1/*
2 *	fs/libfs.c
3 *	Library for filesystems writers.
4 */
5
6#include <linux/module.h>
7#include <linux/pagemap.h>
8#include <linux/slab.h>
9#include <linux/mount.h>
10#include <linux/vfs.h>
11#include <linux/quotaops.h>
12#include <linux/mutex.h>
13#include <linux/exportfs.h>
14#include <linux/writeback.h>
15#include <linux/buffer_head.h>
16
17#include <asm/uaccess.h>
18
19int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
20		   struct kstat *stat)
21{
22	struct inode *inode = dentry->d_inode;
23	generic_fillattr(inode, stat);
24	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
25	return 0;
26}
27
28int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
29{
30	buf->f_type = dentry->d_sb->s_magic;
31	buf->f_bsize = PAGE_CACHE_SIZE;
32	buf->f_namelen = NAME_MAX;
33	return 0;
34}
35
36/*
37 * Retaining negative dentries for an in-memory filesystem just wastes
38 * memory and lookup time: arrange for them to be deleted immediately.
39 */
40static int simple_delete_dentry(struct dentry *dentry)
41{
42	return 1;
43}
44
45/*
46 * Lookup the data. This is trivial - if the dentry didn't already
47 * exist, we know it is negative.  Set d_op to delete negative dentries.
48 */
49struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
50{
51	static const struct dentry_operations simple_dentry_operations = {
52		.d_delete = simple_delete_dentry,
53	};
54
55	if (dentry->d_name.len > NAME_MAX)
56		return ERR_PTR(-ENAMETOOLONG);
57	dentry->d_op = &simple_dentry_operations;
58	d_add(dentry, NULL);
59	return NULL;
60}
61
62int dcache_dir_open(struct inode *inode, struct file *file)
63{
64	static struct qstr cursor_name = {.len = 1, .name = "."};
65
66	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
67
68	return file->private_data ? 0 : -ENOMEM;
69}
70
71int dcache_dir_close(struct inode *inode, struct file *file)
72{
73	dput(file->private_data);
74	return 0;
75}
76
77loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
78{
79	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
80	switch (origin) {
81		case 1:
82			offset += file->f_pos;
83		case 0:
84			if (offset >= 0)
85				break;
86		default:
87			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
88			return -EINVAL;
89	}
90	if (offset != file->f_pos) {
91		file->f_pos = offset;
92		if (file->f_pos >= 2) {
93			struct list_head *p;
94			struct dentry *cursor = file->private_data;
95			loff_t n = file->f_pos - 2;
96
97			spin_lock(&dcache_lock);
98			list_del(&cursor->d_u.d_child);
99			p = file->f_path.dentry->d_subdirs.next;
100			while (n && p != &file->f_path.dentry->d_subdirs) {
101				struct dentry *next;
102				next = list_entry(p, struct dentry, d_u.d_child);
103				if (!d_unhashed(next) && next->d_inode)
104					n--;
105				p = p->next;
106			}
107			list_add_tail(&cursor->d_u.d_child, p);
108			spin_unlock(&dcache_lock);
109		}
110	}
111	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
112	return offset;
113}
114
115/* Relationship between i_mode and the DT_xxx types */
116static inline unsigned char dt_type(struct inode *inode)
117{
118	return (inode->i_mode >> 12) & 15;
119}
120
121/*
122 * Directory is locked and all positive dentries in it are safe, since
123 * for ramfs-type trees they can't go away without unlink() or rmdir(),
124 * both impossible due to the lock on directory.
