• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/platform/x86/
1/*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 *	Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24/*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point).  This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware.  It also provides a few tunables to control behavior.  Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of tempurature.  If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp.  Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware.  The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 *   - dual MCP configs
50 *
51 * TODO:
52 *   - handle CPU hotplug
53 *   - provide turbo enable/disable api
54 *
55 * Related documents:
56 *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 *   - CDI 401376 - Ibex Peak EDS
58 *   - ref 26037, 26641 - IPS BIOS spec
59 *   - ref 26489 - Nehalem BIOS writer's guide
60 *   - ref 26921 - Ibex Peak BIOS Specification
61 */
62
63#include <linux/debugfs.h>
64#include <linux/delay.h>
65#include <linux/interrupt.h>
66#include <linux/kernel.h>
67#include <linux/kthread.h>
68#include <linux/module.h>
69#include <linux/pci.h>
70#include <linux/sched.h>
71#include <linux/seq_file.h>
72#include <linux/string.h>
73#include <linux/tick.h>
74#include <linux/timer.h>
75#include <drm/i915_drm.h>
76#include <asm/msr.h>
77#include <asm/processor.h>
78#include "intel_ips.h"
79
80#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81
82/*
83 * Package level MSRs for monitor/control
84 */
85#define PLATFORM_INFO	0xce
86#define   PLATFORM_TDP		(1<<29)
87#define   PLATFORM_RATIO	(1<<28)
88
89#define IA32_MISC_ENABLE	0x1a0
90#define   IA32_MISC_TURBO_EN	(1ULL<<38)
91
92#define TURBO_POWER_CURRENT_LIMIT	0x1ac
93#define   TURBO_TDC_OVR_EN	(1UL<<31)
94#define   TURBO_TDC_MASK	(0x000000007fff0000UL)
95#define   TURBO_TDC_SHIFT	(16)
96#define   TURBO_TDP_OVR_EN	(1UL<<15)
97#define   TURBO_TDP_MASK	(0x0000000000003fffUL)
98
99/*
100 * Core/thread MSRs for monitoring
101 */
102#define IA32_PERF_CTL		0x199
103#define   IA32_PERF_TURBO_DIS	(1ULL<<32)
104
105/*
106 * Thermal PCI device regs
107 */
108#define THM_CFG_TBAR	0x10
109#define THM_CFG_TBAR_HI	0x14
110
111#define THM_TSIU	0x00
112#define THM_TSE		0x01
113#define   TSE_EN	0xb8
114#define THM_TSS		0x02
115#define THM_TSTR	0x03
116#define THM_TSTTP	0x04
117#define THM_TSCO	0x08
118#define THM_TSES	0x0c
119#define THM_TSGPEN	0x0d
120#define   TSGPEN_HOT_LOHI	(1<<1)
121#define   TSGPEN_CRIT_LOHI	(1<<2)
122#define THM_TSPC	0x0e
123#define THM_PPEC	0x10
124#define THM_CTA		0x12
125#define THM_PTA		0x14
126#define   PTA_SLOPE_MASK	(0xff00)
127#define   PTA_SLOPE_SHIFT	8
128#define   PTA_OFFSET_MASK	(0x00ff)
129#define THM_MGTA	0x16
130#define   MGTA_SLOPE_MASK	(0xff00)
131#define   MGTA_SLOPE_SHIFT	8
132#define   MGTA_OFFSET_MASK	(0x00ff)
133#define THM_TRC		0x1a
134#define   TRC_CORE2_EN	(1<<15)
135#define   TRC_THM_EN	(1<<12)
136#define   TRC_C6_WAR	(1<<8)
137#define   TRC_CORE1_EN	(1<<7)
138#define   TRC_CORE_PWR	(1<<6)
139#define   TRC_PCH_EN	(1<<5)
140#define   TRC_MCH_EN	(1<<4)
141#define   TRC_DIMM4	(1<<3)
142#define   TRC_DIMM3	(1<<2)
143#define   TRC_DIMM2	(1<<1)
144#define   TRC_DIMM1	(1<<0)
145#define THM_TES		0x20
146#define THM_TEN		0x21
147#define   TEN_UPDATE_EN	1
148#define THM_PSC		0x24
149#define   PSC_NTG	(1<<0) /* No GFX turbo support */
150#define   PSC_NTPC	(1<<1) /* No CPU turbo support */
151#define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
152#define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
153#define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
154#define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
155#define   PSP_PBRT	(1<<4) /* BIOS run time support */
156#define THM_CTV1	0x30
157#define   CTV_TEMP_ERROR (1<<15)
158#define   CTV_TEMP_MASK	0x3f
159#define   CTV_
160#define THM_CTV2	0x32
161#define THM_CEC		0x34 /* undocumented power accumulator in joules */
162#define THM_AE		0x3f
163#define THM_HTS		0x50 /* 32 bits */
164#define   HTS_PCPL_MASK	(0x7fe00000)
165#define   HTS_PCPL_SHIFT 21
166#define   HTS_GPL_MASK  (0x001ff000)
167#define   HTS_GPL_SHIFT 12
168#define   HTS_PP_MASK	(0x00000c00)
169#define   HTS_PP_SHIFT  10
170#define   HTS_PP_DEF	0
171#define   HTS_PP_PROC	1
172#define   HTS_PP_BAL	2
173#define   HTS_PP_GFX	3
174#define   HTS_PCTD_DIS	(1<<9)
175#define   HTS_GTD_DIS	(1<<8)
176#define   HTS_PTL_MASK  (0x000000fe)
177#define   HTS_PTL_SHIFT 1
178#define   HTS_NVV	(1<<0)
179#define THM_HTSHI	0x54 /* 16 bits */
180#define   HTS2_PPL_MASK		(0x03ff)
181#define   HTS2_PRST_MASK	(0x3c00)
182#define   HTS2_PRST_SHIFT	10
183#define   HTS2_PRST_UNLOADED	0
184#define   HTS2_PRST_RUNNING	1
185#define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
186#define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
187#define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
188#define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
189#define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
190#define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
