1/*
2 *  linux/fs/pipe.c
3 *
4 *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/file.h>
9#include <linux/poll.h>
10#include <linux/slab.h>
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/log2.h>
15#include <linux/mount.h>
16#include <linux/pipe_fs_i.h>
17#include <linux/uio.h>
18#include <linux/highmem.h>
19#include <linux/pagemap.h>
20#include <linux/audit.h>
21#include <linux/syscalls.h>
22#include <linux/fcntl.h>
23
24#include <asm/uaccess.h>
25#include <asm/ioctls.h>
26
27/*
28 * The max size that a non-root user is allowed to grow the pipe. Can
29 * be set by root in /proc/sys/fs/pipe-max-size
30 */
31unsigned int pipe_max_size = 1048576;
32
33/*
34 * Minimum pipe size, as required by POSIX
35 */
36unsigned int pipe_min_size = PAGE_SIZE;
37
38/*
39 * We use a start+len construction, which provides full use of the
40 * allocated memory.
41 * -- Florian Coosmann (FGC)
42 *
43 * Reads with count = 0 should always return 0.
44 * -- Julian Bradfield 1999-06-07.
45 *
46 * FIFOs and Pipes now generate SIGIO for both readers and writers.
47 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
48 *
49 * pipe_read & write cleanup
50 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
51 */
52
53static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
54{
55	if (pipe->inode)
56		mutex_lock_nested(&pipe->inode->i_mutex, subclass);
57}
58
59void pipe_lock(struct pipe_inode_info *pipe)
60{
61	/*
62	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
63	 */
64	pipe_lock_nested(pipe, I_MUTEX_PARENT);
65}
66EXPORT_SYMBOL(pipe_lock);
67
68void pipe_unlock(struct pipe_inode_info *pipe)
69{
70	if (pipe->inode)
71		mutex_unlock(&pipe->inode->i_mutex);
72}
73EXPORT_SYMBOL(pipe_unlock);
74
75void pipe_double_lock(struct pipe_inode_info *pipe1,
76		      struct pipe_inode_info *pipe2)
77{
78	BUG_ON(pipe1 == pipe2);
79
80	if (pipe1 < pipe2) {
81		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
82		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
83	} else {
84		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
85		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
86	}
87}
88
89/* Drop the inode semaphore and wait for a pipe event, atomically */
90void pipe_wait(struct pipe_inode_info *pipe)
91{
92	DEFINE_WAIT(wait);
93
94	/*
95	 * Pipes are system-local resources, so sleeping on them
96	 * is considered a noninteractive wait:
97	 */
98	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
99	pipe_unlock(pipe);
100	schedule();
101	finish_wait(&pipe->wait, &wait);
102	pipe_lock(pipe);
103}
104
105static int
106pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
107			int atomic)
108{
109	unsigned long copy;
110
111	while (len > 0) {
112		while (!iov->iov_len)
113			iov++;
114		copy = min_t(unsigned long, len, iov->iov_len);
115
116		if (atomic) {
117			if (__copy_from_user_inatomic(to, iov->iov_base, copy))
118				return -EFAULT;
119		} else {
120			if (copy_from_user(to, iov->iov_base, copy))
121				return -EFAULT;
122		}
123		to += copy;
124		len -= copy;
125		iov->iov_base += copy;
126		iov->iov_len -= copy;
127	}
128	return 0;
129}
130
131static int
132pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
133		      int atomic)
134{
135	unsigned long copy;
136
137	while (len > 0) {
138		while (!iov->iov_len)
139			iov++;
140		copy = min_t(unsigned long, len, iov->iov_len);
141
142		if (atomic) {
143			if (__copy_to_user_inatomic(iov->iov_base, from, copy))
144				return -EFAULT;
145		} else {
146			if (copy_to_user(iov->iov_base, from, copy))
147				return -EFAULT;
148		}
149		from += copy;
150		len -= copy;
151		iov->iov_base += copy;
152		iov->iov_len -= copy;
153	}
154	return 0;
155}
156
157/*
158 * Attempt to pre-fault in the user memory, so we can use atomic copies.
159 * Returns the number of bytes not faulted in.
160 */
161static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
162{
163	while (!iov->iov_len)
164		iov++;
165
166	while (len > 0) {
167		unsigned long this_len;
168
169		this_len = min_t(unsigned long, len, iov->iov_len);
170		if (fault_in_pages_writeable(iov->iov_base, this_len))
171			break;
172
173		len -= this_len;
174		iov++;
175	}
176
177	return len;
178}
179
180/*
181 * Pre-fault in the user memory, so we can use atomic copies.
