1/*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
28#include <scsi/sg.h>		/* for struct sg_iovec */
29
30#include <trace/events/block.h>
31
32/*
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
35 */
36#define BIO_INLINE_VECS		4
37
38static mempool_t *bio_split_pool __read_mostly;
39
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55struct bio_set *fs_bio_set;
56
57/*
58 * Our slab pool management
59 */
60struct bio_slab {
61	struct kmem_cache *slab;
62	unsigned int slab_ref;
63	unsigned int slab_size;
64	char name[8];
65};
66static DEFINE_MUTEX(bio_slab_lock);
67static struct bio_slab *bio_slabs;
68static unsigned int bio_slab_nr, bio_slab_max;
69
70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71{
72	unsigned int sz = sizeof(struct bio) + extra_size;
73	struct kmem_cache *slab = NULL;
74	struct bio_slab *bslab;
75	unsigned int i, entry = -1;
76
77	mutex_lock(&bio_slab_lock);
78
79	i = 0;
80	while (i < bio_slab_nr) {
81		bslab = &bio_slabs[i];
82
83		if (!bslab->slab && entry == -1)
84			entry = i;
85		else if (bslab->slab_size == sz) {
86			slab = bslab->slab;
87			bslab->slab_ref++;
88			break;
89		}
90		i++;
91	}
92
93	if (slab)
94		goto out_unlock;
95
96	if (bio_slab_nr == bio_slab_max && entry == -1) {
97		bio_slab_max <<= 1;
98		bio_slabs = krealloc(bio_slabs,
99				     bio_slab_max * sizeof(struct bio_slab),
100				     GFP_KERNEL);
101		if (!bio_slabs)
102			goto out_unlock;
103	}
104	if (entry == -1)
105		entry = bio_slab_nr++;
106
107	bslab = &bio_slabs[entry];
108
109	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111	if (!slab)
112		goto out_unlock;
113
114	printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115	bslab->slab = slab;
116	bslab->slab_ref = 1;
117	bslab->slab_size = sz;
118out_unlock:
119	mutex_unlock(&bio_slab_lock);
120	return slab;
121}
122
123static void bio_put_slab(struct bio_set *bs)
124{
125	struct bio_slab *bslab = NULL;
126	unsigned int i;
127
128	mutex_lock(&bio_slab_lock);
129
130	for (i = 0; i < bio_slab_nr; i++) {
131		if (bs->bio_slab == bio_slabs[i].slab) {
132			bslab = &bio_slabs[i];
133			break;
134		}
135	}
136
137	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138		goto out;
139
140	WARN_ON(!bslab->slab_ref);
141
142	if (--bslab->slab_ref)
143		goto out;
144
145	kmem_cache_destroy(bslab->slab);
146	bslab->slab = NULL;
147
148out:
149	mutex_unlock(&bio_slab_lock);
150}
151
152unsigned int bvec_nr_vecs(unsigned short idx)
153{
154	return bvec_slabs[idx].nr_vecs;
155}
156
157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158{
159	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161	if (idx == BIOVEC_MAX_IDX)
162		mempool_free(bv, bs->bvec_pool);
163	else {
164		struct biovec_slab *bvs = bvec_slabs + idx;
165
166		kmem_cache_free(bvs->slab, bv);
167	}
168}
169
170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171			      struct bio_set *bs)
172{
173	struct bio_vec *bvl;
174
175	/*
176	 * see comment near bvec_array define!
177	 */
178	switch (nr) {
179	case 1:
180		*idx = 0;
181		break;
182	case 2 ... 4:
183		*idx = 1;
184		break;
185	case 5 ... 16:
186		*idx = 2;
187		break;
188	case 17 ... 64:
189		*idx = 3;
190		break;
191	case 65 ... 128:
192		*idx = 4;
193		break;
194	case 129 ... BIO_MAX_PAGES:
195		*idx = 5;
196		break;
197	default:
198		return NULL;
199	}
200
201	/*
202	 * idx now points to the pool we want to allocate from. only the
203	 * 1-vec entry pool is mempool backed.
204	 */
205	if (*idx == BIOVEC_MAX_IDX) {
206fallback:
207		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208	} else {
209		struct biovec_slab *bvs = bvec_slabs + *idx;
210		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211
212		/*
213		 * Make this allocation restricted and don't dump info on
214		 * allocation failures, since we'll fallback to the mempool
215		 * in case of failure.
216		 */
217		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218
219		/*
220		 * Try a slab allocation. If this fails and __GFP_WAIT
221		 * is set, retry with the 1-entry mempool
222		 */
223		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225			*idx = BIOVEC_MAX_IDX;
226			goto fallback;
227		}
228	}
229
230	return bvl;
231}
232
233void bio_free(struct bio *bio, struct bio_set *bs)
234{
235	void *p;
236
237	if (bio_has_allocated_vec(bio))
238		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
239
240	if (bio_integrity(bio))
241		bio_integrity_free(bio, bs);
242
243	/*
244	 * If we have front padding, adjust the bio pointer before freeing
245	 */
246	p = bio;
247	if (bs->front_pad)
248		p -= bs->front_pad;
249
250	mempool_free(p, bs->bio_pool);
251}
252EXPORT_SYMBOL(bio_free);
253
254void bio_init(struct bio *bio)
255{
256	memset(bio, 0, sizeof(*bio));
257	bio->bi_flags = 1 << BIO_UPTODATE;
258	bio->bi_comp_cpu = -1;
259	atomic_set(&bio->bi_cnt, 1);
260}
261EXPORT_SYMBOL(bio_init);
262
263/**
264 * bio_alloc_bioset - allocate a bio for I/O
265 * @gfp_mask:   the GFP_ mask given to the slab allocator
266 * @nr_iovecs:	number of iovecs to pre-allocate
267 * @bs:		the bio_set to allocate from.
268 *
269 * Description:
270 *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
271 *   If %__GFP_WAIT is set then we will block on the internal pool waiting
272 *   for a &struct bio to become free.