125 */
126
127int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
128{
129	struct dentry *dentry = filp->f_path.dentry;
130	struct dentry *cursor = filp->private_data;
131	struct list_head *p, *q = &cursor->d_u.d_child;
132	ino_t ino;
133	int i = filp->f_pos;
134
135	switch (i) {
136		case 0:
137			ino = dentry->d_inode->i_ino;
138			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
139				break;
140			filp->f_pos++;
141			i++;
142			/* fallthrough */
143		case 1:
144			ino = parent_ino(dentry);
145			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
146				break;
147			filp->f_pos++;
148			i++;
149			/* fallthrough */
150		default:
151			spin_lock(&dcache_lock);
152			if (filp->f_pos == 2)
153				list_move(q, &dentry->d_subdirs);
154
155			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
156				struct dentry *next;
157				next = list_entry(p, struct dentry, d_u.d_child);
158				if (d_unhashed(next) || !next->d_inode)
159					continue;
160
161				spin_unlock(&dcache_lock);
162				if (filldir(dirent, next->d_name.name,
163					    next->d_name.len, filp->f_pos,
164					    next->d_inode->i_ino,
165					    dt_type(next->d_inode)) < 0)
166					return 0;
167				spin_lock(&dcache_lock);
168				/* next is still alive */
169				list_move(q, p);
170				p = q;
171				filp->f_pos++;
172			}
173			spin_unlock(&dcache_lock);
174	}
175	return 0;
176}
177
178ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
179{
180	return -EISDIR;
181}
182
183const struct file_operations simple_dir_operations = {
184	.open		= dcache_dir_open,
185	.release	= dcache_dir_close,
186	.llseek		= dcache_dir_lseek,
187	.read		= generic_read_dir,
188	.readdir	= dcache_readdir,
189	.fsync		= noop_fsync,
190};
191
192const struct inode_operations simple_dir_inode_operations = {
193	.lookup		= simple_lookup,
194};
195
196static const struct super_operations simple_super_operations = {
197	.statfs		= simple_statfs,
198};
199
200/*
201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
202 * will never be mountable)
203 */
204int get_sb_pseudo(struct file_system_type *fs_type, char *name,
205	const struct super_operations *ops, unsigned long magic,
206	struct vfsmount *mnt)
207{
208	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
209	struct dentry *dentry;
210	struct inode *root;
211	struct qstr d_name = {.name = name, .len = strlen(name)};
212
213	if (IS_ERR(s))
214		return PTR_ERR(s);
215
216	s->s_flags = MS_NOUSER;
217	s->s_maxbytes = MAX_LFS_FILESIZE;
218	s->s_blocksize = PAGE_SIZE;
219	s->s_blocksize_bits = PAGE_SHIFT;
220	s->s_magic = magic;
221	s->s_op = ops ? ops : &simple_super_operations;
222	s->s_time_gran = 1;
223	root = new_inode(s);
224	if (!root)
225		goto Enomem;
226	/*
227	 * since this is the first inode, make it number 1. New inodes created
228	 * after this must take care not to collide with it (by passing
229	 * max_reserved of 1 to iunique).
230	 */
231	root->i_ino = 1;
232	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
233	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
234	dentry = d_alloc(NULL, &d_name);
235	if (!dentry) {
236		iput(root);
237		goto Enomem;
238	}
239	dentry->d_sb = s;
240	dentry->d_parent = dentry;
241	d_instantiate(dentry, root);
242	s->s_root = dentry;
243	s->s_flags |= MS_ACTIVE;
244	simple_set_mnt(mnt, s);
245	return 0;
246
247Enomem:
248	deactivate_locked_super(s);
249	return -ENOMEM;
250}
251
252int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
253{
254	struct inode *inode = old_dentry->d_inode;
255
256	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
257	inc_nlink(inode);
258	atomic_inc(&inode->i_count);
259	dget(dentry);
260	d_instantiate(dentry, inode);
261	return 0;
262}
263
264static inline int simple_positive(struct dentry *dentry)
265{
266	return dentry->d_inode && !d_unhashed(dentry);
267}
268
269int simple_empty(struct dentry *dentry)
270{
271	struct dentry *child;
272	int ret = 0;
273
274	spin_lock(&dcache_lock);
275	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
276		if (simple_positive(child))
277			goto out;
278	ret = 1;
279out:
280	spin_unlock(&dcache_lock);
281	return ret;
282}
283
284int simple_unlink(struct inode *dir, struct dentry *dentry)
285{
286	struct inode *inode = dentry->d_inode;
287
288	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
289	drop_nlink(inode);
290	dput(dentry);
291	return 0;
292}
293
294int simple_rmdir(struct inode *dir, struct dentry *dentry)
295{
296	if (!simple_empty(dentry))
297		return -ENOTEMPTY;
298
299	drop_nlink(dentry->d_inode);
300	simple_unlink(dir, dentry);
301	drop_nlink(dir);
302	return 0;
303}
304
305int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
306		struct inode *new_dir, struct dentry *new_dentry)
307{
308	struct inode *inode = old_dentry->d_inode;
309	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
310
311	if (!simple_empty(new_dentry))
312		return -ENOTEMPTY;
313
314	if (new_dentry->d_inode) {
315		simple_unlink(new_dir, new_dentry);
316		if (they_are_dirs)
317			drop_nlink(old_dir);
318	} else if (they_are_dirs) {
319		drop_nlink(old_dir);
320		inc_nlink(new_dir);
321	}
322
323	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
324		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
325
326	return 0;
327}
328
329/**
330 * simple_setattr - setattr for simple filesystem
331 * @dentry: dentry
332 * @iattr: iattr structure
333 *
334 * Returns 0 on success, -error on failure.