182 */
183static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
184{
185	while (!iov->iov_len)
186		iov++;
187
188	while (len > 0) {
189		unsigned long this_len;
190
191		this_len = min_t(unsigned long, len, iov->iov_len);
192		fault_in_pages_readable(iov->iov_base, this_len);
193		len -= this_len;
194		iov++;
195	}
196}
197
198static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
199				  struct pipe_buffer *buf)
200{
201	struct page *page = buf->page;
202
203	/*
204	 * If nobody else uses this page, and we don't already have a
205	 * temporary page, let's keep track of it as a one-deep
206	 * allocation cache. (Otherwise just release our reference to it)
207	 */
208	if (page_count(page) == 1 && !pipe->tmp_page)
209		pipe->tmp_page = page;
210	else
211		page_cache_release(page);
212}
213
214/**
215 * generic_pipe_buf_map - virtually map a pipe buffer
216 * @pipe:	the pipe that the buffer belongs to
217 * @buf:	the buffer that should be mapped
218 * @atomic:	whether to use an atomic map
219 *
220 * Description:
221 *	This function returns a kernel virtual address mapping for the
222 *	pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
223 *	and the caller has to be careful not to fault before calling
224 *	the unmap function.
225 *
226 *	Note that this function occupies KM_USER0 if @atomic != 0.
227 */
228void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
229			   struct pipe_buffer *buf, int atomic)
230{
231	if (atomic) {
232		buf->flags |= PIPE_BUF_FLAG_ATOMIC;
233		return kmap_atomic(buf->page, KM_USER0);
234	}
235
236	return kmap(buf->page);
237}
238EXPORT_SYMBOL(generic_pipe_buf_map);
239
240/**
241 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
242 * @pipe:	the pipe that the buffer belongs to
243 * @buf:	the buffer that should be unmapped
244 * @map_data:	the data that the mapping function returned
245 *
246 * Description:
247 *	This function undoes the mapping that ->map() provided.
248 */
249void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
250			    struct pipe_buffer *buf, void *map_data)
251{
252	if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
253		buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
254		kunmap_atomic(map_data, KM_USER0);
255	} else
256		kunmap(buf->page);
257}
258EXPORT_SYMBOL(generic_pipe_buf_unmap);
259
260/**
261 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
262 * @pipe:	the pipe that the buffer belongs to
263 * @buf:	the buffer to attempt to steal
264 *
265 * Description:
266 *	This function attempts to steal the &struct page attached to
267 *	@buf. If successful, this function returns 0 and returns with
268 *	the page locked. The caller may then reuse the page for whatever
269 *	he wishes; the typical use is insertion into a different file
270 *	page cache.
271 */
272int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
273			   struct pipe_buffer *buf)
274{
275	struct page *page = buf->page;
276
277	/*
278	 * A reference of one is golden, that means that the owner of this
279	 * page is the only one holding a reference to it. lock the page
280	 * and return OK.
281	 */
282	if (page_count(page) == 1) {
283		lock_page(page);
284		return 0;
285	}
286
287	return 1;
288}
289EXPORT_SYMBOL(generic_pipe_buf_steal);
290
291/**
292 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
293 * @pipe:	the pipe that the buffer belongs to
294 * @buf:	the buffer to get a reference to
295 *
296 * Description:
297 *	This function grabs an extra reference to @buf. It's used in
298 *	in the tee() system call, when we duplicate the buffers in one
299 *	pipe into another.
300 */
301void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
302{
303	page_cache_get(buf->page);
304}
305EXPORT_SYMBOL(generic_pipe_buf_get);
306
307/**
308 * generic_pipe_buf_confirm - verify contents of the pipe buffer
309 * @info:	the pipe that the buffer belongs to
310 * @buf:	the buffer to confirm
311 *
312 * Description:
313 *	This function does nothing, because the generic pipe code uses
314 *	pages that are always good when inserted into the pipe.
315 */
316int generic_pipe_buf_confirm(struct pipe_inode_info *info,
317			     struct pipe_buffer *buf)
318{
319	return 0;
320}
321EXPORT_SYMBOL(generic_pipe_buf_confirm);
322
323/**
324 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
325 * @pipe:	the pipe that the buffer belongs to
326 * @buf:	the buffer to put a reference to
327 *
328 * Description:
329 *	This function releases a reference to @buf.