273 *
274 *   Note that the caller must set ->bi_destructor on successful return
275 *   of a bio, to do the appropriate freeing of the bio once the reference
276 *   count drops to zero.
277 **/
278struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
279{
280	unsigned long idx = BIO_POOL_NONE;
281	struct bio_vec *bvl = NULL;
282	struct bio *bio;
283	void *p;
284
285	p = mempool_alloc(bs->bio_pool, gfp_mask);
286	if (unlikely(!p))
287		return NULL;
288	bio = p + bs->front_pad;
289
290	bio_init(bio);
291
292	if (unlikely(!nr_iovecs))
293		goto out_set;
294
295	if (nr_iovecs <= BIO_INLINE_VECS) {
296		bvl = bio->bi_inline_vecs;
297		nr_iovecs = BIO_INLINE_VECS;
298	} else {
299		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300		if (unlikely(!bvl))
301			goto err_free;
302
303		nr_iovecs = bvec_nr_vecs(idx);
304	}
305out_set:
306	bio->bi_flags |= idx << BIO_POOL_OFFSET;
307	bio->bi_max_vecs = nr_iovecs;
308	bio->bi_io_vec = bvl;
309	return bio;
310
311err_free:
312	mempool_free(p, bs->bio_pool);
313	return NULL;
314}
315EXPORT_SYMBOL(bio_alloc_bioset);
316
317static void bio_fs_destructor(struct bio *bio)
318{
319	bio_free(bio, fs_bio_set);
320}
321
322/**
323 *	bio_alloc - allocate a new bio, memory pool backed
324 *	@gfp_mask: allocation mask to use
325 *	@nr_iovecs: number of iovecs
326 *
327 *	bio_alloc will allocate a bio and associated bio_vec array that can hold
328 *	at least @nr_iovecs entries. Allocations will be done from the
329 *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330 *
331 *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
332 *	a bio. This is due to the mempool guarantees. To make this work, callers
333 *	must never allocate more than 1 bio at a time from this pool. Callers
334 *	that need to allocate more than 1 bio must always submit the previously
335 *	allocated bio for IO before attempting to allocate a new one. Failure to
336 *	do so can cause livelocks under memory pressure.
337 *
338 *	RETURNS:
339 *	Pointer to new bio on success, NULL on failure.
340 */
341struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
342{
343	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344
345	if (bio)
346		bio->bi_destructor = bio_fs_destructor;
347
348	return bio;
349}
350EXPORT_SYMBOL(bio_alloc);
351
352static void bio_kmalloc_destructor(struct bio *bio)
353{
354	if (bio_integrity(bio))
355		bio_integrity_free(bio, fs_bio_set);
356	kfree(bio);
357}
358
359/**
360 * bio_kmalloc - allocate a bio for I/O using kmalloc()
361 * @gfp_mask:   the GFP_ mask given to the slab allocator
362 * @nr_iovecs:	number of iovecs to pre-allocate
363 *
364 * Description:
365 *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
366 *   %__GFP_WAIT, the allocation is guaranteed to succeed.
367 *
368 **/
369struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
370{
371	struct bio *bio;
372
373	if (nr_iovecs > UIO_MAXIOV)
374		return NULL;
375
376	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
377		      gfp_mask);
378	if (unlikely(!bio))
379		return NULL;
380
381	bio_init(bio);
382	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
383	bio->bi_max_vecs = nr_iovecs;
384	bio->bi_io_vec = bio->bi_inline_vecs;
385	bio->bi_destructor = bio_kmalloc_destructor;
386
387	return bio;
388}
389EXPORT_SYMBOL(bio_kmalloc);
390
391void zero_fill_bio(struct bio *bio)
392{
393	unsigned long flags;
394	struct bio_vec *bv;
395	int i;
396
397	bio_for_each_segment(bv, bio, i) {
398		char *data = bvec_kmap_irq(bv, &flags);
399		memset(data, 0, bv->bv_len);
400		flush_dcache_page(bv->bv_page);
401		bvec_kunmap_irq(data, &flags);
402	}
403}
404EXPORT_SYMBOL(zero_fill_bio);
405
406/**
407 * bio_put - release a reference to a bio
408 * @bio:   bio to release reference to
409 *
410 * Description:
411 *   Put a reference to a &struct bio, either one you have gotten with
412 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
413 **/
414void bio_put(struct bio *bio)
415{
416	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
417
418	/*
419	 * last put frees it
420	 */
421	if (atomic_dec_and_test(&bio->bi_cnt)) {
422		bio->bi_next = NULL;
423		bio->bi_destructor(bio);
424	}
425}
426EXPORT_SYMBOL(bio_put);
427
428inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
429{
430	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
431		blk_recount_segments(q, bio);
432
433	return bio->bi_phys_segments;
434}
435EXPORT_SYMBOL(bio_phys_segments);
436
437/**
438 * 	__bio_clone	-	clone a bio
439 * 	@bio: destination bio
440 * 	@bio_src: bio to clone
441 *
442 *	Clone a &bio. Caller will own the returned bio, but not
443 *	the actual data it points to. Reference count of returned
444 * 	bio will be one.