191#define THM_PTL		0x56
192#define THM_MGTV	0x58
193#define   TV_MASK	0x000000000000ff00
194#define   TV_SHIFT	8
195#define THM_PTV		0x60
196#define   PTV_MASK	0x00ff
197#define THM_MMGPC	0x64
198#define THM_MPPC	0x66
199#define THM_MPCPC	0x68
200#define THM_TSPIEN	0x82
201#define   TSPIEN_AUX_LOHI	(1<<0)
202#define   TSPIEN_HOT_LOHI	(1<<1)
203#define   TSPIEN_CRIT_LOHI	(1<<2)
204#define   TSPIEN_AUX2_LOHI	(1<<3)
205#define THM_TSLOCK	0x83
206#define THM_ATR		0x84
207#define THM_TOF		0x87
208#define THM_STS		0x98
209#define   STS_PCPL_MASK		(0x7fe00000)
210#define   STS_PCPL_SHIFT	21
211#define   STS_GPL_MASK		(0x001ff000)
212#define   STS_GPL_SHIFT		12
213#define   STS_PP_MASK		(0x00000c00)
214#define   STS_PP_SHIFT		10
215#define   STS_PP_DEF		0
216#define   STS_PP_PROC		1
217#define   STS_PP_BAL		2
218#define   STS_PP_GFX		3
219#define   STS_PCTD_DIS		(1<<9)
220#define   STS_GTD_DIS		(1<<8)
221#define   STS_PTL_MASK		(0x000000fe)
222#define   STS_PTL_SHIFT		1
223#define   STS_NVV		(1<<0)
224#define THM_SEC		0x9c
225#define   SEC_ACK	(1<<0)
226#define THM_TC3		0xa4
227#define THM_TC1		0xa8
228#define   STS_PPL_MASK		(0x0003ff00)
229#define   STS_PPL_SHIFT		16
230#define THM_TC2		0xac
231#define THM_DTV		0xb0
232#define THM_ITV		0xd8
233#define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234#define   ITV_ME_SEQNO_SHIFT (16)
235#define   ITV_MCH_TEMP_MASK 0x0000ff00
236#define   ITV_MCH_TEMP_SHIFT (8)
237#define   ITV_PCH_TEMP_MASK 0x000000ff
238
239#define thm_readb(off) readb(ips->regmap + (off))
240#define thm_readw(off) readw(ips->regmap + (off))
241#define thm_readl(off) readl(ips->regmap + (off))
242#define thm_readq(off) readq(ips->regmap + (off))
243
244#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245#define thm_writew(off, val) writew((val), ips->regmap + (off))
246#define thm_writel(off, val) writel((val), ips->regmap + (off))
247
248static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249static bool late_i915_load = false;
250
251/* For initial average collection */
252static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
255
256/* Per-SKU limits */
257struct ips_mcp_limits {
258	int cpu_family;
259	int cpu_model; /* includes extended model... */
260	int mcp_power_limit; /* mW units */
261	int core_power_limit;
262	int mch_power_limit;
263	int core_temp_limit; /* degrees C */
264	int mch_temp_limit;
265};
266
267/* Max temps are -10 degrees C to avoid PROCHOT# */
268
269struct ips_mcp_limits ips_sv_limits = {
270	.mcp_power_limit = 35000,
271	.core_power_limit = 29000,
272	.mch_power_limit = 20000,
273	.core_temp_limit = 95,
274	.mch_temp_limit = 90
275};
276
277struct ips_mcp_limits ips_lv_limits = {
278	.mcp_power_limit = 25000,
279	.core_power_limit = 21000,
280	.mch_power_limit = 13000,
281	.core_temp_limit = 95,
282	.mch_temp_limit = 90
283};
284
285struct ips_mcp_limits ips_ulv_limits = {
286	.mcp_power_limit = 18000,
287	.core_power_limit = 14000,
288	.mch_power_limit = 11000,
289	.core_temp_limit = 95,
290	.mch_temp_limit = 90
291};
292
293struct ips_driver {
294	struct pci_dev *dev;
295	void *regmap;
296	struct task_struct *monitor;
297	struct task_struct *adjust;
298	struct dentry *debug_root;
299
300	/* Average CPU core temps (all averages in .01 degrees C for precision) */
301	u16 ctv1_avg_temp;
302	u16 ctv2_avg_temp;
303	/* GMCH average */
304	u16 mch_avg_temp;
305	/* Average for the CPU (both cores?) */
306	u16 mcp_avg_temp;
307	/* Average power consumption (in mW) */
308	u32 cpu_avg_power;
309	u32 mch_avg_power;
310
311	/* Offset values */
312	u16 cta_val;
313	u16 pta_val;
314	u16 mgta_val;
315
316	/* Maximums & prefs, protected by turbo status lock */
317	spinlock_t turbo_status_lock;
318	u16 mcp_temp_limit;
319	u16 mcp_power_limit;
320	u16 core_power_limit;
321	u16 mch_power_limit;
322	bool cpu_turbo_enabled;
323	bool __cpu_turbo_on;
324	bool gpu_turbo_enabled;
325	bool __gpu_turbo_on;
326	bool gpu_preferred;
327	bool poll_turbo_status;
328	bool second_cpu;
329	bool turbo_toggle_allowed;
330	struct ips_mcp_limits *limits;
331
332	/* Optional MCH interfaces for if i915 is in use */
333	unsigned long (*read_mch_val)(void);
334	bool (*gpu_raise)(void);
335	bool (*gpu_lower)(void);
336	bool (*gpu_busy)(void);
337	bool (*gpu_turbo_disable)(void);
338
339	/* For restoration at unload */
340	u64 orig_turbo_limit;
341	u64 orig_turbo_ratios;
342};
343
344static bool
345ips_gpu_turbo_enabled(struct ips_driver *ips);
346
347/**
348 * ips_cpu_busy - is CPU busy?
349 * @ips: IPS driver struct
350 *
351 * Check CPU for load to see whether we should increase its thermal budget.
352 *
353 * RETURNS:
354 * True if the CPU could use more power, false otherwise.
355 */
356static bool ips_cpu_busy(struct ips_driver *ips)
357{
358	if ((avenrun[0] >> FSHIFT) > 1)
359		return true;
360
361	return false;
362}
363
364/**
365 * ips_cpu_raise - raise CPU power clamp
366 * @ips: IPS driver struct
367 *
368 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
369 * this platform.
370 *
371 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
372 * long as we haven't hit the TDP limit for the SKU).