330 */
331void generic_pipe_buf_release(struct pipe_inode_info *pipe,
332			      struct pipe_buffer *buf)
333{
334	page_cache_release(buf->page);
335}
336EXPORT_SYMBOL(generic_pipe_buf_release);
337
338static const struct pipe_buf_operations anon_pipe_buf_ops = {
339	.can_merge = 1,
340	.map = generic_pipe_buf_map,
341	.unmap = generic_pipe_buf_unmap,
342	.confirm = generic_pipe_buf_confirm,
343	.release = anon_pipe_buf_release,
344	.steal = generic_pipe_buf_steal,
345	.get = generic_pipe_buf_get,
346};
347
348static ssize_t
349pipe_read(struct kiocb *iocb, const struct iovec *_iov,
350	   unsigned long nr_segs, loff_t pos)
351{
352	struct file *filp = iocb->ki_filp;
353	struct inode *inode = filp->f_path.dentry->d_inode;
354	struct pipe_inode_info *pipe;
355	int do_wakeup;
356	ssize_t ret;
357	struct iovec *iov = (struct iovec *)_iov;
358	size_t total_len;
359
360	total_len = iov_length(iov, nr_segs);
361	/* Null read succeeds. */
362	if (unlikely(total_len == 0))
363		return 0;
364
365	do_wakeup = 0;
366	ret = 0;
367	mutex_lock(&inode->i_mutex);
368	pipe = inode->i_pipe;
369	for (;;) {
370		int bufs = pipe->nrbufs;
371		if (bufs) {
372			int curbuf = pipe->curbuf;
373			struct pipe_buffer *buf = pipe->bufs + curbuf;
374			const struct pipe_buf_operations *ops = buf->ops;
375			void *addr;
376			size_t chars = buf->len;
377			int error, atomic;
378
379			if (chars > total_len)
380				chars = total_len;
381
382			error = ops->confirm(pipe, buf);
383			if (error) {
384				if (!ret)
385					ret = error;
386				break;
387			}
388
389			atomic = !iov_fault_in_pages_write(iov, chars);
390redo:
391			addr = ops->map(pipe, buf, atomic);
392			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
393			ops->unmap(pipe, buf, addr);
394			if (unlikely(error)) {
395				/*
396				 * Just retry with the slow path if we failed.
397				 */
398				if (atomic) {
399					atomic = 0;
400					goto redo;
401				}
402				if (!ret)
403					ret = error;
404				break;
405			}
406			ret += chars;
407			buf->offset += chars;
408			buf->len -= chars;
409			if (!buf->len) {
410				buf->ops = NULL;
411				ops->release(pipe, buf);
412				curbuf = (curbuf + 1) & (pipe->buffers - 1);
413				pipe->curbuf = curbuf;
414				pipe->nrbufs = --bufs;
415				do_wakeup = 1;
416			}
417			total_len -= chars;
418			if (!total_len)
419				break;	/* common path: read succeeded */
420		}
421		if (bufs)	/* More to do? */
422			continue;
423		if (!pipe->writers)
424			break;
425		if (!pipe->waiting_writers) {
426			/* syscall merging: Usually we must not sleep
427			 * if O_NONBLOCK is set, or if we got some data.
428			 * But if a writer sleeps in kernel space, then
429			 * we can wait for that data without violating POSIX.