335 *
336 * simple_setattr is a simple ->setattr implementation without a proper
337 * implementation of size changes.
338 *
339 * It can either be used for in-memory filesystems or special files
340 * on simple regular filesystems.  Anything that needs to change on-disk
341 * or wire state on size changes needs its own setattr method.
342 */
343int simple_setattr(struct dentry *dentry, struct iattr *iattr)
344{
345	struct inode *inode = dentry->d_inode;
346	int error;
347
348	WARN_ON_ONCE(inode->i_op->truncate);
349
350	error = inode_change_ok(inode, iattr);
351	if (error)
352		return error;
353
354	if (iattr->ia_valid & ATTR_SIZE)
355		truncate_setsize(inode, iattr->ia_size);
356	setattr_copy(inode, iattr);
357	mark_inode_dirty(inode);
358	return 0;
359}
360EXPORT_SYMBOL(simple_setattr);
361
362int simple_readpage(struct file *file, struct page *page)
363{
364	clear_highpage(page);
365	flush_dcache_page(page);
366	SetPageUptodate(page);
367	unlock_page(page);
368	return 0;
369}
370
371int simple_write_begin(struct file *file, struct address_space *mapping,
372			loff_t pos, unsigned len, unsigned flags,
373			struct page **pagep, void **fsdata)
374{
375	struct page *page;
376	pgoff_t index;
377
378	index = pos >> PAGE_CACHE_SHIFT;
379
380	page = grab_cache_page_write_begin(mapping, index, flags);
381	if (!page)
382		return -ENOMEM;
383
384	*pagep = page;
385
386	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
387		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
388
389		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
390	}
391	return 0;
392}
393
394/**
395 * simple_write_end - .write_end helper for non-block-device FSes
396 * @available: See .write_end of address_space_operations
397 * @file: 		"
398 * @mapping: 		"
399 * @pos: 		"
400 * @len: 		"
401 * @copied: 		"
402 * @page: 		"
403 * @fsdata: 		"
404 *
405 * simple_write_end does the minimum needed for updating a page after writing is
406 * done. It has the same API signature as the .write_end of
407 * address_space_operations vector. So it can just be set onto .write_end for
408 * FSes that don't need any other processing. i_mutex is assumed to be held.
409 * Block based filesystems should use generic_write_end().
410 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
411 * is not called, so a filesystem that actually does store data in .write_inode
412 * should extend on what's done here with a call to mark_inode_dirty() in the
413 * case that i_size has changed.
414 */
415int simple_write_end(struct file *file, struct address_space *mapping,
416			loff_t pos, unsigned len, unsigned copied,
417			struct page *page, void *fsdata)
418{
419	struct inode *inode = page->mapping->host;
420	loff_t last_pos = pos + copied;
421
422	/* zero the stale part of the page if we did a short copy */
423	if (copied < len) {
424		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
425
426		zero_user(page, from + copied, len - copied);
427	}
428
429	if (!PageUptodate(page))
430		SetPageUptodate(page);
431	/*
432	 * No need to use i_size_read() here, the i_size
433	 * cannot change under us because we hold the i_mutex.