373 */
374static void ips_cpu_raise(struct ips_driver *ips)
375{
376	u64 turbo_override;
377	u16 cur_tdp_limit, new_tdp_limit;
378
379	if (!ips->cpu_turbo_enabled)
380		return;
381
382	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
383
384	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
385	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
386
387	/* Clamp to SKU TDP limit */
388	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
389		new_tdp_limit = cur_tdp_limit;
390
391	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
392
393	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
394	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
395
396	turbo_override &= ~TURBO_TDP_MASK;
397	turbo_override |= new_tdp_limit;
398
399	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
400}
401
402/**
403 * ips_cpu_lower - lower CPU power clamp
404 * @ips: IPS driver struct
405 *
406 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
407 *
408 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
409 * as low as the platform limits will allow (though we could go lower there
410 * wouldn't be much point).
411 */
412static void ips_cpu_lower(struct ips_driver *ips)
413{
414	u64 turbo_override;
415	u16 cur_limit, new_limit;
416
417	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
418
419	cur_limit = turbo_override & TURBO_TDP_MASK;
420	new_limit = cur_limit - 8; /* 1W decrease */
421
422	/* Clamp to SKU TDP limit */
423	if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
424		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
425
426	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
427
428	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
429	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
430
431	turbo_override &= ~TURBO_TDP_MASK;
432	turbo_override |= new_limit;
433
434	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
435}
436
437/**
438 * do_enable_cpu_turbo - internal turbo enable function
439 * @data: unused
440 *
441 * Internal function for actually updating MSRs.  When we enable/disable
442 * turbo, we need to do it on each CPU; this function is the one called
443 * by on_each_cpu() when needed.
444 */
445static void do_enable_cpu_turbo(void *data)
446{
447	u64 perf_ctl;
448
449	rdmsrl(IA32_PERF_CTL, perf_ctl);
450	if (perf_ctl & IA32_PERF_TURBO_DIS) {
451		perf_ctl &= ~IA32_PERF_TURBO_DIS;
452		wrmsrl(IA32_PERF_CTL, perf_ctl);
453	}
454}
455
456/**
457 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
458 * @ips: IPS driver struct
459 *
460 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
461 * all logical threads.
462 */
463static void ips_enable_cpu_turbo(struct ips_driver *ips)
464{
465	/* Already on, no need to mess with MSRs */
466	if (ips->__cpu_turbo_on)
467		return;
468
469	if (ips->turbo_toggle_allowed)
470		on_each_cpu(do_enable_cpu_turbo, ips, 1);
471
472	ips->__cpu_turbo_on = true;
473}
474
475/**
476 * do_disable_cpu_turbo - internal turbo disable function
477 * @data: unused
478 *
479 * Internal function for actually updating MSRs.  When we enable/disable
480 * turbo, we need to do it on each CPU; this function is the one called
481 * by on_each_cpu() when needed.
482 */
483static void do_disable_cpu_turbo(void *data)
484{
485	u64 perf_ctl;
486
487	rdmsrl(IA32_PERF_CTL, perf_ctl);
488	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
489		perf_ctl |= IA32_PERF_TURBO_DIS;
490		wrmsrl(IA32_PERF_CTL, perf_ctl);
491	}
492}
493
494/**
495 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
496 * @ips: IPS driver struct
497 *
498 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
499 * all logical threads.
500 */
501static void ips_disable_cpu_turbo(struct ips_driver *ips)
502{
503	/* Already off, leave it */
504	if (!ips->__cpu_turbo_on)
505		return;
506
507	if (ips->turbo_toggle_allowed)
508		on_each_cpu(do_disable_cpu_turbo, ips, 1);
509
510	ips->__cpu_turbo_on = false;
511}
512
513/**
514 * ips_gpu_busy - is GPU busy?
515 * @ips: IPS driver struct
516 *
517 * Check GPU for load to see whether we should increase its thermal budget.
518 * We need to call into the i915 driver in this case.
519 *
520 * RETURNS:
521 * True if the GPU could use more power, false otherwise.
522 */
523static bool ips_gpu_busy(struct ips_driver *ips)
524{
525	if (!ips_gpu_turbo_enabled(ips))
526		return false;
527
528	return ips->gpu_busy();
529}
530
531/**
532 * ips_gpu_raise - raise GPU power clamp
533 * @ips: IPS driver struct
534 *
535 * Raise the GPU frequency/power if possible.  We need to call into the
536 * i915 driver in this case.
537 */
538static void ips_gpu_raise(struct ips_driver *ips)
539{
540	if (!ips_gpu_turbo_enabled(ips))
541		return;
542
543	if (!ips->gpu_raise())
544		ips->gpu_turbo_enabled = false;
545
546	return;
547}
548
549/**
550 * ips_gpu_lower - lower GPU power clamp
551 * @ips: IPS driver struct
552 *
553 * Lower GPU frequency/power if possible.  Need to call i915.
554 */
555static void ips_gpu_lower(struct ips_driver *ips)
556{
557	if (!ips_gpu_turbo_enabled(ips))
558		return;
559
560	if (!ips->gpu_lower())
561		ips->gpu_turbo_enabled = false;
562
563	return;
564}
565
566/**
567 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
568 * @ips: IPS driver struct
569 *
570 * Call into the graphics driver indicating that it can safely use
571 * turbo mode.
572 */
573static void ips_enable_gpu_turbo(struct ips_driver *ips)
574{
575	if (ips->__gpu_turbo_on)
576		return;
577	ips->__gpu_turbo_on = true;
578}
579
580/**
581 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
582 * @ips: IPS driver struct
583 *
584 * Request that the graphics driver disable turbo mode.
585 */
586static void ips_disable_gpu_turbo(struct ips_driver *ips)
587{
588	/* Avoid calling i915 if turbo is already disabled */
589	if (!ips->__gpu_turbo_on)
590		return;
591
592	if (!ips->gpu_turbo_disable())
593		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
594	else
595		ips->__gpu_turbo_on = false;
596}
597
598/**
599 * mcp_exceeded - check whether we're outside our thermal & power limits
600 * @ips: IPS driver struct
601 *
602 * Check whether the MCP is over its thermal or power budget.