430			 */
431			if (ret)
432				break;
433			if (filp->f_flags & O_NONBLOCK) {
434				ret = -EAGAIN;
435				break;
436			}
437		}
438		if (signal_pending(current)) {
439			if (!ret)
440				ret = -ERESTARTSYS;
441			break;
442		}
443		if (do_wakeup) {
444			wake_up_interruptible_sync(&pipe->wait);
445 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
446		}
447		pipe_wait(pipe);
448	}
449	mutex_unlock(&inode->i_mutex);
450
451	/* Signal writers asynchronously that there is more room. */
452	if (do_wakeup) {
453		wake_up_interruptible_sync(&pipe->wait);
454		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
455	}
456	if (ret > 0)
457		file_accessed(filp);
458	return ret;
459}
460
461static ssize_t
462pipe_write(struct kiocb *iocb, const struct iovec *_iov,
463	    unsigned long nr_segs, loff_t ppos)
464{
465	struct file *filp = iocb->ki_filp;
466	struct inode *inode = filp->f_path.dentry->d_inode;
467	struct pipe_inode_info *pipe;
468	ssize_t ret;
469	int do_wakeup;
470	struct iovec *iov = (struct iovec *)_iov;
471	size_t total_len;
472	ssize_t chars;
473
474	total_len = iov_length(iov, nr_segs);
475	/* Null write succeeds. */
476	if (unlikely(total_len == 0))
477		return 0;
478
479	do_wakeup = 0;
480	ret = 0;
481	mutex_lock(&inode->i_mutex);
482	pipe = inode->i_pipe;
483
484	if (!pipe->readers) {
485		send_sig(SIGPIPE, current, 0);
486		ret = -EPIPE;
487		goto out;
488	}
489
490	/* We try to merge small writes */
491	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
492	if (pipe->nrbufs && chars != 0) {
493		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
494							(pipe->buffers - 1);
495		struct pipe_buffer *buf = pipe->bufs + lastbuf;
496		const struct pipe_buf_operations *ops = buf->ops;
497		int offset = buf->offset + buf->len;
498
499		if (ops->can_merge && offset + chars <= PAGE_SIZE) {
500			int error, atomic = 1;
501			void *addr;
502
503			error = ops->confirm(pipe, buf);
504			if (error)
505				goto out;
506
507			iov_fault_in_pages_read(iov, chars);
508redo1:
509			addr = ops->map(pipe, buf, atomic);
510			error = pipe_iov_copy_from_user(offset + addr, iov,
511							chars, atomic);
512			ops->unmap(pipe, buf, addr);
513			ret = error;
514			do_wakeup = 1;
515			if (error) {
516				if (atomic) {
517					atomic = 0;
518					goto redo1;
519				}
520				goto out;
521			}
522			buf->len += chars;
523			total_len -= chars;
524			ret = chars;
525			if (!total_len)
526				goto out;
527		}
528	}
529
530	for (;;) {
531		int bufs;
532
533		if (!pipe->readers) {
534			send_sig(SIGPIPE, current, 0);
535			if (!ret)
536				ret = -EPIPE;
537			break;
538		}
539		bufs = pipe->nrbufs;
540		if (bufs < pipe->buffers) {
541			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
542			struct pipe_buffer *buf = pipe->bufs + newbuf;
543			struct page *page = pipe->tmp_page;
544			char *src;
545			int error, atomic = 1;
546
547			if (!page) {
548				page = alloc_page(GFP_HIGHUSER);
549				if (unlikely(!page)) {
550					ret = ret ? : -ENOMEM;
551					break;
552				}
553				pipe->tmp_page = page;
554			}
555			do_wakeup = 1;
556			chars = PAGE_SIZE;
557			if (chars > total_len)
558				chars = total_len;
559
560			iov_fault_in_pages_read(iov, chars);
561redo2:
562			if (atomic)
563				src = kmap_atomic(page, KM_USER0);
564			else
565				src = kmap(page);
566
567			error = pipe_iov_copy_from_user(src, iov, chars,
568							atomic);
569			if (atomic)
570				kunmap_atomic(src, KM_USER0);
571			else
572				kunmap(page);
573
574			if (unlikely(error)) {
575				if (atomic) {
576					atomic = 0;
577					goto redo2;
578				}
579				if (!ret)
580					ret = error;
581				break;
582			}
583			ret += chars;
584
585			/* Insert it into the buffer array */
586			buf->page = page;
587			buf->ops = &anon_pipe_buf_ops;
588			buf->offset = 0;
589			buf->len = chars;
590			pipe->nrbufs = ++bufs;
591			pipe->tmp_page = NULL;
592
593			total_len -= chars;
594			if (!total_len)
595				break;
596		}
597		if (bufs < pipe->buffers)
598			continue;
599		if (filp->f_flags & O_NONBLOCK) {
600			if (!ret)
601				ret = -EAGAIN;
602			break;
603		}
604		if (signal_pending(current)) {
605			if (!ret)
606				ret = -ERESTARTSYS;
607			break;
608		}
609		if (do_wakeup) {
610			wake_up_interruptible_sync(&pipe->wait);
611			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
612			do_wakeup = 0;
613		}
614		pipe->waiting_writers++;
615		pipe_wait(pipe);
616		pipe->waiting_writers--;
617	}
618out:
619	mutex_unlock(&inode->i_mutex);
620	if (do_wakeup) {
621		wake_up_interruptible_sync(&pipe->wait);
622		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
623	}
624	if (ret > 0)
625		file_update_time(filp);
626	return ret;
627}
628
629static ssize_t
630bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
631{
632	return -EBADF;
633}
634
635static ssize_t
636bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
637	   loff_t *ppos)
638{