434	 */
435	if (last_pos > inode->i_size)
436		i_size_write(inode, last_pos);
437
438	set_page_dirty(page);
439	unlock_page(page);
440	page_cache_release(page);
441
442	return copied;
443}
444
445/*
446 * the inodes created here are not hashed. If you use iunique to generate
447 * unique inode values later for this filesystem, then you must take care
448 * to pass it an appropriate max_reserved value to avoid collisions.
449 */
450int simple_fill_super(struct super_block *s, unsigned long magic,
451		      struct tree_descr *files)
452{
453	struct inode *inode;
454	struct dentry *root;
455	struct dentry *dentry;
456	int i;
457
458	s->s_blocksize = PAGE_CACHE_SIZE;
459	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
460	s->s_magic = magic;
461	s->s_op = &simple_super_operations;
462	s->s_time_gran = 1;
463
464	inode = new_inode(s);
465	if (!inode)
466		return -ENOMEM;
467	/*
468	 * because the root inode is 1, the files array must not contain an
469	 * entry at index 1
470	 */
471	inode->i_ino = 1;
472	inode->i_mode = S_IFDIR | 0755;
473	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
474	inode->i_op = &simple_dir_inode_operations;
475	inode->i_fop = &simple_dir_operations;
476	inode->i_nlink = 2;
477	root = d_alloc_root(inode);
478	if (!root) {
479		iput(inode);
480		return -ENOMEM;
481	}
482	for (i = 0; !files->name || files->name[0]; i++, files++) {
483		if (!files->name)
484			continue;
485
486		/* warn if it tries to conflict with the root inode */
487		if (unlikely(i == 1))
488			printk(KERN_WARNING "%s: %s passed in a files array"
489				"with an index of 1!\n", __func__,
490				s->s_type->name);
491
492		dentry = d_alloc_name(root, files->name);
493		if (!dentry)
494			goto out;
495		inode = new_inode(s);
496		if (!inode)
497			goto out;
498		inode->i_mode = S_IFREG | files->mode;
499		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
500		inode->i_fop = files->ops;
501		inode->i_ino = i;
502		d_add(dentry, inode);
503	}
504	s->s_root = root;
505	return 0;
506out:
507	d_genocide(root);
508	dput(root);
509	return -ENOMEM;
510}
511
512static DEFINE_SPINLOCK(pin_fs_lock);
513
514int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
515{
516	struct vfsmount *mnt = NULL;
517	spin_lock(&pin_fs_lock);
518	if (unlikely(!*mount)) {
519		spin_unlock(&pin_fs_lock);
520		mnt = vfs_kern_mount(type, 0, type->name, NULL);
521		if (IS_ERR(mnt))
522			return PTR_ERR(mnt);
523		spin_lock(&pin_fs_lock);
524		if (!*mount)
525			*mount = mnt;
526	}
527	mntget(*mount);
528	++*count;
529	spin_unlock(&pin_fs_lock);
530	mntput(mnt);
531	return 0;
532}
533
534void simple_release_fs(struct vfsmount **mount, int *count)
535{
536	struct vfsmount *mnt;
537	spin_lock(&pin_fs_lock);
538	mnt = *mount;
539	if (!--*count)
540		*mount = NULL;
541	spin_unlock(&pin_fs_lock);
542	mntput(mnt);
543}
544
545/**
546 * simple_read_from_buffer - copy data from the buffer to user space
547 * @to: the user space buffer to read to
548 * @count: the maximum number of bytes to read
549 * @ppos: the current position in the buffer
550 * @from: the buffer to read from
551 * @available: the size of the buffer
552 *
553 * The simple_read_from_buffer() function reads up to @count bytes from the
554 * buffer @from at offset @ppos into the user space address starting at @to.
555 *
556 * On success, the number of bytes read is returned and the offset @ppos is
557 * advanced by this number, or negative value is returned on error.