603 */
604static bool mcp_exceeded(struct ips_driver *ips)
605{
606	unsigned long flags;
607	bool ret = false;
608	u32 temp_limit;
609	u32 avg_power;
610	const char *msg = "MCP limit exceeded: ";
611
612	spin_lock_irqsave(&ips->turbo_status_lock, flags);
613
614	temp_limit = ips->mcp_temp_limit * 100;
615	if (ips->mcp_avg_temp > temp_limit) {
616		dev_info(&ips->dev->dev,
617			"%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
618			temp_limit);
619		ret = true;
620	}
621
622	avg_power = ips->cpu_avg_power + ips->mch_avg_power;
623	if (avg_power > ips->mcp_power_limit) {
624		dev_info(&ips->dev->dev,
625			"%sAvg power %u, limit %u\n", msg, avg_power,
626			ips->mcp_power_limit);
627		ret = true;
628	}
629
630	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
631
632	return ret;
633}
634
635/**
636 * cpu_exceeded - check whether a CPU core is outside its limits
637 * @ips: IPS driver struct
638 * @cpu: CPU number to check
639 *
640 * Check a given CPU's average temp or power is over its limit.
641 */
642static bool cpu_exceeded(struct ips_driver *ips, int cpu)
643{
644	unsigned long flags;
645	int avg;
646	bool ret = false;
647
648	spin_lock_irqsave(&ips->turbo_status_lock, flags);
649	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
650	if (avg > (ips->limits->core_temp_limit * 100))
651		ret = true;
652	if (ips->cpu_avg_power > ips->core_power_limit * 100)
653		ret = true;
654	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
655
656	if (ret)
657		dev_info(&ips->dev->dev,
658			 "CPU power or thermal limit exceeded\n");
659
660	return ret;
661}
662
663/**
664 * mch_exceeded - check whether the GPU is over budget
665 * @ips: IPS driver struct
666 *
667 * Check the MCH temp & power against their maximums.
668 */
669static bool mch_exceeded(struct ips_driver *ips)
670{
671	unsigned long flags;
672	bool ret = false;
673
674	spin_lock_irqsave(&ips->turbo_status_lock, flags);
675	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
676		ret = true;
677	if (ips->mch_avg_power > ips->mch_power_limit)
678		ret = true;
679	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
680
681	return ret;
682}
683
684/**
685 * verify_limits - verify BIOS provided limits
686 * @ips: IPS structure
687 *
688 * BIOS can optionally provide non-default limits for power and temp.  Check
689 * them here and use the defaults if the BIOS values are not provided or
690 * are otherwise unusable.
691 */
692static void verify_limits(struct ips_driver *ips)
693{
694	if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
695	    ips->mcp_power_limit > 35000)
696		ips->mcp_power_limit = ips->limits->mcp_power_limit;
697
698	if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
699	    ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
700	    ips->mcp_temp_limit > 150)
701		ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
702					  ips->limits->mch_temp_limit);
703}
704
705/**
706 * update_turbo_limits - get various limits & settings from regs
707 * @ips: IPS driver struct
708 *
709 * Update the IPS power & temp limits, along with turbo enable flags,
710 * based on latest register contents.
711 *
712 * Used at init time and for runtime BIOS support, which requires polling
713 * the regs for updates (as a result of AC->DC transition for example).
714 *
715 * LOCKING:
716 * Caller must hold turbo_status_lock (outside of init)
717 */
718static void update_turbo_limits(struct ips_driver *ips)
719{
720	u32 hts = thm_readl(THM_HTS);
721
722	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
723	/*
724	 * Disable turbo for now, until we can figure out why the power figures
725	 * are wrong
726	 */
727	ips->cpu_turbo_enabled = false;
728
729	if (ips->gpu_busy)
730		ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
731
732	ips->core_power_limit = thm_readw(THM_MPCPC);
733	ips->mch_power_limit = thm_readw(THM_MMGPC);
734	ips->mcp_temp_limit = thm_readw(THM_PTL);
735	ips->mcp_power_limit = thm_readw(THM_MPPC);
736
737	verify_limits(ips);
738	/* Ignore BIOS CPU vs GPU pref */
739}
740
741/**
742 * ips_adjust - adjust power clamp based on thermal state
743 * @data: ips driver structure
744 *
745 * Wake up every 5s or so and check whether we should adjust the power clamp.
746 * Check CPU and GPU load to determine which needs adjustment.  There are
747 * several things to consider here:
748 *   - do we need to adjust up or down?
749 *   - is CPU busy?
750 *   - is GPU busy?
751 *   - is CPU in turbo?
752 *   - is GPU in turbo?
753 *   - is CPU or GPU preferred? (CPU is default)
754 *
755 * So, given the above, we do the following:
756 *   - up (TDP available)
757 *     - CPU not busy, GPU not busy - nothing
758 *     - CPU busy, GPU not busy - adjust CPU up
759 *     - CPU not busy, GPU busy - adjust GPU up
760 *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
761 *       non-preferred unit if necessary
762 *   - down (at TDP limit)
763 *     - adjust both CPU and GPU down if possible
764 *
765		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
766cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
767cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
768cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
769cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
770 *
771 */
772static int ips_adjust(void *data)
773{
774	struct ips_driver *ips = data;
775	unsigned long flags;
776
777	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
778
779	/*
780	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
781	 * often isn't recommended due to ME interaction.
782	 */
783	do {
784		bool cpu_busy = ips_cpu_busy(ips);
785		bool gpu_busy = ips_gpu_busy(ips);
786
787		spin_lock_irqsave(&ips->turbo_status_lock, flags);
788		if (ips->poll_turbo_status)
789			update_turbo_limits(ips);
790		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
791
792		/* Update turbo status if necessary */
793		if (ips->cpu_turbo_enabled)
794			ips_enable_cpu_turbo(ips);
795		else
796			ips_disable_cpu_turbo(ips);
797
798		if (ips->gpu_turbo_enabled)
799			ips_enable_gpu_turbo(ips);
800		else
801			ips_disable_gpu_turbo(ips);
802
803		/* We're outside our comfort zone, crank them down */
804		if (mcp_exceeded(ips)) {
805			ips_cpu_lower(ips);
806			ips_gpu_lower(ips);
807			goto sleep;
808		}
809
810		if (!cpu_exceeded(ips, 0) && cpu_busy)
811			ips_cpu_raise(ips);
812		else
813			ips_cpu_lower(ips);
814
815		if (!mch_exceeded(ips) && gpu_busy)
816			ips_gpu_raise(ips);
817		else
818			ips_gpu_lower(ips);
819
820sleep:
821		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
822	} while (!kthread_should_stop());
823
824	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
825
826	return 0;
827}
828
829/*
830 * Helpers for reading out temp/power values and calculating their
831 * averages for the decision making and monitoring functions.