639	return -EBADF;
640}
641
642static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
643{
644	struct inode *inode = filp->f_path.dentry->d_inode;
645	struct pipe_inode_info *pipe;
646	int count, buf, nrbufs;
647
648	switch (cmd) {
649		case FIONREAD:
650			mutex_lock(&inode->i_mutex);
651			pipe = inode->i_pipe;
652			count = 0;
653			buf = pipe->curbuf;
654			nrbufs = pipe->nrbufs;
655			while (--nrbufs >= 0) {
656				count += pipe->bufs[buf].len;
657				buf = (buf+1) & (pipe->buffers - 1);
658			}
659			mutex_unlock(&inode->i_mutex);
660
661			return put_user(count, (int __user *)arg);
662		default:
663			return -EINVAL;
664	}
665}
666
667/* No kernel lock held - fine */
668static unsigned int
669pipe_poll(struct file *filp, poll_table *wait)
670{
671	unsigned int mask;
672	struct inode *inode = filp->f_path.dentry->d_inode;
673	struct pipe_inode_info *pipe = inode->i_pipe;
674	int nrbufs;
675
676	poll_wait(filp, &pipe->wait, wait);
677
678	/* Reading only -- no need for acquiring the semaphore.  */
679	nrbufs = pipe->nrbufs;
680	mask = 0;
681	if (filp->f_mode & FMODE_READ) {
682		mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
683		if (!pipe->writers && filp->f_version != pipe->w_counter)
684			mask |= POLLHUP;
685	}
686
687	if (filp->f_mode & FMODE_WRITE) {
688		mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
689		/*
690		 * Most Unices do not set POLLERR for FIFOs but on Linux they
691		 * behave exactly like pipes for poll().
692		 */
693		if (!pipe->readers)
694			mask |= POLLERR;
695	}
696
697	return mask;
698}
699
700static int
701pipe_release(struct inode *inode, int decr, int decw)
702{
703	struct pipe_inode_info *pipe;
704
705	mutex_lock(&inode->i_mutex);
706	pipe = inode->i_pipe;
707	pipe->readers -= decr;
708	pipe->writers -= decw;
709
710	if (!pipe->readers && !pipe->writers) {
711		free_pipe_info(inode);
712	} else {
713		wake_up_interruptible_sync(&pipe->wait);
714		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
715		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
716	}
717	mutex_unlock(&inode->i_mutex);
718
719	return 0;
720}
721
722static int
723pipe_read_fasync(int fd, struct file *filp, int on)
724{
725	struct inode *inode = filp->f_path.dentry->d_inode;
726	int retval;
727
728	mutex_lock(&inode->i_mutex);
729	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
730	mutex_unlock(&inode->i_mutex);
731
732	return retval;
733}
734
735
736static int
737pipe_write_fasync(int fd, struct file *filp, int on)
738{
739	struct inode *inode = filp->f_path.dentry->d_inode;
740	int retval;
741
742	mutex_lock(&inode->i_mutex);
743	retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
744	mutex_unlock(&inode->i_mutex);
745
746	return retval;
747}
748
749
750static int
751pipe_rdwr_fasync(int fd, struct file *filp, int on)
752{
753	struct inode *inode = filp->f_path.dentry->d_inode;
754	struct pipe_inode_info *pipe = inode->i_pipe;
755	int retval;
756
757	mutex_lock(&inode->i_mutex);
758	retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
759	if (retval >= 0) {
760		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
761		if (retval < 0) /* this can happen only if on == T */
762			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
763	}
764	mutex_unlock(&inode->i_mutex);
765	return retval;
766}
767
768
769static int
770pipe_read_release(struct inode *inode, struct file *filp)
771{
772	return pipe_release(inode, 1, 0);
773}
774
775static int
776pipe_write_release(struct inode *inode, struct file *filp)
777{
778	return pipe_release(inode, 0, 1);
779}
780
781static int
782pipe_rdwr_release(struct inode *inode, struct file *filp)
783{
784	int decr, decw;
785
786	decr = (filp->f_mode & FMODE_READ) != 0;
787	decw = (filp->f_mode & FMODE_WRITE) != 0;
788	return pipe_release(inode, decr, decw);
789}
790
791static int
792pipe_read_open(struct inode *inode, struct file *filp)
793{
794	int ret = -ENOENT;
795
796	mutex_lock(&inode->i_mutex);
797
798	if (inode->i_pipe) {
799		ret = 0;
800		inode->i_pipe->readers++;
801	}
802
803	mutex_unlock(&inode->i_mutex);
804
805	return ret;
806}
807
808static int
809pipe_write_open(struct inode *inode, struct file *filp)
810{
811	int ret = -ENOENT;
812
813	mutex_lock(&inode->i_mutex);
814
815	if (inode->i_pipe) {
816		ret = 0;
817		inode->i_pipe->writers++;
818	}
819
820	mutex_unlock(&inode->i_mutex);
821
822	return ret;
823}
824
825static int
826pipe_rdwr_open(struct inode *inode, struct file *filp)
827{
828	int ret = -ENOENT;
829
830	mutex_lock(&inode->i_mutex);
831
832	if (inode->i_pipe) {
833		ret = 0;
834		if (filp->f_mode & FMODE_READ)
835			inode->i_pipe->readers++;
836		if (filp->f_mode & FMODE_WRITE)
837			inode->i_pipe->writers++;
838	}
839
840	mutex_unlock(&inode->i_mutex);
841
842	return ret;
843}
844
845/*
846 * The file_operations structs are not static because they
847 * are also used in linux/fs/fifo.c to do operations on FIFOs.