558 **/
559ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
560				const void *from, size_t available)
561{
562	loff_t pos = *ppos;
563	size_t ret;
564
565	if (pos < 0)
566		return -EINVAL;
567	if (pos >= available || !count)
568		return 0;
569	if (count > available - pos)
570		count = available - pos;
571	ret = copy_to_user(to, from + pos, count);
572	if (ret == count)
573		return -EFAULT;
574	count -= ret;
575	*ppos = pos + count;
576	return count;
577}
578
579/**
580 * simple_write_to_buffer - copy data from user space to the buffer
581 * @to: the buffer to write to
582 * @available: the size of the buffer
583 * @ppos: the current position in the buffer
584 * @from: the user space buffer to read from
585 * @count: the maximum number of bytes to read
586 *
587 * The simple_write_to_buffer() function reads up to @count bytes from the user
588 * space address starting at @from into the buffer @to at offset @ppos.
589 *
590 * On success, the number of bytes written is returned and the offset @ppos is
591 * advanced by this number, or negative value is returned on error.
592 **/
593ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
594		const void __user *from, size_t count)
595{
596	loff_t pos = *ppos;
597	size_t res;
598
599	if (pos < 0)
600		return -EINVAL;
601	if (pos >= available || !count)
602		return 0;
603	if (count > available - pos)
604		count = available - pos;
605	res = copy_from_user(to + pos, from, count);
606	if (res == count)
607		return -EFAULT;
608	count -= res;
609	*ppos = pos + count;
610	return count;
611}
612
613/**
614 * memory_read_from_buffer - copy data from the buffer
615 * @to: the kernel space buffer to read to
616 * @count: the maximum number of bytes to read
617 * @ppos: the current position in the buffer
618 * @from: the buffer to read from
619 * @available: the size of the buffer
620 *
621 * The memory_read_from_buffer() function reads up to @count bytes from the
622 * buffer @from at offset @ppos into the kernel space address starting at @to.
623 *
624 * On success, the number of bytes read is returned and the offset @ppos is
625 * advanced by this number, or negative value is returned on error.
626 **/
627ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
628				const void *from, size_t available)
629{
630	loff_t pos = *ppos;
631
632	if (pos < 0)
633		return -EINVAL;
634	if (pos >= available)
635		return 0;
636	if (count > available - pos)
637		count = available - pos;
638	memcpy(to, from + pos, count);
639	*ppos = pos + count;
640
641	return count;
642}
643
644/*
645 * Transaction based IO.
646 * The file expects a single write which triggers the transaction, and then
647 * possibly a read which collects the result - which is stored in a
648 * file-local buffer.
649 */
650
651void simple_transaction_set(struct file *file, size_t n)
652{
653	struct simple_transaction_argresp *ar = file->private_data;
654
655	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
656
657	/*
658	 * The barrier ensures that ar->size will really remain zero until
659	 * ar->data is ready for reading.
660	 */
661	smp_mb();
662	ar->size = n;
663}
664
665char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
666{
667	struct simple_transaction_argresp *ar;
668	static DEFINE_SPINLOCK(simple_transaction_lock);
669
670	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
671		return ERR_PTR(-EFBIG);
672
673	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
674	if (!ar)
675		return ERR_PTR(-ENOMEM);
676
677	spin_lock(&simple_transaction_lock);
678
679	/* only one write allowed per open */
680	if (file->private_data) {
681		spin_unlock(&simple_transaction_lock);
682		free_page((unsigned long)ar);
683		return ERR_PTR(-EBUSY);
684	}
685
686	file->private_data = ar;
687
688	spin_unlock(&simple_transaction_lock);
689
690	if (copy_from_user(ar->data, buf, size))
691		return ERR_PTR(-EFAULT);
692
693	return ar->data;
694}
695
696ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
697{
698	struct simple_transaction_argresp *ar = file->private_data;
699
700	if (!ar)
701		return 0;
702	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
703}
704
705int simple_transaction_release(struct inode *inode, struct file *file)
706{
707	free_page((unsigned long)file->private_data);
708	return 0;
709}
710
711/* Simple attribute files */
712