445 */
446void __bio_clone(struct bio *bio, struct bio *bio_src)
447{
448	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
449		bio_src->bi_max_vecs * sizeof(struct bio_vec));
450
451	/*
452	 * most users will be overriding ->bi_bdev with a new target,
453	 * so we don't set nor calculate new physical/hw segment counts here
454	 */
455	bio->bi_sector = bio_src->bi_sector;
456	bio->bi_bdev = bio_src->bi_bdev;
457	bio->bi_flags |= 1 << BIO_CLONED;
458	bio->bi_rw = bio_src->bi_rw;
459	bio->bi_vcnt = bio_src->bi_vcnt;
460	bio->bi_size = bio_src->bi_size;
461	bio->bi_idx = bio_src->bi_idx;
462}
463EXPORT_SYMBOL(__bio_clone);
464
465/**
466 *	bio_clone	-	clone a bio
467 *	@bio: bio to clone
468 *	@gfp_mask: allocation priority
469 *
470 * 	Like __bio_clone, only also allocates the returned bio
471 */
472struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
473{
474	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
475
476	if (!b)
477		return NULL;
478
479	b->bi_destructor = bio_fs_destructor;
480	__bio_clone(b, bio);
481
482	if (bio_integrity(bio)) {
483		int ret;
484
485		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
486
487		if (ret < 0) {
488			bio_put(b);
489			return NULL;
490		}
491	}
492
493	return b;
494}
495EXPORT_SYMBOL(bio_clone);
496
497/**
498 *	bio_get_nr_vecs		- return approx number of vecs
499 *	@bdev:  I/O target
500 *
501 *	Return the approximate number of pages we can send to this target.
502 *	There's no guarantee that you will be able to fit this number of pages
503 *	into a bio, it does not account for dynamic restrictions that vary
504 *	on offset.
505 */
506int bio_get_nr_vecs(struct block_device *bdev)
507{
508	struct request_queue *q = bdev_get_queue(bdev);
509	int nr_pages;
510
511	nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
512	if (nr_pages > queue_max_segments(q))
513		nr_pages = queue_max_segments(q);
514
515	return nr_pages;
516}
517EXPORT_SYMBOL(bio_get_nr_vecs);
518
519static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
520			  *page, unsigned int len, unsigned int offset,
521			  unsigned short max_sectors)
522{
523	int retried_segments = 0;
524	struct bio_vec *bvec;
525
526	/*
527	 * cloned bio must not modify vec list
528	 */
529	if (unlikely(bio_flagged(bio, BIO_CLONED)))
530		return 0;
531
532	if (((bio->bi_size + len) >> 9) > max_sectors)
533		return 0;
534
535	/*
536	 * For filesystems with a blocksize smaller than the pagesize
537	 * we will often be called with the same page as last time and
538	 * a consecutive offset.  Optimize this special case.
539	 */
540	if (bio->bi_vcnt > 0) {
541		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
542
543		if (page == prev->bv_page &&
544		    offset == prev->bv_offset + prev->bv_len) {
545			unsigned int prev_bv_len = prev->bv_len;
546			prev->bv_len += len;
547
548			if (q->merge_bvec_fn) {
549				struct bvec_merge_data bvm = {
550					/* prev_bvec is already charged in
551					   bi_size, discharge it in order to
552					   simulate merging updated prev_bvec
553					   as new bvec. */
554					.bi_bdev = bio->bi_bdev,
555					.bi_sector = bio->bi_sector,
556					.bi_size = bio->bi_size - prev_bv_len,
557					.bi_rw = bio->bi_rw,
558				};
559
560				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
561					prev->bv_len -= len;
562					return 0;
563				}
564			}
565
566			goto done;
567		}
568	}
569
570	if (bio->bi_vcnt >= bio->bi_max_vecs)
571		return 0;
572
573	/*
574	 * we might lose a segment or two here, but rather that than
575	 * make this too complex.
576	 */
577
578	while (bio->bi_phys_segments >= queue_max_segments(q)) {
579
580		if (retried_segments)
581			return 0;
582
583		retried_segments = 1;
584		blk_recount_segments(q, bio);
585	}
586
587	/*
588	 * setup the new entry, we might clear it again later if we
589	 * cannot add the page
590	 */
591	bvec = &bio->bi_io_vec[bio->bi_vcnt];
592	bvec->bv_page = page;
593	bvec->bv_len = len;
594	bvec->bv_offset = offset;
595
596	/*
597	 * if queue has other restrictions (eg varying max sector size
598	 * depending on offset), it can specify a merge_bvec_fn in the
599	 * queue to get further control
600	 */
601	if (q->merge_bvec_fn) {
602		struct bvec_merge_data bvm = {
603			.bi_bdev = bio->bi_bdev,
604			.bi_sector = bio->bi_sector,
605			.bi_size = bio->bi_size,
606			.bi_rw = bio->bi_rw,
607		};
608
609		/*
610		 * merge_bvec_fn() returns number of bytes it can accept
611		 * at this offset
612		 */
613		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
614			bvec->bv_page = NULL;
615			bvec->bv_len = 0;
616			bvec->bv_offset = 0;
617			return 0;
618		}
619	}
620
621	/* If we may be able to merge these biovecs, force a recount */
622	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
623		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624
625	bio->bi_vcnt++;
626	bio->bi_phys_segments++;
627 done:
628	bio->bi_size += len;
629	return len;
630}
631
632/**
633 *	bio_add_pc_page	-	attempt to add page to bio
634 *	@q: the target queue
635 *	@bio: destination bio
636 *	@page: page to add
637 *	@len: vec entry length
638 *	@offset: vec entry offset
639 *
640 *	Attempt to add a page to the bio_vec maplist. This can fail for a
641 *	number of reasons, such as the bio being full or target block
642 *	device limitations. The target block device must allow bio's
643 *      smaller than PAGE_SIZE, so it is always possible to add a single
644 *      page to an empty bio. This should only be used by REQ_PC bios.
645 */
646int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
647		    unsigned int len, unsigned int offset)
648{
649	return __bio_add_page(q, bio, page, len, offset,
650			      queue_max_hw_sectors(q));
651}
652EXPORT_SYMBOL(bio_add_pc_page);
653
654/**
655 *	bio_add_page	-	attempt to add page to bio
656 *	@bio: destination bio
657 *	@page: page to add
658 *	@len: vec entry length
659 *	@offset: vec entry offset
660 *
661 *	Attempt to add a page to the bio_vec maplist. This can fail for a
662 *	number of reasons, such as the bio being full or target block
663 *	device limitations. The target block device must allow bio's
664 *      smaller than PAGE_SIZE, so it is always possible to add a single
665 *      page to an empty bio.