848 *
849 * Pipes reuse fifos' file_operations structs.
850 */
851const struct file_operations read_pipefifo_fops = {
852	.llseek		= no_llseek,
853	.read		= do_sync_read,
854	.aio_read	= pipe_read,
855	.write		= bad_pipe_w,
856	.poll		= pipe_poll,
857	.unlocked_ioctl	= pipe_ioctl,
858	.open		= pipe_read_open,
859	.release	= pipe_read_release,
860	.fasync		= pipe_read_fasync,
861};
862
863const struct file_operations write_pipefifo_fops = {
864	.llseek		= no_llseek,
865	.read		= bad_pipe_r,
866	.write		= do_sync_write,
867	.aio_write	= pipe_write,
868	.poll		= pipe_poll,
869	.unlocked_ioctl	= pipe_ioctl,
870	.open		= pipe_write_open,
871	.release	= pipe_write_release,
872	.fasync		= pipe_write_fasync,
873};
874
875const struct file_operations rdwr_pipefifo_fops = {
876	.llseek		= no_llseek,
877	.read		= do_sync_read,
878	.aio_read	= pipe_read,
879	.write		= do_sync_write,
880	.aio_write	= pipe_write,
881	.poll		= pipe_poll,
882	.unlocked_ioctl	= pipe_ioctl,
883	.open		= pipe_rdwr_open,
884	.release	= pipe_rdwr_release,
885	.fasync		= pipe_rdwr_fasync,
886};
887
888struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
889{
890	struct pipe_inode_info *pipe;
891
892	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
893	if (pipe) {
894		pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
895		if (pipe->bufs) {
896			init_waitqueue_head(&pipe->wait);
897			pipe->r_counter = pipe->w_counter = 1;
898			pipe->inode = inode;
899			pipe->buffers = PIPE_DEF_BUFFERS;
900			return pipe;
901		}
902		kfree(pipe);
903	}
904
905	return NULL;
906}
907
908void __free_pipe_info(struct pipe_inode_info *pipe)
909{
910	int i;
911
912	for (i = 0; i < pipe->buffers; i++) {
913		struct pipe_buffer *buf = pipe->bufs + i;
914		if (buf->ops)
915			buf->ops->release(pipe, buf);
916	}
917	if (pipe->tmp_page)
918		__free_page(pipe->tmp_page);
919	kfree(pipe->bufs);
920	kfree(pipe);
921}
922
923void free_pipe_info(struct inode *inode)
924{
925	__free_pipe_info(inode->i_pipe);
926	inode->i_pipe = NULL;
927}
928
929static struct vfsmount *pipe_mnt __read_mostly;
930
931/*
932 * pipefs_dname() is called from d_path().
933 */
934static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
935{
936	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
937				dentry->d_inode->i_ino);
938}
939
940static const struct dentry_operations pipefs_dentry_operations = {
941	.d_dname	= pipefs_dname,
942};
943
944static struct inode * get_pipe_inode(void)
945{
946	struct inode *inode = new_inode(pipe_mnt->mnt_sb);
947	struct pipe_inode_info *pipe;
948
949	if (!inode)
950		goto fail_inode;
951
952	pipe = alloc_pipe_info(inode);
953	if (!pipe)
954		goto fail_iput;
955	inode->i_pipe = pipe;
956
957	pipe->readers = pipe->writers = 1;
958	inode->i_fop = &rdwr_pipefifo_fops;
959
960	/*
961	 * Mark the inode dirty from the very beginning,
962	 * that way it will never be moved to the dirty
963	 * list because "mark_inode_dirty()" will think
964	 * that it already _is_ on the dirty list.