832 */
833
834static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
835{
836	u64 total = 0;
837	int i;
838	u16 avg;
839
840	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
841		total += (u64)(array[i] * 100);
842
843	do_div(total, IPS_SAMPLE_COUNT);
844
845	avg = (u16)total;
846
847	return avg;
848}
849
850static u16 read_mgtv(struct ips_driver *ips)
851{
852	u16 ret;
853	u64 slope, offset;
854	u64 val;
855
856	val = thm_readq(THM_MGTV);
857	val = (val & TV_MASK) >> TV_SHIFT;
858
859	slope = offset = thm_readw(THM_MGTA);
860	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
861	offset = offset & MGTA_OFFSET_MASK;
862
863	ret = ((val * slope + 0x40) >> 7) + offset;
864
865	return 0; /* MCH temp reporting buggy */
866}
867
868static u16 read_ptv(struct ips_driver *ips)
869{
870	u16 val, slope, offset;
871
872	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
873	offset = ips->pta_val & PTA_OFFSET_MASK;
874
875	val = thm_readw(THM_PTV) & PTV_MASK;
876
877	return val;
878}
879
880static u16 read_ctv(struct ips_driver *ips, int cpu)
881{
882	int reg = cpu ? THM_CTV2 : THM_CTV1;
883	u16 val;
884
885	val = thm_readw(reg);
886	if (!(val & CTV_TEMP_ERROR))
887		val = (val) >> 6; /* discard fractional component */
888	else
889		val = 0;
890
891	return val;
892}
893
894static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
895{
896	u32 val;
897	u32 ret;
898
899	/*
900	 * CEC is in joules/65535.  Take difference over time to
901	 * get watts.
902	 */
903	val = thm_readl(THM_CEC);
904
905	/* period is in ms and we want mW */
906	ret = (((val - *last) * 1000) / period);
907	ret = (ret * 1000) / 65535;
908	*last = val;
909
910	return 0;
911}
912
913static const u16 temp_decay_factor = 2;
914static u16 update_average_temp(u16 avg, u16 val)
915{
916	u16 ret;
917
918	/* Multiply by 100 for extra precision */
919	ret = (val * 100 / temp_decay_factor) +
920		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
921	return ret;
922}
923
924static const u16 power_decay_factor = 2;
925static u16 update_average_power(u32 avg, u32 val)
926{
927	u32 ret;
928
929	ret = (val / power_decay_factor) +
930		(((power_decay_factor - 1) * avg) / power_decay_factor);
931
932	return ret;
933}
934
935static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
936{
937	u64 total = 0;
938	u32 avg;
939	int i;
940
941	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
942		total += array[i];
943
944	do_div(total, IPS_SAMPLE_COUNT);
945	avg = (u32)total;
946
947	return avg;
948}
949
950static void monitor_timeout(unsigned long arg)
951{
952	wake_up_process((struct task_struct *)arg);
953}
954
955/**
956 * ips_monitor - temp/power monitoring thread
957 * @data: ips driver structure
958 *
959 * This is the main function for the IPS driver.  It monitors power and
960 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
961 *
962 * We keep a 5s moving average of power consumption and tempurature.  Using
963 * that data, along with CPU vs GPU preference, we adjust the power clamps
964 * up or down.
965 */
966static int ips_monitor(void *data)
967{
968	struct ips_driver *ips = data;
969	struct timer_list timer;
970	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
971	int i;
972	u32 *cpu_samples, *mchp_samples, old_cpu_power;
973	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
974	u8 cur_seqno, last_seqno;
975
976	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
977	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
978	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
979	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
980	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
981	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
982	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
983			!cpu_samples || !mchp_samples) {
984		dev_err(&ips->dev->dev,
985			"failed to allocate sample array, ips disabled\n");
986		kfree(mcp_samples);
987		kfree(ctv1_samples);
988		kfree(ctv2_samples);
989		kfree(mch_samples);
990		kfree(cpu_samples);
991		kfree(mchp_samples);
992		return -ENOMEM;
993	}
994
995	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
996		ITV_ME_SEQNO_SHIFT;
997	seqno_timestamp = get_jiffies_64();
998
999	old_cpu_power = thm_readl(THM_CEC);
1000	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1001
1002	/* Collect an initial average */
1003	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
1004		u32 mchp, cpu_power;
1005		u16 val;
1006
1007		mcp_samples[i] = read_ptv(ips);
1008
1009		val = read_ctv(ips, 0);
1010		ctv1_samples[i] = val;
1011
1012		val = read_ctv(ips, 1);
1013		ctv2_samples[i] = val;
1014
1015		val = read_mgtv(ips);
1016		mch_samples[i] = val;
1017
1018		cpu_power = get_cpu_power(ips, &old_cpu_power,
1019					  IPS_SAMPLE_PERIOD);
1020		cpu_samples[i] = cpu_power;
1021
1022		if (ips->read_mch_val) {
1023			mchp = ips->read_mch_val();
1024			mchp_samples[i] = mchp;
1025		}
1026
1027		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1028		if (kthread_should_stop())
1029			break;
1030	}
1031
1032	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1033	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1034	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1035	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1036	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1037	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1038	kfree(mcp_samples);
1039	kfree(ctv1_samples);
1040	kfree(ctv2_samples);
1041	kfree(mch_samples);
1042	kfree(cpu_samples);
1043	kfree(mchp_samples);
1044
1045	/* Start the adjustment thread now that we have data */
1046	wake_up_process(ips->adjust);
1047
1048	/*
1049	 * Ok, now we have an initial avg.  From here on out, we track the
1050	 * running avg using a decaying average calculation.  This allows
1051	 * us to reduce the sample frequency if the CPU and GPU are idle.