666 */
667int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668		 unsigned int offset)
669{
670	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
671	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
672}
673EXPORT_SYMBOL(bio_add_page);
674
675struct bio_map_data {
676	struct bio_vec *iovecs;
677	struct sg_iovec *sgvecs;
678	int nr_sgvecs;
679	int is_our_pages;
680};
681
682static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
683			     struct sg_iovec *iov, int iov_count,
684			     int is_our_pages)
685{
686	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
687	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688	bmd->nr_sgvecs = iov_count;
689	bmd->is_our_pages = is_our_pages;
690	bio->bi_private = bmd;
691}
692
693static void bio_free_map_data(struct bio_map_data *bmd)
694{
695	kfree(bmd->iovecs);
696	kfree(bmd->sgvecs);
697	kfree(bmd);
698}
699
700static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
701					       gfp_t gfp_mask)
702{
703	struct bio_map_data *bmd;
704
705	if (iov_count > UIO_MAXIOV)
706		return NULL;
707
708	bmd = kmalloc(sizeof(*bmd), gfp_mask);
709	if (!bmd)
710		return NULL;
711
712	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
713	if (!bmd->iovecs) {
714		kfree(bmd);
715		return NULL;
716	}
717
718	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
719	if (bmd->sgvecs)
720		return bmd;
721
722	kfree(bmd->iovecs);
723	kfree(bmd);
724	return NULL;
725}
726
727static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
728			  struct sg_iovec *iov, int iov_count,
729			  int to_user, int from_user, int do_free_page)
730{
731	int ret = 0, i;
732	struct bio_vec *bvec;
733	int iov_idx = 0;
734	unsigned int iov_off = 0;
735
736	__bio_for_each_segment(bvec, bio, i, 0) {
737		char *bv_addr = page_address(bvec->bv_page);
738		unsigned int bv_len = iovecs[i].bv_len;
739
740		while (bv_len && iov_idx < iov_count) {
741			unsigned int bytes;
742			char __user *iov_addr;
743
744			bytes = min_t(unsigned int,
745				      iov[iov_idx].iov_len - iov_off, bv_len);
746			iov_addr = iov[iov_idx].iov_base + iov_off;
747
748			if (!ret) {
749				if (to_user)
750					ret = copy_to_user(iov_addr, bv_addr,
751							   bytes);
752
753				if (from_user)
754					ret = copy_from_user(bv_addr, iov_addr,
755							     bytes);
756
757				if (ret)
758					ret = -EFAULT;
759			}
760
761			bv_len -= bytes;
762			bv_addr += bytes;
763			iov_addr += bytes;
764			iov_off += bytes;
765
766			if (iov[iov_idx].iov_len == iov_off) {
767				iov_idx++;
768				iov_off = 0;
769			}
770		}
771
772		if (do_free_page)
773			__free_page(bvec->bv_page);
774	}
775
776	return ret;
777}
778
779/**
780 *	bio_uncopy_user	-	finish previously mapped bio
781 *	@bio: bio being terminated
782 *
783 *	Free pages allocated from bio_copy_user() and write back data
784 *	to user space in case of a read.
785 */
786int bio_uncopy_user(struct bio *bio)
787{
788	struct bio_map_data *bmd = bio->bi_private;
789	int ret = 0;
790
791	if (!bio_flagged(bio, BIO_NULL_MAPPED))
792		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
793				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
794				     0, bmd->is_our_pages);
795	bio_free_map_data(bmd);
796	bio_put(bio);
797	return ret;
798}
799EXPORT_SYMBOL(bio_uncopy_user);
800
801/**
802 *	bio_copy_user_iov	-	copy user data to bio
803 *	@q: destination block queue
804 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
805 *	@iov:	the iovec.
806 *	@iov_count: number of elements in the iovec
807 *	@write_to_vm: bool indicating writing to pages or not
808 *	@gfp_mask: memory allocation flags
809 *
810 *	Prepares and returns a bio for indirect user io, bouncing data
811 *	to/from kernel pages as necessary. Must be paired with
812 *	call bio_uncopy_user() on io completion.
813 */
814struct bio *bio_copy_user_iov(struct request_queue *q,
815			      struct rq_map_data *map_data,
816			      struct sg_iovec *iov, int iov_count,
817			      int write_to_vm, gfp_t gfp_mask)
818{
819	struct bio_map_data *bmd;
820	struct bio_vec *bvec;
821	struct page *page;
822	struct bio *bio;
823	int i, ret;
824	int nr_pages = 0;
825	unsigned int len = 0;
826	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
827
828	for (i = 0; i < iov_count; i++) {
829		unsigned long uaddr;
830		unsigned long end;
831		unsigned long start;
832
833		uaddr = (unsigned long)iov[i].iov_base;
834		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
835		start = uaddr >> PAGE_SHIFT;
836
837		/*
838		 * Overflow, abort
839		 */
840		if (end < start)
841			return ERR_PTR(-EINVAL);
842
843		nr_pages += end - start;
844		len += iov[i].iov_len;
845	}
846
847	if (offset)
848		nr_pages++;
849
850	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
851	if (!bmd)
852		return ERR_PTR(-ENOMEM);
853
854	ret = -ENOMEM;
855	bio = bio_kmalloc(gfp_mask, nr_pages);
856	if (!bio)
857		goto out_bmd;
858
859	if (!write_to_vm)
860		bio->bi_rw |= REQ_WRITE;
861
862	ret = 0;
863
864	if (map_data) {
865		nr_pages = 1 << map_data->page_order;
866		i = map_data->offset / PAGE_SIZE;
867	}
868	while (len) {
869		unsigned int bytes = PAGE_SIZE;
870
871		bytes -= offset;
872
873		if (bytes > len)
874			bytes = len;
875
876		if (map_data) {
877			if (i == map_data->nr_entries * nr_pages) {
878				ret = -ENOMEM;
879				break;
880			}
881
882			page = map_data->pages[i / nr_pages];
883			page += (i % nr_pages);
884
885			i++;
886		} else {
887			page = alloc_page(q->bounce_gfp | gfp_mask);
888			if (!page) {
889				ret = -ENOMEM;
890				break;
891			}
892		}
893
894		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
895			break;
896
897		len -= bytes;
898		offset = 0;
899	}
900
901	if (ret)
902		goto cleanup;
903
904	/*
905	 * success
906	 */
907	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
908	    (map_data && map_data->from_user)) {
909		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
910		if (ret)
911			goto cleanup;
912	}
913
914	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
915	return bio;
916cleanup:
917	if (!map_data)
918		bio_for_each_segment(bvec, bio, i)
919			__free_page(bvec->bv_page);
920
921	bio_put(bio);
922out_bmd:
923	bio_free_map_data(bmd);
924	return ERR_PTR(ret);
925}
926
927/**
928 *	bio_copy_user	-	copy user data to bio
929 *	@q: destination block queue
930 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
931 *	@uaddr: start of user address
932 *	@len: length in bytes
933 *	@write_to_vm: bool indicating writing to pages or not
934 *	@gfp_mask: memory allocation flags
935 *
936 *	Prepares and returns a bio for indirect user io, bouncing data
937 *	to/from kernel pages as necessary. Must be paired with
938 *	call bio_uncopy_user() on io completion.