713struct simple_attr {
714	int (*get)(void *, u64 *);
715	int (*set)(void *, u64);
716	char get_buf[24];	/* enough to store a u64 and "\n\0" */
717	char set_buf[24];
718	void *data;
719	const char *fmt;	/* format for read operation */
720	struct mutex mutex;	/* protects access to these buffers */
721};
722
723/* simple_attr_open is called by an actual attribute open file operation
724 * to set the attribute specific access operations. */
725int simple_attr_open(struct inode *inode, struct file *file,
726		     int (*get)(void *, u64 *), int (*set)(void *, u64),
727		     const char *fmt)
728{
729	struct simple_attr *attr;
730
731	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
732	if (!attr)
733		return -ENOMEM;
734
735	attr->get = get;
736	attr->set = set;
737	attr->data = inode->i_private;
738	attr->fmt = fmt;
739	mutex_init(&attr->mutex);
740
741	file->private_data = attr;
742
743	return nonseekable_open(inode, file);
744}
745
746int simple_attr_release(struct inode *inode, struct file *file)
747{
748	kfree(file->private_data);
749	return 0;
750}
751
752/* read from the buffer that is filled with the get function */
753ssize_t simple_attr_read(struct file *file, char __user *buf,
754			 size_t len, loff_t *ppos)
755{
756	struct simple_attr *attr;
757	size_t size;
758	ssize_t ret;
759
760	attr = file->private_data;
761
762	if (!attr->get)
763		return -EACCES;
764
765	ret = mutex_lock_interruptible(&attr->mutex);
766	if (ret)
767		return ret;
768
769	if (*ppos) {		/* continued read */
770		size = strlen(attr->get_buf);
771	} else {		/* first read */
772		u64 val;
773		ret = attr->get(attr->data, &val);
774		if (ret)
775			goto out;
776
777		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
778				 attr->fmt, (unsigned long long)val);
779	}
780
781	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
782out:
783	mutex_unlock(&attr->mutex);
784	return ret;
785}
786
787/* interpret the buffer as a number to call the set function with */
788ssize_t simple_attr_write(struct file *file, const char __user *buf,
789			  size_t len, loff_t *ppos)
790{
791	struct simple_attr *attr;
792	u64 val;
793	size_t size;
794	ssize_t ret;
795
796	attr = file->private_data;
797	if (!attr->set)
798		return -EACCES;
799
800	ret = mutex_lock_interruptible(&attr->mutex);
801	if (ret)
802		return ret;
803
804	ret = -EFAULT;
805	size = min(sizeof(attr->set_buf) - 1, len);
806	if (copy_from_user(attr->set_buf, buf, size))
807		goto out;
808
809	attr->set_buf[size] = '\0';
810	val = simple_strtol(attr->set_buf, NULL, 0);
811	ret = attr->set(attr->data, val);
812	if (ret == 0)
813		ret = len; /* on success, claim we got the whole input */
814out:
815	mutex_unlock(&attr->mutex);
816	return ret;
817}
818
819/**
820 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
821 * @sb:		filesystem to do the file handle conversion on
822 * @fid:	file handle to convert
823 * @fh_len:	length of the file handle in bytes
824 * @fh_type:	type of file handle
825 * @get_inode:	filesystem callback to retrieve inode
826 *
827 * This function decodes @fid as long as it has one of the well-known
828 * Linux filehandle types and calls @get_inode on it to retrieve the
829 * inode for the object specified in the file handle.
830 */
831struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
832		int fh_len, int fh_type, struct inode *(*get_inode)
833			(struct super_block *sb, u64 ino, u32 gen))
834{
835	struct inode *inode = NULL;
836
837	if (fh_len < 2)
838		return NULL;
839
840	switch (fh_type) {
841	case FILEID_INO32_GEN:
842	case FILEID_INO32_GEN_PARENT:
843		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
844		break;
845	}
846
847	return d_obtain_alias(inode);
848}
849EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
850
851/**
852 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
853 * @sb:		filesystem to do the file handle conversion on
854 * @fid:	file handle to convert
855 * @fh_len:	length of the file handle in bytes
856 * @fh_type:	type of file handle
857 * @get_inode:	filesystem callback to retrieve inode
858 *
859 * This function decodes @fid as long as it has one of the well-known
860 * Linux filehandle types and calls @get_inode on it to retrieve the
861 * inode for the _parent_ object specified in the file handle if it
862 * is specified in the file handle, or NULL otherwise.