1052	 */
1053	old_cpu_power = thm_readl(THM_CEC);
1054	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1055	last_sample_period = IPS_SAMPLE_PERIOD;
1056
1057	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1058					(unsigned long)current);
1059	do {
1060		u32 cpu_val, mch_val;
1061		u16 val;
1062
1063		/* MCP itself */
1064		val = read_ptv(ips);
1065		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1066
1067		/* Processor 0 */
1068		val = read_ctv(ips, 0);
1069		ips->ctv1_avg_temp =
1070			update_average_temp(ips->ctv1_avg_temp, val);
1071		/* Power */
1072		cpu_val = get_cpu_power(ips, &old_cpu_power,
1073					last_sample_period);
1074		ips->cpu_avg_power =
1075			update_average_power(ips->cpu_avg_power, cpu_val);
1076
1077		if (ips->second_cpu) {
1078			/* Processor 1 */
1079			val = read_ctv(ips, 1);
1080			ips->ctv2_avg_temp =
1081				update_average_temp(ips->ctv2_avg_temp, val);
1082		}
1083
1084		/* MCH */
1085		val = read_mgtv(ips);
1086		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1087		/* Power */
1088		if (ips->read_mch_val) {
1089			mch_val = ips->read_mch_val();
1090			ips->mch_avg_power =
1091				update_average_power(ips->mch_avg_power,
1092						     mch_val);
1093		}
1094
1095		/*
1096		 * Make sure ME is updating thermal regs.
1097		 * Note:
1098		 * If it's been more than a second since the last update,
1099		 * the ME is probably hung.
1100		 */
1101		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1102			ITV_ME_SEQNO_SHIFT;
1103		if (cur_seqno == last_seqno &&
1104		    time_after(jiffies, seqno_timestamp + HZ)) {
1105			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1106		} else {
1107			seqno_timestamp = get_jiffies_64();
1108			last_seqno = cur_seqno;
1109		}
1110
1111		last_msecs = jiffies_to_msecs(jiffies);
1112		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1113
1114		__set_current_state(TASK_UNINTERRUPTIBLE);
1115		mod_timer(&timer, expire);
1116		schedule();
1117
1118		/* Calculate actual sample period for power averaging */
1119		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1120		if (!last_sample_period)
1121			last_sample_period = 1;
1122	} while (!kthread_should_stop());
1123
1124	del_timer_sync(&timer);
1125	destroy_timer_on_stack(&timer);
1126
1127	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1128
1129	return 0;
1130}
1131
1132
1133/**
1134 * ips_irq_handler - handle temperature triggers and other IPS events
1135 * @irq: irq number
1136 * @arg: unused
1137 *
1138 * Handle temperature limit trigger events, generally by lowering the clamps.
1139 * If we're at a critical limit, we clamp back to the lowest possible value
1140 * to prevent emergency shutdown.
1141 */
1142static irqreturn_t ips_irq_handler(int irq, void *arg)
1143{
1144	struct ips_driver *ips = arg;
1145	u8 tses = thm_readb(THM_TSES);
1146	u8 tes = thm_readb(THM_TES);
1147
1148	if (!tses && !tes)
1149		return IRQ_NONE;
1150
1151	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1152	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1153
1154	/* STS update from EC? */
1155	if (tes & 1) {
1156		u32 sts, tc1;
1157
1158		sts = thm_readl(THM_STS);
1159		tc1 = thm_readl(THM_TC1);
1160
1161		if (sts & STS_NVV) {
1162			spin_lock(&ips->turbo_status_lock);
1163			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1164				STS_PCPL_SHIFT;
1165			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1166				STS_GPL_SHIFT;
1167			/* ignore EC CPU vs GPU pref */
1168			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1169			/*
1170			 * Disable turbo for now, until we can figure
1171			 * out why the power figures are wrong
1172			 */
1173			ips->cpu_turbo_enabled = false;
1174			if (ips->gpu_busy)
1175				ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1176			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1177				STS_PTL_SHIFT;
1178			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1179				STS_PPL_SHIFT;
1180			verify_limits(ips);
1181			spin_unlock(&ips->turbo_status_lock);
1182
1183			thm_writeb(THM_SEC, SEC_ACK);
1184		}
1185		thm_writeb(THM_TES, tes);
1186	}
1187
1188	/* Thermal trip */
1189	if (tses) {
1190		dev_warn(&ips->dev->dev,
1191			 "thermal trip occurred, tses: 0x%04x\n", tses);
1192		thm_writeb(THM_TSES, tses);
1193	}
1194
1195	return IRQ_HANDLED;
1196}
1197
1198#ifndef CONFIG_DEBUG_FS
1199static void ips_debugfs_init(struct ips_driver *ips) { return; }
1200static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1201#else
1202
1203/* Expose current state and limits in debugfs if possible */
1204
1205struct ips_debugfs_node {
1206	struct ips_driver *ips;
1207	char *name;
1208	int (*show)(struct seq_file *m, void *data);
1209};
1210
1211static int show_cpu_temp(struct seq_file *m, void *data)
1212{
1213	struct ips_driver *ips = m->private;
1214
1215	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1216		   ips->ctv1_avg_temp % 100);
1217
1218	return 0;
1219}
1220
1221static int show_cpu_power(struct seq_file *m, void *data)
1222{
1223	struct ips_driver *ips = m->private;
1224
1225	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1226
1227	return 0;
1228}
1229
1230static int show_cpu_clamp(struct seq_file *m, void *data)
1231{
1232	u64 turbo_override;
1233	int tdp, tdc;
1234
1235	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1236
1237	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1238	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1239
1240	/* Convert to .1W/A units */
1241	tdp = tdp * 10 / 8;
1242	tdc = tdc * 10 / 8;
1243
1244	/* Watts Amperes */
1245	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1246		   tdc / 10, tdc % 10);
1247
1248	return 0;
1249}
1250
1251static int show_mch_temp(struct seq_file *m, void *data)
1252{
1253	struct ips_driver *ips = m->private;
1254
1255	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1256		   ips->mch_avg_temp % 100);
1257
1258	return 0;
1259}
1260
1261static int show_mch_power(struct seq_file *m, void *data)
1262{
1263	struct ips_driver *ips = m->private;
1264
1265	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1266
1267	return 0;
1268}
1269
1270static struct ips_debugfs_node ips_debug_files[] = {
1271	{ NULL, "cpu_temp", show_cpu_temp },
1272	{ NULL, "cpu_power", show_cpu_power },
1273	{ NULL, "cpu_clamp", show_cpu_clamp },
1274	{ NULL, "mch_temp", show_mch_temp },
1275	{ NULL, "mch_power", show_mch_power },
1276};
1277
1278static int ips_debugfs_open(struct inode *inode, struct file *file)
1279{
1280	struct ips_debugfs_node *node = inode->i_private;
1281
1282	return single_open(file, node->show, node->ips);
1283}
1284
1285static const struct file_operations ips_debugfs_ops = {
1286	.owner = THIS_MODULE,
1287	.open = ips_debugfs_open,
1288	.read = seq_read,
1289	.llseek = seq_lseek,
1290	.release = single_release,
1291};
1292
1293static void ips_debugfs_cleanup(struct ips_driver *ips)
1294{
1295	if (ips->debug_root)
1296		debugfs_remove_recursive(ips->debug_root);
1297	return;
1298}
1299
1300static void ips_debugfs_init(struct ips_driver *ips)
1301{
1302	int i;
1303
1304	ips->debug_root = debugfs_create_dir("ips", NULL);
1305	if (!ips->debug_root) {
1306		dev_err(&ips->dev->dev,
1307			"failed to create debugfs entries: %ld\n",
1308			PTR_ERR(ips->debug_root));
1309		return;
1310	}
1311
1312	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1313		struct dentry *ent;
1314		struct ips_debugfs_node *node = &ips_debug_files[i];
1315
1316		node->ips = ips;
1317		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1318					  ips->debug_root, node,
1319					  &ips_debugfs_ops);
1320		if (!ent) {
1321			dev_err(&ips->dev->dev,
1322				"failed to create debug file: %ld\n",
1323				PTR_ERR(ent));
1324			goto err_cleanup;
1325		}
1326	}
1327
1328	return;
1329
1330err_cleanup:
1331	ips_debugfs_cleanup(ips);
1332	return;
1333}
1334#endif /* CONFIG_DEBUG_FS */
1335
1336/**
1337 * ips_detect_cpu - detect whether CPU supports IPS
1338 *
1339 * Walk our list and see if we're on a supported CPU.  If we find one,
1340 * return the limits for it.