965	 */
966	inode->i_state = I_DIRTY;
967	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
968	inode->i_uid = current_fsuid();
969	inode->i_gid = current_fsgid();
970	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
971
972	return inode;
973
974fail_iput:
975	iput(inode);
976
977fail_inode:
978	return NULL;
979}
980
981struct file *create_write_pipe(int flags)
982{
983	int err;
984	struct inode *inode;
985	struct file *f;
986	struct path path;
987	struct qstr name = { .name = "" };
988
989	err = -ENFILE;
990	inode = get_pipe_inode();
991	if (!inode)
992		goto err;
993
994	err = -ENOMEM;
995	path.dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
996	if (!path.dentry)
997		goto err_inode;
998	path.mnt = mntget(pipe_mnt);
999
1000	path.dentry->d_op = &pipefs_dentry_operations;
1001	d_instantiate(path.dentry, inode);
1002
1003	err = -ENFILE;
1004	f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1005	if (!f)
1006		goto err_dentry;
1007	f->f_mapping = inode->i_mapping;
1008
1009	f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1010	f->f_version = 0;
1011
1012	return f;
1013
1014 err_dentry:
1015	free_pipe_info(inode);
1016	path_put(&path);
1017	return ERR_PTR(err);
1018
1019 err_inode:
1020	free_pipe_info(inode);
1021	iput(inode);
1022 err:
1023	return ERR_PTR(err);
1024}
1025
1026void free_write_pipe(struct file *f)
1027{
1028	free_pipe_info(f->f_dentry->d_inode);
1029	path_put(&f->f_path);
1030	put_filp(f);
1031}
1032
1033struct file *create_read_pipe(struct file *wrf, int flags)
1034{
1035	/* Grab pipe from the writer */
1036	struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1037				    &read_pipefifo_fops);
1038	if (!f)
1039		return ERR_PTR(-ENFILE);
1040
1041	path_get(&wrf->f_path);
1042	f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1043
1044	return f;
1045}
1046
1047int do_pipe_flags(int *fd, int flags)
1048{
1049	struct file *fw, *fr;
1050	int error;
1051	int fdw, fdr;
1052
1053	if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1054		return -EINVAL;
1055
1056	fw = create_write_pipe(flags);
1057	if (IS_ERR(fw))
1058		return PTR_ERR(fw);
1059	fr = create_read_pipe(fw, flags);
1060	error = PTR_ERR(fr);
1061	if (IS_ERR(fr))
1062		goto err_write_pipe;
1063
1064	error = get_unused_fd_flags(flags);
1065	if (error < 0)
1066		goto err_read_pipe;
1067	fdr = error;
1068
1069	error = get_unused_fd_flags(flags);
1070	if (error < 0)
1071		goto err_fdr;
1072	fdw = error;
1073
1074	audit_fd_pair(fdr, fdw);
1075	fd_install(fdr, fr);
1076	fd_install(fdw, fw);
1077	fd[0] = fdr;
1078	fd[1] = fdw;
1079
1080	return 0;
1081
1082 err_fdr:
1083	put_unused_fd(fdr);
1084 err_read_pipe:
1085	path_put(&fr->f_path);
1086	put_filp(fr);
1087 err_write_pipe:
1088	free_write_pipe(fw);
1089	return error;
1090}
1091
1092/*
1093 * sys_pipe() is the normal C calling standard for creating
1094 * a pipe. It's not the way Unix traditionally does this, though.
1095 */
1096SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1097{
1098	int fd[2];
1099	int error;
1100
1101	error = do_pipe_flags(fd, flags);
1102	if (!error) {
1103		if (copy_to_user(fildes, fd, sizeof(fd))) {
1104			sys_close(fd[0]);
1105			sys_close(fd[1]);
1106			error = -EFAULT;
1107		}
1108	}
1109	return error;
1110}
1111
1112SYSCALL_DEFINE1(pipe, int __user *, fildes)
1113{
1114	return sys_pipe2(fildes, 0);
1115}
1116
1117/*
1118 * Allocate a new array of pipe buffers and copy the info over. Returns the
1119 * pipe size if successful, or return -ERROR on error.
1120 */
1121static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1122{
1123	struct pipe_buffer *bufs;
1124
1125	/*
1126	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1127	 * expect a lot of shrink+grow operations, just free and allocate
1128	 * again like we would do for growing. If the pipe currently
1129	 * contains more buffers than arg, then return busy.