939 */
940struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
941			  unsigned long uaddr, unsigned int len,
942			  int write_to_vm, gfp_t gfp_mask)
943{
944	struct sg_iovec iov;
945
946	iov.iov_base = (void __user *)uaddr;
947	iov.iov_len = len;
948
949	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
950}
951EXPORT_SYMBOL(bio_copy_user);
952
953static struct bio *__bio_map_user_iov(struct request_queue *q,
954				      struct block_device *bdev,
955				      struct sg_iovec *iov, int iov_count,
956				      int write_to_vm, gfp_t gfp_mask)
957{
958	int i, j;
959	int nr_pages = 0;
960	struct page **pages;
961	struct bio *bio;
962	int cur_page = 0;
963	int ret, offset;
964
965	for (i = 0; i < iov_count; i++) {
966		unsigned long uaddr = (unsigned long)iov[i].iov_base;
967		unsigned long len = iov[i].iov_len;
968		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
969		unsigned long start = uaddr >> PAGE_SHIFT;
970
971		/*
972		 * Overflow, abort
973		 */
974		if (end < start)
975			return ERR_PTR(-EINVAL);
976
977		nr_pages += end - start;
978		/*
979		 * buffer must be aligned to at least hardsector size for now
980		 */
981		if (uaddr & queue_dma_alignment(q))
982			return ERR_PTR(-EINVAL);
983	}
984
985	if (!nr_pages)
986		return ERR_PTR(-EINVAL);
987
988	bio = bio_kmalloc(gfp_mask, nr_pages);
989	if (!bio)
990		return ERR_PTR(-ENOMEM);
991
992	ret = -ENOMEM;
993	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
994	if (!pages)
995		goto out;
996
997	for (i = 0; i < iov_count; i++) {
998		unsigned long uaddr = (unsigned long)iov[i].iov_base;
999		unsigned long len = iov[i].iov_len;
1000		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1001		unsigned long start = uaddr >> PAGE_SHIFT;
1002		const int local_nr_pages = end - start;
1003		const int page_limit = cur_page + local_nr_pages;
1004
1005		ret = get_user_pages_fast(uaddr, local_nr_pages,
1006				write_to_vm, &pages[cur_page]);
1007		if (ret < local_nr_pages) {
1008			ret = -EFAULT;
1009			goto out_unmap;
1010		}
1011
1012		offset = uaddr & ~PAGE_MASK;
1013		for (j = cur_page; j < page_limit; j++) {
1014			unsigned int bytes = PAGE_SIZE - offset;
1015
1016			if (len <= 0)
1017				break;
1018
1019			if (bytes > len)
1020				bytes = len;
1021
1022			/*
1023			 * sorry...
1024			 */
1025			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1026					    bytes)
1027				break;
1028
1029			len -= bytes;
1030			offset = 0;
1031		}
1032
1033		cur_page = j;
1034		/*
1035		 * release the pages we didn't map into the bio, if any
1036		 */
1037		while (j < page_limit)
1038			page_cache_release(pages[j++]);
1039	}
1040
1041	kfree(pages);
1042
1043	/*
1044	 * set data direction, and check if mapped pages need bouncing
1045	 */
1046	if (!write_to_vm)
1047		bio->bi_rw |= REQ_WRITE;
1048
1049	bio->bi_bdev = bdev;
1050	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1051	return bio;
1052
1053 out_unmap:
1054	for (i = 0; i < nr_pages; i++) {
1055		if(!pages[i])
1056			break;
1057		page_cache_release(pages[i]);
1058	}
1059 out:
1060	kfree(pages);
1061	bio_put(bio);
1062	return ERR_PTR(ret);
1063}
1064
1065/**
1066 *	bio_map_user	-	map user address into bio
1067 *	@q: the struct request_queue for the bio
1068 *	@bdev: destination block device
1069 *	@uaddr: start of user address
1070 *	@len: length in bytes
1071 *	@write_to_vm: bool indicating writing to pages or not
1072 *	@gfp_mask: memory allocation flags
1073 *
1074 *	Map the user space address into a bio suitable for io to a block
1075 *	device. Returns an error pointer in case of error.
1076 */
1077struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1078			 unsigned long uaddr, unsigned int len, int write_to_vm,
1079			 gfp_t gfp_mask)
1080{
1081	struct sg_iovec iov;
1082
1083	iov.iov_base = (void __user *)uaddr;
1084	iov.iov_len = len;
1085
1086	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1087}
1088EXPORT_SYMBOL(bio_map_user);
1089
1090/**
1091 *	bio_map_user_iov - map user sg_iovec table into bio
1092 *	@q: the struct request_queue for the bio
1093 *	@bdev: destination block device
1094 *	@iov:	the iovec.
