read it.
1867		 */
1868		int i;
1869
1870		if (c->big_lpt)
1871			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1872		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1873			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1874
1875			lprops->free = c->leb_size;
1876			lprops->flags = ubifs_categorize_lprops(c, lprops);
1877		}
1878	} else {
1879		ubifs_assert(branch->lnum >= c->lpt_first &&
1880			     branch->lnum <= c->lpt_last);
1881		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1882		err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1883			       c->pnode_sz);
1884		if (err)
1885			return ERR_PTR(err);
1886		err = unpack_pnode(c, buf, pnode);
1887		if (err)
1888			return ERR_PTR(err);
1889	}
1890	err = validate_pnode(c, pnode, parent, iip);
1891	if (err)
1892		return ERR_PTR(err);
1893	if (!c->big_lpt)
1894		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1895	pnode->parent = parent;
1896	pnode->iip = iip;
1897	set_pnode_lnum(c, pnode);
1898	return pnode;
1899}
1900
1901/**
1902 * ubifs_lpt_scan_nolock - scan the LPT.
1903 * @c: the UBIFS file-system description object
1904 * @start_lnum: LEB number from which to start scanning
1905 * @end_lnum: LEB number at which to stop scanning
1906 * @scan_cb: callback function called for each lprops
1907 * @data: data to be passed to the callback function
1908 *
1909 * This function returns %0 on success and a negative error code on failure.
1910 */
1911int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1912			  ubifs_lpt_scan_callback scan_cb, void *data)
1913{
1914	int err = 0, i, h, iip, shft;
1915	struct ubifs_nnode *nnode;
1916	struct ubifs_pnode *pnode;
1917	struct lpt_scan_node *path;
1918
1919	if (start_lnum == -1) {
1920		start_lnum = end_lnum + 1;
1921		if (start_lnum >= c->leb_cnt)
1922			start_lnum = c->main_first;
1923	}
1924
1925	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1926	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1927
1928	if (!c->nroot) {
1929		err = ubifs_read_nnode(c, NULL, 0);
1930		if (err)
1931			return err;
1932	}
1933
1934	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1935		       GFP_NOFS);
1936	if (!path)
1937		return -ENOMEM;
1938
1939	path[0].ptr.nnode = c->nroot;
1940	path[0].in_tree = 1;
1941again:
1942	/* Descend to the pnode containing start_lnum */
1943	nnode = c->nroot;
1944	i = start_lnum - c->main_first;
1945	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1946	for (h = 1; h < c->lpt_hght; h++) {
1947		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1948		shft -= UBIFS_LPT_FANOUT_SHIFT;
1949		nnode = scan_get_nnode(c, path + h, nnode, iip);
1950		if (IS_ERR(nnode)) {
1951			err = PTR_ERR(nnode);
1952			goto out;
1953		}
1954	}
1955	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1956	shft -= UBIFS_LPT_FANOUT_SHIFT;
1957	pnode = scan_get_pnode(c, path + h, nnode, iip);
1958	if (IS_ERR(pnode)) {
1959		err = PTR_ERR(pnode);
1960		goto out;
1961	}
1962	iip = (i & (UBIFS_LPT_FANOUT - 1));
1963
1964	/* Loop for each lprops */
1965	while (1) {
1966		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1967		int ret, lnum = lprops->lnum;
1968
1969		ret = scan_cb(c, lprops, path[h].in_tree, data);
1970		if (ret < 0) {
1971			err = ret;
1972			goto out;
1973		}
1974		if (ret & LPT_SCAN_ADD) {
1975			/* Add all the nodes in path to the tree in memory */
1976			for (h = 1; h < c->lpt_hght; h++) {
1977				const size_t sz = sizeof(struct ubifs_nnode);
1978				struct ubifs_nnode *parent;
1979
1980				if (path[h].in_tree)
1981					continue;
1982				nnode = kmalloc(sz, GFP_NOFS);
1983				if (!nnode) {
1984					err = -ENOMEM;
1985					goto out;
1986				}
1987				memcpy(nnode, &path[h].nnode, sz);
1988				parent = nnode->parent;