1130	 */
1131	if (nr_pages < pipe->nrbufs)
1132		return -EBUSY;
1133
1134	bufs = kcalloc(nr_pages, sizeof(struct pipe_buffer), GFP_KERNEL);
1135	if (unlikely(!bufs))
1136		return -ENOMEM;
1137
1138	/*
1139	 * The pipe array wraps around, so just start the new one at zero
1140	 * and adjust the indexes.
1141	 */
1142	if (pipe->nrbufs) {
1143		unsigned int tail;
1144		unsigned int head;
1145
1146		tail = pipe->curbuf + pipe->nrbufs;
1147		if (tail < pipe->buffers)
1148			tail = 0;
1149		else
1150			tail &= (pipe->buffers - 1);
1151
1152		head = pipe->nrbufs - tail;
1153		if (head)
1154			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1155		if (tail)
1156			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1157	}
1158
1159	pipe->curbuf = 0;
1160	kfree(pipe->bufs);
1161	pipe->bufs = bufs;
1162	pipe->buffers = nr_pages;
1163	return nr_pages * PAGE_SIZE;
1164}
1165
1166/*
1167 * Currently we rely on the pipe array holding a power-of-2 number
1168 * of pages.
1169 */
1170static inline unsigned int round_pipe_size(unsigned int size)
1171{
1172	unsigned long nr_pages;
1173
1174	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1175	return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1176}
1177
1178/*
1179 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1180 * will return an error.
1181 */
1182int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1183		 size_t *lenp, loff_t *ppos)
1184{
1185	int ret;
1186
1187	ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1188	if (ret < 0 || !write)
1189		return ret;
1190
1191	pipe_max_size = round_pipe_size(pipe_max_size);
1192	return ret;
1193}
1194
1195/*
1196 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1197 * location, so checking ->i_pipe is not enough to verify that this is a
1198 * pipe.
1199 */
1200struct pipe_inode_info *get_pipe_info(struct file *file)
1201{
1202	struct inode *i = file->f_path.dentry->d_inode;
1203
1204	return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1205}
1206
1207long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1208{
1209	struct pipe_inode_info *pipe;
1210	long ret;
1211
1212	pipe = get_pipe_info(file);
1213	if (!pipe)
1214		return -EBADF;
1215
1216	mutex_lock(&pipe->inode->i_mutex);
1217
1218	switch (cmd) {
1219	case F_SETPIPE_SZ: {
1220		unsigned int size, nr_pages;
1221
1222		size = round_pipe_size(arg);
1223		nr_pages = size >> PAGE_SHIFT;
1224
1225		ret = -EINVAL;
1226		if (!nr_pages)
1227			goto out;
1228
1229		if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1230			ret = -EPERM;
1231			goto out;
1232		}
1233		ret = pipe_set_size(pipe, nr_pages);
1234		break;
1235		}
1236	case F_GETPIPE_SZ:
1237		ret = pipe->buffers * PAGE_SIZE;
1238		break;
1239	default:
1240		ret = -EINVAL;
1241		break;
1242	}
1243
1244out:
1245	mutex_unlock(&pipe->inode->i_mutex);
1246	return ret;
1247}
1248
1249/*
1250 * pipefs should _never_ be mounted by userland - too much of security hassle,
1251 * no real gain from having the whole whorehouse mounted. So we don't need
1252 * any operations on the root directory. However, we need a non-trivial
1253 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1254 */
1255static int pipefs_get_sb(struct file_system_type *fs_type,
1256			 int flags, const char *dev_name, void *data,
1257			 struct vfsmount *mnt)
1258{
1259	return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1260}
1261
1262static struct file_system_type pipe_fs_type = {
1263	.name		= "pipefs",
1264	.get_sb		= pipefs_get_sb,
1265	.kill_sb	= kill_anon_super,
1266};
1267
1268static int __init init_pipe_fs(void)
1269{
1270	int err = register_filesystem(&pipe_fs_type);
1271
1272	if (!err) {
1273		pipe_mnt = kern_mount(&pipe_fs_type);
1274		if (IS_ERR(pipe_mnt)) {
1275			err = PTR_ERR(pipe_mnt);
1276			unregister_filesystem(&pipe_fs_type);
1277		}
1278	}
1279	return err;
1280}
1281
1282static void __exit exit_pipe_fs(void)
1283{
1284	unregister_filesystem(&pipe_fs_type);
1285	mntput(pipe_mnt);
1286}
1287
1288fs_initcall(init_pipe_fs);
1289module_exit(exit_pipe_fs);
1290