863 */
864struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
865		int fh_len, int fh_type, struct inode *(*get_inode)
866			(struct super_block *sb, u64 ino, u32 gen))
867{
868	struct inode *inode = NULL;
869
870	if (fh_len <= 2)
871		return NULL;
872
873	switch (fh_type) {
874	case FILEID_INO32_GEN_PARENT:
875		inode = get_inode(sb, fid->i32.parent_ino,
876				  (fh_len > 3 ? fid->i32.parent_gen : 0));
877		break;
878	}
879
880	return d_obtain_alias(inode);
881}
882EXPORT_SYMBOL_GPL(generic_fh_to_parent);
883
884/**
885 * generic_file_fsync - generic fsync implementation for simple filesystems
886 * @file:	file to synchronize
887 * @datasync:	only synchronize essential metadata if true
888 *
889 * This is a generic implementation of the fsync method for simple
890 * filesystems which track all non-inode metadata in the buffers list
891 * hanging off the address_space structure.
892 */
893int generic_file_fsync(struct file *file, int datasync)
894{
895	struct writeback_control wbc = {
896		.sync_mode = WB_SYNC_ALL,
897		.nr_to_write = 0, /* metadata-only; caller takes care of data */
898	};
899	struct inode *inode = file->f_mapping->host;
900	int err;
901	int ret;
902
903	ret = sync_mapping_buffers(inode->i_mapping);
904	if (!(inode->i_state & I_DIRTY))
905		return ret;
906	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
907		return ret;
908
909	err = sync_inode(inode, &wbc);
910	if (ret == 0)
911		ret = err;
912	return ret;
913}
914EXPORT_SYMBOL(generic_file_fsync);
915
916/*
917 * No-op implementation of ->fsync for in-memory filesystems.
918 */
919int noop_fsync(struct file *file, int datasync)
920{
921	return 0;
922}
923
924EXPORT_SYMBOL(dcache_dir_close);
925EXPORT_SYMBOL(dcache_dir_lseek);
926EXPORT_SYMBOL(dcache_dir_open);
927EXPORT_SYMBOL(dcache_readdir);
928EXPORT_SYMBOL(generic_read_dir);
929EXPORT_SYMBOL(get_sb_pseudo);
930EXPORT_SYMBOL(simple_write_begin);
931EXPORT_SYMBOL(simple_write_end);
932EXPORT_SYMBOL(simple_dir_inode_operations);
933EXPORT_SYMBOL(simple_dir_operations);
934EXPORT_SYMBOL(simple_empty);
935EXPORT_SYMBOL(simple_fill_super);
936EXPORT_SYMBOL(simple_getattr);
937EXPORT_SYMBOL(simple_link);
938EXPORT_SYMBOL(simple_lookup);
939EXPORT_SYMBOL(simple_pin_fs);
940EXPORT_SYMBOL(simple_readpage);
941EXPORT_SYMBOL(simple_release_fs);
942EXPORT_SYMBOL(simple_rename);
943EXPORT_SYMBOL(simple_rmdir);
944EXPORT_SYMBOL(simple_statfs);
945EXPORT_SYMBOL(noop_fsync);
946EXPORT_SYMBOL(simple_unlink);
947EXPORT_SYMBOL(simple_read_from_buffer);
948EXPORT_SYMBOL(simple_write_to_buffer);
949EXPORT_SYMBOL(memory_read_from_buffer);
950EXPORT_SYMBOL(simple_transaction_set);
951EXPORT_SYMBOL(simple_transaction_get);
952EXPORT_SYMBOL(simple_transaction_read);
953EXPORT_SYMBOL(simple_transaction_release);
954EXPORT_SYMBOL_GPL(simple_attr_open);
955EXPORT_SYMBOL_GPL(simple_attr_release);
956EXPORT_SYMBOL_GPL(simple_attr_read);
957EXPORT_SYMBOL_GPL(simple_attr_write);
958