1095 *	@iov_count: number of elements in the iovec
1096 *	@write_to_vm: bool indicating writing to pages or not
1097 *	@gfp_mask: memory allocation flags
1098 *
1099 *	Map the user space address into a bio suitable for io to a block
1100 *	device. Returns an error pointer in case of error.
1101 */
1102struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1103			     struct sg_iovec *iov, int iov_count,
1104			     int write_to_vm, gfp_t gfp_mask)
1105{
1106	struct bio *bio;
1107
1108	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1109				 gfp_mask);
1110	if (IS_ERR(bio))
1111		return bio;
1112
1113	/*
1114	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1115	 * it would normally disappear when its bi_end_io is run.
1116	 * however, we need it for the unmap, so grab an extra
1117	 * reference to it
1118	 */
1119	bio_get(bio);
1120
1121	return bio;
1122}
1123
1124static void __bio_unmap_user(struct bio *bio)
1125{
1126	struct bio_vec *bvec;
1127	int i;
1128
1129	/*
1130	 * make sure we dirty pages we wrote to
1131	 */
1132	__bio_for_each_segment(bvec, bio, i, 0) {
1133		if (bio_data_dir(bio) == READ)
1134			set_page_dirty_lock(bvec->bv_page);
1135
1136		page_cache_release(bvec->bv_page);
1137	}
1138
1139	bio_put(bio);
1140}
1141
1142/**
1143 *	bio_unmap_user	-	unmap a bio
1144 *	@bio:		the bio being unmapped
1145 *
1146 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1147 *	a process context.
1148 *
1149 *	bio_unmap_user() may sleep.
1150 */
1151void bio_unmap_user(struct bio *bio)
1152{
1153	__bio_unmap_user(bio);
1154	bio_put(bio);
1155}
1156EXPORT_SYMBOL(bio_unmap_user);
1157
1158static void bio_map_kern_endio(struct bio *bio, int err)
1159{
1160	bio_put(bio);
1161}
1162
1163static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1164				  unsigned int len, gfp_t gfp_mask)
1165{
1166	unsigned long kaddr = (unsigned long)data;
1167	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1168	unsigned long start = kaddr >> PAGE_SHIFT;
1169	const int nr_pages = end - start;
1170	int offset, i;
1171	struct bio *bio;
1172
1173	bio = bio_kmalloc(gfp_mask, nr_pages);
1174	if (!bio)
1175		return ERR_PTR(-ENOMEM);
1176
1177	offset = offset_in_page(kaddr);
1178	for (i = 0; i < nr_pages; i++) {
1179		unsigned int bytes = PAGE_SIZE - offset;
1180
1181		if (len <= 0)
1182			break;
1183
1184		if (bytes > len)
1185			bytes = len;
1186
1187		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1188				    offset) < bytes)
1189			break;
1190
1191		data += bytes;
1192		len -= bytes;
1193		offset = 0;
1194	}
1195
1196	bio->bi_end_io = bio_map_kern_endio;
1197	return bio;
1198}
1199
1200/**
1201 *	bio_map_kern	-	map kernel address into bio
1202 *	@q: the struct request_queue for the bio
1203 *	@data: pointer to buffer to map
1204 *	@len: length in bytes
1205 *	@gfp_mask: allocation flags for bio allocation
1206 *
1207 *	Map the kernel address into a bio suitable for io to a block
1208 *	device. Returns an error pointer in case of error.
1209 */
1210struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1211			 gfp_t gfp_mask)
1212{
1213	struct bio *bio;
1214
1215	bio = __bio_map_kern(q, data, len, gfp_mask);
1216	if (IS_ERR(bio))
1217		return bio;
1218
1219	if (bio->bi_size == len)
1220		return bio;
1221
1222	/*
1223	 * Don't support partial mappings.
1224	 */
1225	bio_put(bio);
1226	return ERR_PTR(-EINVAL);
1227}
1228EXPORT_SYMBOL(bio_map_kern);
1229
1230static void bio_copy_kern_endio(struct bio *bio, int err)
1231{
1232	struct bio_vec *bvec;
1233	const int read = bio_data_dir(bio) == READ;
1234	struct bio_map_data *bmd = bio->bi_private;
1235	int i;
1236	char *p = bmd->sgvecs[0].iov_base;
1237
1238	__bio_for_each_segment(bvec, bio, i, 0) {
1239		char *addr = page_address(bvec->bv_page);
1240		int len = bmd->iovecs[i].bv_len;
1241
1242		if (read)
1243			memcpy(p, addr, len);
1244
1245		__free_page(bvec->bv_page);
1246		p += len;
1247	}
1248
1249	bio_free_map_data(bmd);
1250	bio_put(bio);
1251}
1252
1253/**
1254 *	bio_copy_kern	-	copy kernel address into bio
1255 *	@q: the struct request_queue for the bio
1256 *	@data: pointer to buffer to copy
1257 *	@len: length in bytes
1258 *	@gfp_mask: allocation flags for bio and page allocation
1259 *	@reading: data direction is READ
1260 *
1261 *	copy the kernel address into a bio suitable for io to a block
1262 *	device. Returns an error pointer in case of error.
1263 */
1264struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1265			  gfp_t gfp_mask, int reading)
1266{
1267	struct bio *bio;
1268	struct bio_vec *bvec;
1269	int i;
1270
1271	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1272	if (IS_ERR(bio))
1273		return bio;
1274
1275	if (!reading) {
1276		void *p = data;
1277
1278		bio_for_each_segment(bvec, bio, i) {
1279			char *addr = page_address(bvec->bv_page);
1280
1281			memcpy(addr, p, bvec->bv_len);
1282			p += bvec->bv_len;
1283		}
1284	}
1285
1286	bio->bi_end_io = bio_copy_kern_endio;
1287
1288	return bio;
1289}
1290EXPORT_SYMBOL(bio_copy_kern);
1291
1292/*
1293 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1294 * for performing direct-IO in BIOs.