1989				parent->nbranch[nnode->iip].nnode = nnode;
1990				path[h].ptr.nnode = nnode;
1991				path[h].in_tree = 1;
1992				path[h + 1].cnode.parent = nnode;
1993			}
1994			if (path[h].in_tree)
1995				ubifs_ensure_cat(c, lprops);
1996			else {
1997				const size_t sz = sizeof(struct ubifs_pnode);
1998				struct ubifs_nnode *parent;
1999
2000				pnode = kmalloc(sz, GFP_NOFS);
2001				if (!pnode) {
2002					err = -ENOMEM;
2003					goto out;
2004				}
2005				memcpy(pnode, &path[h].pnode, sz);
2006				parent = pnode->parent;
2007				parent->nbranch[pnode->iip].pnode = pnode;
2008				path[h].ptr.pnode = pnode;
2009				path[h].in_tree = 1;
2010				update_cats(c, pnode);
2011				c->pnodes_have += 1;
2012			}
2013			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2014						  c->nroot, 0, 0);
2015			if (err)
2016				goto out;
2017			err = dbg_check_cats(c);
2018			if (err)
2019				goto out;
2020		}
2021		if (ret & LPT_SCAN_STOP) {
2022			err = 0;
2023			break;
2024		}
2025		/* Get the next lprops */
2026		if (lnum == end_lnum) {
2027			/*
2028			 * We got to the end without finding what we were
2029			 * looking for
2030			 */
2031			err = -ENOSPC;
2032			goto out;
2033		}
2034		if (lnum + 1 >= c->leb_cnt) {
2035			/* Wrap-around to the beginning */
2036			start_lnum = c->main_first;
2037			goto again;
2038		}
2039		if (iip + 1 < UBIFS_LPT_FANOUT) {
2040			/* Next lprops is in the same pnode */
2041			iip += 1;
2042			continue;
2043		}
2044		/* We need to get the next pnode. Go up until we can go right */
2045		iip = pnode->iip;
2046		while (1) {
2047			h -= 1;
2048			ubifs_assert(h >= 0);
2049			nnode = path[h].ptr.nnode;
2050			if (iip + 1 < UBIFS_LPT_FANOUT)
2051				break;
2052			iip = nnode->iip;
2053		}
2054		/* Go right */
2055		iip += 1;
2056		/* Descend to the pnode */
2057		h += 1;
2058		for (; h < c->lpt_hght; h++) {
2059			nnode = scan_get_nnode(c, path + h, nnode, iip);
2060			if (IS_ERR(nnode)) {
2061				err = PTR_ERR(nnode);
2062				goto out;
2063			}
2064			iip = 0;
2065		}
2066		pnode = scan_get_pnode(c, path + h, nnode, iip);
2067		if (IS_ERR(pnode)) {
2068			err = PTR_ERR(pnode);
2069			goto out;
2070		}
2071		iip = 0;
2072	}
2073out:
2074	kfree(path);
2075	return err;
2076}
2077
2078#ifdef CONFIG_UBIFS_FS_DEBUG
2079
2080/**
2081 * dbg_chk_pnode - check a pnode.
2082 * @c: the UBIFS file-system description object
2083 * @pnode: pnode to check
2084 * @col: pnode column
2085 *
2086 * This function returns %0 on success and a negative error code on failure.
2087 */
2088static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2089			 int col)
2090{
2091	int i;
2092
2093	if (pnode->num != col) {
2094		dbg_err("pnode num %d expected %d parent num %d iip %d",
2095			pnode->num, col, pnode->parent->num, pnode->iip);
2096		return -EINVAL;
2097	}
2098	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2099		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2100		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2101			   c->main_first;
2102		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2103		struct ubifs_lpt_heap *heap;
2104		struct list_head *list = NULL;
2105
2106		if (lnum >= c->leb_cnt)
2107			continue;
2108		if (lprops->lnum != lnum) {
2109			dbg_err("bad LEB number %d expected %d",
2110				lprops->lnum, lnum);
2111			return -EINVAL;
2112		}
2113		if (lprops->flags & LPROPS_TAKEN) {
2114			if (cat != LPROPS_UNCAT) {
2115				dbg_err("LEB %d taken but not uncat %d",
2116					lprops->lnum, cat);
2117				return -EINVAL;
2118			}
2119			continue;
2120		}
2121		if (lprops->flags & LPROPS_INDEX) {
2122			switch (cat) {
2123			case LPROPS_UNCAT:
2124			case LPROPS_DIRTY_IDX:
2125			case LPROPS_FRDI_IDX:
2126				break;
2127			default:
2128				dbg_err("LEB %d index but cat %d",