1341 */
1342static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1343{
1344	u64 turbo_power, misc_en;
1345	struct ips_mcp_limits *limits = NULL;
1346	u16 tdp;
1347
1348	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1349		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1350		goto out;
1351	}
1352
1353	rdmsrl(IA32_MISC_ENABLE, misc_en);
1354	/*
1355	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1356	 * turbo manually or we'll get an illegal MSR access, even though
1357	 * turbo will still be available.
1358	 */
1359	if (misc_en & IA32_MISC_TURBO_EN)
1360		ips->turbo_toggle_allowed = true;
1361	else
1362		ips->turbo_toggle_allowed = false;
1363
1364	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1365		limits = &ips_sv_limits;
1366	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1367		limits = &ips_lv_limits;
1368	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1369		limits = &ips_ulv_limits;
1370	else {
1371		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1372		goto out;
1373	}
1374
1375	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1376	tdp = turbo_power & TURBO_TDP_MASK;
1377
1378	/* Sanity check TDP against CPU */
1379	if (limits->core_power_limit != (tdp / 8) * 1000) {
1380		dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1381			 tdp / 8, limits->core_power_limit / 1000);
1382		limits->core_power_limit = (tdp / 8) * 1000;
1383	}
1384
1385out:
1386	return limits;
1387}
1388
1389/**
1390 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1391 * @ips: IPS driver
1392 *
1393 * The i915 driver exports several interfaces to allow the IPS driver to
1394 * monitor and control graphics turbo mode.  If we can find them, we can
1395 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1396 * thermal and power limits in the MCP.
1397 */
1398static bool ips_get_i915_syms(struct ips_driver *ips)
1399{
1400	ips->read_mch_val = symbol_get(i915_read_mch_val);
1401	if (!ips->read_mch_val)
1402		goto out_err;
1403	ips->gpu_raise = symbol_get(i915_gpu_raise);
1404	if (!ips->gpu_raise)
1405		goto out_put_mch;
1406	ips->gpu_lower = symbol_get(i915_gpu_lower);
1407	if (!ips->gpu_lower)
1408		goto out_put_raise;
1409	ips->gpu_busy = symbol_get(i915_gpu_busy);
1410	if (!ips->gpu_busy)
1411		goto out_put_lower;
1412	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1413	if (!ips->gpu_turbo_disable)
1414		goto out_put_busy;
1415
1416	return true;
1417
1418out_put_busy:
1419	symbol_put(i915_gpu_busy);
1420out_put_lower:
1421	symbol_put(i915_gpu_lower);
1422out_put_raise:
1423	symbol_put(i915_gpu_raise);
1424out_put_mch:
1425	symbol_put(i915_read_mch_val);
1426out_err:
1427	return false;
1428}
1429
1430static bool
1431ips_gpu_turbo_enabled(struct ips_driver *ips)
1432{
1433	if (!ips->gpu_busy && late_i915_load) {
1434		if (ips_get_i915_syms(ips)) {
1435			dev_info(&ips->dev->dev,
1436				 "i915 driver attached, reenabling gpu turbo\n");
1437			ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1438		}
1439	}
1440
1441	return ips->gpu_turbo_enabled;
1442}
1443
1444void
1445ips_link_to_i915_driver()
1446{
1447	/* We can't cleanly get at the various ips_driver structs from
1448	 * this caller (the i915 driver), so just set a flag saying
1449	 * that it's time to try getting the symbols again.