1295 *
1296 * The problem is that we cannot run set_page_dirty() from interrupt context
1297 * because the required locks are not interrupt-safe.  So what we can do is to
1298 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1299 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1300 * in process context.
1301 *
1302 * We special-case compound pages here: normally this means reads into hugetlb
1303 * pages.  The logic in here doesn't really work right for compound pages
1304 * because the VM does not uniformly chase down the head page in all cases.
1305 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1306 * handle them at all.  So we skip compound pages here at an early stage.
1307 *
1308 * Note that this code is very hard to test under normal circumstances because
1309 * direct-io pins the pages with get_user_pages().  This makes
1310 * is_page_cache_freeable return false, and the VM will not clean the pages.
1311 * But other code (eg, pdflush) could clean the pages if they are mapped
1312 * pagecache.
1313 *
1314 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1315 * deferred bio dirtying paths.
1316 */
1317
1318/*
1319 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1320 */
1321void bio_set_pages_dirty(struct bio *bio)
1322{
1323	struct bio_vec *bvec = bio->bi_io_vec;
1324	int i;
1325
1326	for (i = 0; i < bio->bi_vcnt; i++) {
1327		struct page *page = bvec[i].bv_page;
1328
1329		if (page && !PageCompound(page))
1330			set_page_dirty_lock(page);
1331	}
1332}
1333
1334static void bio_release_pages(struct bio *bio)
1335{
1336	struct bio_vec *bvec = bio->bi_io_vec;
1337	int i;
1338
1339	for (i = 0; i < bio->bi_vcnt; i++) {
1340		struct page *page = bvec[i].bv_page;
1341
1342		if (page)
1343			put_page(page);
1344	}
1345}
1346
1347/*
1348 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1349 * If they are, then fine.  If, however, some pages are clean then they must
1350 * have been written out during the direct-IO read.  So we take another ref on
1351 * the BIO and the offending pages and re-dirty the pages in process context.
1352 *
1353 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1354 * here on.  It will run one page_cache_release() against each page and will
1355 * run one bio_put() against the BIO.
1356 */
1357
1358static void bio_dirty_fn(struct work_struct *work);
1359
1360static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1361static DEFINE_SPINLOCK(bio_dirty_lock);
1362static struct bio *bio_dirty_list;
1363
1364/*
1365 * This runs in process context
1366 */
1367static void bio_dirty_fn(struct work_struct *work)
1368{
1369	unsigned long flags;
1370	struct bio *bio;
1371
1372	spin_lock_irqsave(&bio_dirty_lock, flags);
1373	bio = bio_dirty_list;
1374	bio_dirty_list = NULL;
1375	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1376
1377	while (bio) {
1378		struct bio *next = bio->bi_private;
1379
1380		bio_set_pages_dirty(bio);
1381		bio_release_pages(bio);
1382		bio_put(bio);
1383		bio = next;
1384	}
1385}
1386
1387void bio_check_pages_dirty(struct bio *bio)
1388{
1389	struct bio_vec *bvec = bio->bi_io_vec;
1390	int nr_clean_pages = 0;
1391	int i;
1392
1393	for (i = 0; i < bio->bi_vcnt; i++) {
1394		struct page *page = bvec[i].bv_page;
1395
1396		if (PageDirty(page) || PageCompound(page)) {
1397			page_cache_release(page);
1398			bvec[i].bv_page = NULL;
1399		} else {
1400			nr_clean_pages++;
1401		}
1402	}
1403
1404	if (nr_clean_pages) {
1405		unsigned long flags;
1406
1407		spin_lock_irqsave(&bio_dirty_lock, flags);
1408		bio->bi_private = bio_dirty_list;
1409		bio_dirty_list = bio;
1410		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1411		schedule_work(&bio_dirty_work);
1412	} else {
1413		bio_put(bio);
1414	}
1415}
1416
1417#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1418void bio_flush_dcache_pages(struct bio *bi)
1419{
1420	int i;
1421	struct bio_vec *bvec;
1422
1423	bio_for_each_segment(bvec, bi, i)
1424		flush_dcache_page(bvec->bv_page);
1425}
1426EXPORT_SYMBOL(bio_flush_dcache_pages);
1427#endif
1428
1429/**
1430 * bio_endio - end I/O on a bio
1431 * @bio:	bio
1432 * @error:	error, if any
1433 *
1434 * Description:
1435 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1436 *   preferred way to end I/O on a bio, it takes care of clearing
1437 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1438 *   established -Exxxx (-EIO, for instance) error values in case
1439 *   something went wrong. Noone should call bi_end_io() directly on a
1440 *   bio unless they own it and thus know that it has an end_io
1441 *   function.