2129					lprops->lnum, cat);
2130				return -EINVAL;
2131			}
2132		} else {
2133			switch (cat) {
2134			case LPROPS_UNCAT:
2135			case LPROPS_DIRTY:
2136			case LPROPS_FREE:
2137			case LPROPS_EMPTY:
2138			case LPROPS_FREEABLE:
2139				break;
2140			default:
2141				dbg_err("LEB %d not index but cat %d",
2142					lprops->lnum, cat);
2143				return -EINVAL;
2144			}
2145		}
2146		switch (cat) {
2147		case LPROPS_UNCAT:
2148			list = &c->uncat_list;
2149			break;
2150		case LPROPS_EMPTY:
2151			list = &c->empty_list;
2152			break;
2153		case LPROPS_FREEABLE:
2154			list = &c->freeable_list;
2155			break;
2156		case LPROPS_FRDI_IDX:
2157			list = &c->frdi_idx_list;
2158			break;
2159		}
2160		found = 0;
2161		switch (cat) {
2162		case LPROPS_DIRTY:
2163		case LPROPS_DIRTY_IDX:
2164		case LPROPS_FREE:
2165			heap = &c->lpt_heap[cat - 1];
2166			if (lprops->hpos < heap->cnt &&
2167			    heap->arr[lprops->hpos] == lprops)
2168				found = 1;
2169			break;
2170		case LPROPS_UNCAT:
2171		case LPROPS_EMPTY:
2172		case LPROPS_FREEABLE:
2173		case LPROPS_FRDI_IDX:
2174			list_for_each_entry(lp, list, list)
2175				if (lprops == lp) {
2176					found = 1;
2177					break;
2178				}
2179			break;
2180		}
2181		if (!found) {
2182			dbg_err("LEB %d cat %d not found in cat heap/list",
2183				lprops->lnum, cat);
2184			return -EINVAL;
2185		}
2186		switch (cat) {
2187		case LPROPS_EMPTY:
2188			if (lprops->free != c->leb_size) {
2189				dbg_err("LEB %d cat %d free %d dirty %d",
2190					lprops->lnum, cat, lprops->free,
2191					lprops->dirty);
2192				return -EINVAL;
2193			}
2194		case LPROPS_FREEABLE:
2195		case LPROPS_FRDI_IDX:
2196			if (lprops->free + lprops->dirty != c->leb_size) {
2197				dbg_err("LEB %d cat %d free %d dirty %d",
2198					lprops->lnum, cat, lprops->free,
2199					lprops->dirty);
2200				return -EINVAL;
2201			}
2202		}
2203	}
2204	return 0;
2205}
2206
2207/**
2208 * dbg_check_lpt_nodes - check nnodes and pnodes.
2209 * @c: the UBIFS file-system description object
2210 * @cnode: next cnode (nnode or pnode) to check
2211 * @row: row of cnode (root is zero)
2212 * @col: column of cnode (leftmost is zero)
2213 *
2214 * This function returns %0 on success and a negative error code on failure.
2215 */
2216int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2217			int row, int col)
2218{
2219	struct ubifs_nnode *nnode, *nn;
2220	struct ubifs_cnode *cn;
2221	int num, iip = 0, err;
2222
2223	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
2224		return 0;
2225
2226	while (cnode) {
2227		ubifs_assert(row >= 0);
2228		nnode = cnode->parent;
2229		if (cnode->level) {
2230			/* cnode is a nnode */
2231			num = calc_nnode_num(row, col);
2232			if (cnode->num != num) {
2233				dbg_err("nnode num %d expected %d "
2234					"parent num %d iip %d", cnode->num, num,
2235					(nnode ? nnode->num : 0), cnode->iip);
2236				return -EINVAL;
2237			}
2238			nn = (struct ubifs_nnode *)cnode;
2239			while (iip < UBIFS_LPT_FANOUT) {
2240				cn = nn->nbranch[iip].cnode;
2241				if (cn) {
2242					/* Go down */
2243					row += 1;
2244					col <<= UBIFS_LPT_FANOUT_SHIFT;
2245					col += iip;
2246					iip = 0;
2247					cnode = cn;
2248					break;
2249				}
2250				/* Go right */
2251				iip += 1;
2252			}
2253			if (iip < UBIFS_LPT_FANOUT)
2254				continue;
2255		} else {
2256			struct ubifs_pnode *pnode;
2257
2258			/* cnode is a pnode */
2259			pnode = (struct ubifs_pnode *)cnode;
2260			err = dbg_chk_pnode(c, pnode, col);
2261			if (err)
2262				return err;
2263		}
2264		/* Go up and to the right */
2265		row -= 1;
2266		col >>= UBIFS_LPT_FANOUT_SHIFT;
2267		iip = cnode->iip + 1;
2268		cnode = (struct ubifs_cnode *)nnode;
2269	}
2270	return 0;
2271}
2272
2273#endif /* CONFIG_UBIFS_FS_DEBUG */
2274