1450	 */
1451	late_i915_load = true;
1452}
1453EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1454
1455static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1456	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1457		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1458	{ 0, }
1459};
1460
1461MODULE_DEVICE_TABLE(pci, ips_id_table);
1462
1463static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1464{
1465	u64 platform_info;
1466	struct ips_driver *ips;
1467	u32 hts;
1468	int ret = 0;
1469	u16 htshi, trc, trc_required_mask;
1470	u8 tse;
1471
1472	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1473	if (!ips)
1474		return -ENOMEM;
1475
1476	pci_set_drvdata(dev, ips);
1477	ips->dev = dev;
1478
1479	ips->limits = ips_detect_cpu(ips);
1480	if (!ips->limits) {
1481		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1482		ret = -ENXIO;
1483		goto error_free;
1484	}
1485
1486	spin_lock_init(&ips->turbo_status_lock);
1487
1488	ret = pci_enable_device(dev);
1489	if (ret) {
1490		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1491		goto error_free;
1492	}
1493
1494	if (!pci_resource_start(dev, 0)) {
1495		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1496		ret = -ENXIO;
1497		goto error_free;
1498	}
1499
1500	ret = pci_request_regions(dev, "ips thermal sensor");
1501	if (ret) {
1502		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1503		goto error_free;
1504	}
1505
1506
1507	ips->regmap = ioremap(pci_resource_start(dev, 0),
1508			      pci_resource_len(dev, 0));
1509	if (!ips->regmap) {
1510		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1511		ret = -EBUSY;
1512		goto error_release;
1513	}
1514
1515	tse = thm_readb(THM_TSE);
1516	if (tse != TSE_EN) {
1517		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1518		ret = -ENXIO;
1519		goto error_unmap;
1520	}
1521
1522	trc = thm_readw(THM_TRC);
1523	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1524	if ((trc & trc_required_mask) != trc_required_mask) {
1525		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1526		ret = -ENXIO;
1527		goto error_unmap;
1528	}
1529
1530	if (trc & TRC_CORE2_EN)
1531		ips->second_cpu = true;
1532
1533	update_turbo_limits(ips);
1534	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1535		ips->mcp_power_limit / 10);
1536	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1537		ips->core_power_limit / 10);
1538	/* BIOS may update limits at runtime */
1539	if (thm_readl(THM_PSC) & PSP_PBRT)
1540		ips->poll_turbo_status = true;
1541
1542	if (!ips_get_i915_syms(ips)) {
1543		dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1544		ips->gpu_turbo_enabled = false;
1545	} else {
1546		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1547		ips->gpu_turbo_enabled = true;
1548	}
1549
1550	/*
1551	 * Check PLATFORM_INFO MSR to make sure this chip is
1552	 * turbo capable.
1553	 */
1554	rdmsrl(PLATFORM_INFO, platform_info);
1555	if (!(platform_info & PLATFORM_TDP)) {
1556		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1557		ret = -ENODEV;
1558		goto error_unmap;
1559	}
1560
1561	/*
1562	 * IRQ handler for ME interaction
1563	 * Note: don't use MSI here as the PCH has bugs.
1564	 */
1565	pci_disable_msi(dev);
1566	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1567			  ips);
1568	if (ret) {
1569		dev_err(&dev->dev, "request irq failed, aborting\n");
1570		goto error_unmap;
1571	}
1572
1573	/* Enable aux, hot & critical interrupts */
1574	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1575		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1576	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1577
1578	/* Collect adjustment values */
1579	ips->cta_val = thm_readw(THM_CTA);
1580	ips->pta_val = thm_readw(THM_PTA);
1581	ips->mgta_val = thm_readw(THM_MGTA);
1582
1583	/* Save turbo limits & ratios */
1584	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1585
1586	ips_disable_cpu_turbo(ips);
1587	ips->cpu_turbo_enabled = false;
1588
1589	/* Create thermal adjust thread */
1590	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1591	if (IS_ERR(ips->adjust)) {
1592		dev_err(&dev->dev,
1593			"failed to create thermal adjust thread, aborting\n");
1594		ret = -ENOMEM;
1595		goto error_free_irq;
1596
1597	}
1598
1599	/*
1600	 * Set up the work queue and monitor thread. The monitor thread
1601	 * will wake up ips_adjust thread.
1602	 */
1603	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1604	if (IS_ERR(ips->monitor)) {
1605		dev_err(&dev->dev,
1606			"failed to create thermal monitor thread, aborting\n");
1607		ret = -ENOMEM;
1608		goto error_thread_cleanup;
1609	}
1610
1611	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1612		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1613	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1614
1615	thm_writew(THM_HTSHI, htshi);
1616	thm_writel(THM_HTS, hts);
1617
1618	ips_debugfs_init(ips);
1619
1620	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1621		 ips->mcp_temp_limit);
1622	return ret;
1623
1624error_thread_cleanup:
1625	kthread_stop(ips->adjust);
1626error_free_irq:
1627	free_irq(ips->dev->irq, ips);
1628error_unmap:
1629	iounmap(ips->regmap);
1630error_release:
1631	pci_release_regions(dev);
1632error_free:
1633	kfree(ips);
1634	return ret;
1635}
1636
1637static void ips_remove(struct pci_dev *dev)
1638{
1639	struct ips_driver *ips = pci_get_drvdata(dev);
1640	u64 turbo_override;
1641
1642	if (!ips)
1643		return;
1644
1645	ips_debugfs_cleanup(ips);
1646
1647	/* Release i915 driver */
1648	if (ips->read_mch_val)
1649		symbol_put(i915_read_mch_val);
1650	if (ips->gpu_raise)
1651		symbol_put(i915_gpu_raise);
1652	if (ips->gpu_lower)
1653		symbol_put(i915_gpu_lower);
1654	if (ips->gpu_busy)
1655		symbol_put(i915_gpu_busy);
1656	if (ips->gpu_turbo_disable)
1657		symbol_put(i915_gpu_turbo_disable);
1658
1659	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1660	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1661	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1662	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1663
1664	free_irq(ips->dev->irq, ips);
1665	if (ips->adjust)
1666		kthread_stop(ips->adjust);
1667	if (ips->monitor)
1668		kthread_stop(ips->monitor);
1669	iounmap(ips->regmap);
1670	pci_release_regions(dev);
1671	kfree(ips);
1672	dev_dbg(&dev->dev, "IPS driver removed\n");
1673}
1674
1675#ifdef CONFIG_PM
1676static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1677{
1678	return 0;
1679}
1680
1681static int ips_resume(struct pci_dev *dev)
1682{
1683	return 0;
1684}
1685#else
1686#define ips_suspend NULL
1687#define ips_resume NULL
1688#endif /* CONFIG_PM */
1689
1690static void ips_shutdown(struct pci_dev *dev)
1691{
1692}
1693
1694static struct pci_driver ips_pci_driver = {
1695	.name = "intel ips",
1696	.id_table = ips_id_table,
1697	.probe = ips_probe,
1698	.remove = ips_remove,
1699	.suspend = ips_suspend,
1700	.resume = ips_resume,
1701	.shutdown = ips_shutdown,
1702};
1703
1704static int __init ips_init(void)
1705{
1706	return pci_register_driver(&ips_pci_driver);
1707}
1708module_init(ips_init);
1709
1710static void ips_exit(void)
1711{
1712	pci_unregister_driver(&ips_pci_driver);
1713	return;
1714}
1715module_exit(ips_exit);
1716
1717MODULE_LICENSE("GPL");
1718MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1719MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1720