1442 **/
1443void bio_endio(struct bio *bio, int error)
1444{
1445	if (error)
1446		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1447	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1448		error = -EIO;
1449
1450	if (bio->bi_end_io)
1451		bio->bi_end_io(bio, error);
1452}
1453EXPORT_SYMBOL(bio_endio);
1454
1455void bio_pair_release(struct bio_pair *bp)
1456{
1457	if (atomic_dec_and_test(&bp->cnt)) {
1458		struct bio *master = bp->bio1.bi_private;
1459
1460		bio_endio(master, bp->error);
1461		mempool_free(bp, bp->bio2.bi_private);
1462	}
1463}
1464EXPORT_SYMBOL(bio_pair_release);
1465
1466static void bio_pair_end_1(struct bio *bi, int err)
1467{
1468	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1469
1470	if (err)
1471		bp->error = err;
1472
1473	bio_pair_release(bp);
1474}
1475
1476static void bio_pair_end_2(struct bio *bi, int err)
1477{
1478	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1479
1480	if (err)
1481		bp->error = err;
1482
1483	bio_pair_release(bp);
1484}
1485
1486/*
1487 * split a bio - only worry about a bio with a single page in its iovec
1488 */
1489struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1490{
1491	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1492
1493	if (!bp)
1494		return bp;
1495
1496	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1497				bi->bi_sector + first_sectors);
1498
1499	BUG_ON(bi->bi_vcnt != 1);
1500	BUG_ON(bi->bi_idx != 0);
1501	atomic_set(&bp->cnt, 3);
1502	bp->error = 0;
1503	bp->bio1 = *bi;
1504	bp->bio2 = *bi;
1505	bp->bio2.bi_sector += first_sectors;
1506	bp->bio2.bi_size -= first_sectors << 9;
1507	bp->bio1.bi_size = first_sectors << 9;
1508
1509	bp->bv1 = bi->bi_io_vec[0];
1510	bp->bv2 = bi->bi_io_vec[0];
1511	bp->bv2.bv_offset += first_sectors << 9;
1512	bp->bv2.bv_len -= first_sectors << 9;
1513	bp->bv1.bv_len = first_sectors << 9;
1514
1515	bp->bio1.bi_io_vec = &bp->bv1;
1516	bp->bio2.bi_io_vec = &bp->bv2;
1517
1518	bp->bio1.bi_max_vecs = 1;
1519	bp->bio2.bi_max_vecs = 1;
1520
1521	bp->bio1.bi_end_io = bio_pair_end_1;
1522	bp->bio2.bi_end_io = bio_pair_end_2;
1523
1524	bp->bio1.bi_private = bi;
1525	bp->bio2.bi_private = bio_split_pool;
1526
1527	if (bio_integrity(bi))
1528		bio_integrity_split(bi, bp, first_sectors);
1529
1530	return bp;
1531}
1532EXPORT_SYMBOL(bio_split);
1533
1534/**
1535 *      bio_sector_offset - Find hardware sector offset in bio
1536 *      @bio:           bio to inspect
1537 *      @index:         bio_vec index
1538 *      @offset:        offset in bv_page
1539 *
1540 *      Return the number of hardware sectors between beginning of bio
1541 *      and an end point indicated by a bio_vec index and an offset
1542 *      within that vector's page.
1543 */
1544sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1545			   unsigned int offset)
1546{
1547	unsigned int sector_sz;
1548	struct bio_vec *bv;
1549	sector_t sectors;
1550	int i;
1551
1552	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1553	sectors = 0;
1554
1555	if (index >= bio->bi_idx)
1556		index = bio->bi_vcnt - 1;
1557
1558	__bio_for_each_segment(bv, bio, i, 0) {
1559		if (i == index) {
1560			if (offset > bv->bv_offset)
1561				sectors += (offset - bv->bv_offset) / sector_sz;
1562			break;
1563		}
1564
1565		sectors += bv->bv_len / sector_sz;
1566	}
1567
1568	return sectors;
1569}
1570EXPORT_SYMBOL(bio_sector_offset);
1571
1572/*
1573 * create memory pools for biovec's in a bio_set.
1574 * use the global biovec slabs created for general use.
1575 */
1576static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1577{
1578	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1579
1580	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1581	if (!bs->bvec_pool)
1582		return -ENOMEM;
1583
1584	return 0;
1585}
1586
1587static void biovec_free_pools(struct bio_set *bs)
1588{
1589	mempool_destroy(bs->bvec_pool);
1590}
1591
1592void bioset_free(struct bio_set *bs)
1593{
1594	if (bs->bio_pool)
1595		mempool_destroy(bs->bio_pool);
1596
1597	bioset_integrity_free(bs);
1598	biovec_free_pools(bs);
1599	bio_put_slab(bs);
1600
1601	kfree(bs);
1602}
1603EXPORT_SYMBOL(bioset_free);
1604
1605/**
1606 * bioset_create  - Create a bio_set
1607 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1608 * @front_pad:	Number of bytes to allocate in front of the returned bio
1609 *
1610 * Description:
1611 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1612 *    to ask for a number of bytes to be allocated in front of the bio.
1613 *    Front pad allocation is useful for embedding the bio inside
1614 *    another structure, to avoid allocating extra data to go with the bio.
1615 *    Note that the bio must be embedded at the END of that structure always,
1616 *    or things will break badly.
1617 */
1618struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1619{
1620	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1621	struct bio_set *bs;
1622
1623	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1624	if (!bs)
1625		return NULL;
1626
1627	bs->front_pad = front_pad;
1628
1629	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1630	if (!bs->bio_slab) {
1631		kfree(bs);
1632		return NULL;
1633	}
1634
1635	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1636	if (!bs->bio_pool)
1637		goto bad;
1638
1639	if (bioset_integrity_create(bs, pool_size))
1640		goto bad;
1641
1642	if (!biovec_create_pools(bs, pool_size))
1643		return bs;
1644
1645bad:
1646	bioset_free(bs);
1647	return NULL;
1648}
1649EXPORT_SYMBOL(bioset_create);
1650
1651static void __init biovec_init_slabs(void)
1652{
1653	int i;
1654
1655	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1656		int size;
1657		struct biovec_slab *bvs = bvec_slabs + i;
1658
1659#ifndef CONFIG_BLK_DEV_INTEGRITY
1660		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1661			bvs->slab = NULL;
1662			continue;
1663		}
1664#endif
1665
1666		size = bvs->nr_vecs * sizeof(struct bio_vec);
1667		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1668                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1669	}
1670}
1671
1672static int __init init_bio(void)
1673{
1674	bio_slab_max = 2;
1675	bio_slab_nr = 0;
1676	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1677	if (!bio_slabs)
1678		panic("bio: can't allocate bios\n");
1679
1680	bio_integrity_init();
1681	biovec_init_slabs();
1682
1683	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1684	if (!fs_bio_set)
1685		panic("bio: can't allocate bios\n");
1686
1687	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1688						     sizeof(struct bio_pair));
1689	if (!bio_split_pool)
1690		panic("bio: can't create split pool\n");
1691
1692	return 0;
1693}
1694subsys_initcall(init_bio);
1695