• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/oprofile/
1/**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24#include <linux/mm.h>
25#include <linux/workqueue.h>
26#include <linux/notifier.h>
27#include <linux/dcookies.h>
28#include <linux/profile.h>
29#include <linux/module.h>
30#include <linux/fs.h>
31#include <linux/oprofile.h>
32#include <linux/sched.h>
33#include <linux/gfp.h>
34
35#include "oprofile_stats.h"
36#include "event_buffer.h"
37#include "cpu_buffer.h"
38#include "buffer_sync.h"
39
40static LIST_HEAD(dying_tasks);
41static LIST_HEAD(dead_tasks);
42static cpumask_var_t marked_cpus;
43static DEFINE_SPINLOCK(task_mortuary);
44static void process_task_mortuary(void);
45
46/* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
52 */
53static int
54task_free_notify(struct notifier_block *self, unsigned long val, void *data)
55{
56	unsigned long flags;
57	struct task_struct *task = data;
58	spin_lock_irqsave(&task_mortuary, flags);
59	list_add(&task->tasks, &dying_tasks);
60	spin_unlock_irqrestore(&task_mortuary, flags);
61	return NOTIFY_OK;
62}
63
64
65/* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
67 */
68static int
69task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
70{
71	/* To avoid latency problems, we only process the current CPU,
72	 * hoping that most samples for the task are on this CPU
73	 */
74	sync_buffer(raw_smp_processor_id());
75	return 0;
76}
77
78
79/* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
83 */
84static int
85munmap_notify(struct notifier_block *self, unsigned long val, void *data)
86{
87	unsigned long addr = (unsigned long)data;
88	struct mm_struct *mm = current->mm;
89	struct vm_area_struct *mpnt;
90
91	down_read(&mm->mmap_sem);
92
93	mpnt = find_vma(mm, addr);
94	if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95		up_read(&mm->mmap_sem);
96		/* To avoid latency problems, we only process the current CPU,
97		 * hoping that most samples for the task are on this CPU
98		 */
99		sync_buffer(raw_smp_processor_id());
100		return 0;
101	}
102
103	up_read(&mm->mmap_sem);
104	return 0;
105}
106
107
108/* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
110 */
111static int
112module_load_notify(struct notifier_block *self, unsigned long val, void *data)
113{
114#ifdef CONFIG_MODULES
115	if (val != MODULE_STATE_COMING)
116		return 0;
117
118	mutex_lock(&buffer_mutex);
119	add_event_entry(ESCAPE_CODE);
120	add_event_entry(MODULE_LOADED_CODE);
121	mutex_unlock(&buffer_mutex);
122#endif
123	return 0;
124}
125
126
127static struct notifier_block task_free_nb = {
128	.notifier_call	= task_free_notify,
129};
130
131static struct notifier_block task_exit_nb = {
132	.notifier_call	= task_exit_notify,
133};
134
135static struct notifier_block munmap_nb = {
136	.notifier_call	= munmap_notify,
137};
138
139static struct notifier_block module_load_nb = {
140	.notifier_call = module_load_notify,
141};
142
143int sync_start(void)
144{
145	int err;
146
147	if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
148		return -ENOMEM;
149
150	mutex_lock(&buffer_mutex);
151
152	err = task_handoff_register(&task_free_nb);
153	if (err)
154		goto out1;
155	err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
156	if (err)
157		goto out2;
158	err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
159	if (err)
160		goto out3;
161	err = register_module_notifier(&module_load_nb);
162	if (err)
163		goto out4;
164
165	start_cpu_work();
166
167out:
168	mutex_unlock(&buffer_mutex);
169	return err;
170out4:
171	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
172out3:
173	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
174out2:
175	task_handoff_unregister(&task_free_nb);
176out1:
177	free_cpumask_var(marked_cpus);
178	goto out;
179}
180
181
182void sync_stop(void)
183{
184	/* flush buffers */
185	mutex_lock(&buffer_mutex);
186	end_cpu_work();
187	unregister_module_notifier(&module_load_nb);
188	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
189	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
190	task_handoff_unregister(&task_free_nb);
191	mutex_unlock(&buffer_mutex);
192	flush_scheduled_work();
193
194	/* make sure we don't leak task structs */
195	process_task_mortuary();
196	process_task_mortuary();
197
198	free_cpumask_var(marked_cpus);
199}
200
201
202/* Optimisation. We can manage without taking the dcookie sem
203 * because we cannot reach this code without at least one
204 * dcookie user still being registered (namely, the reader
205 * of the event buffer). */
206static inline unsigned long fast_get_dcookie(struct path *path)
207{
208	unsigned long cookie;
209
210	if (path->dentry->d_flags & DCACHE_COOKIE)
211		return (unsigned long)path->dentry;
212	get_dcookie(path, &cookie);
213	return cookie;
214}
215
216
217/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
218 * which corresponds loosely to "application name". This is
219 * not strictly necessary but allows oprofile to associate
220 * shared-library samples with particular applications
221 */
222static unsigned long get_exec_dcookie(struct mm_struct *mm)
223{
224	unsigned long cookie = NO_COOKIE;
225	struct vm_area_struct *vma;
226
227	if (!mm)
228		goto out;
229
230	for (vma = mm->mmap; vma; vma = vma->vm_next) {
231		if (!vma->vm_file)
232			continue;
233		if (!(vma->vm_flags & VM_EXECUTABLE))
234			continue;
235		cookie = fast_get_dcookie(&vma->vm_file->f_path);
236		break;
237	}
238
239out:
240	return cookie;
241}
242
243
244/* Convert the EIP value of a sample into a persistent dentry/offset
245 * pair that can then be added to the global event buffer. We make
246 * sure to do this lookup before a mm->mmap modification happens so
247 * we don't lose track.
248 */
249static unsigned long
250lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
251{
252	unsigned long cookie = NO_COOKIE;
253	struct vm_area_struct *vma;
254
255	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
256
257		if (addr < vma->vm_start || addr >= vma->vm_end)
258			continue;
259
260		if (vma->vm_file) {
261			cookie = fast_get_dcookie(&vma->vm_file->f_path);
262			*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
263				vma->vm_start;
264		} else {
265			/* must be an anonymous map */
266			*offset = addr;
267		}
268
269		break;
270	}
271
272	if (!vma)
273		cookie = INVALID_COOKIE;
274
275	return cookie;
276}
277
278static unsigned long last_cookie = INVALID_COOKIE;
279
280static void add_cpu_switch(int i)
281{
282	add_event_entry(ESCAPE_CODE);
283	add_event_entry(CPU_SWITCH_CODE);
284	add_event_entry(i);
285	last_cookie = INVALID_COOKIE;
286}
287
288static void add_kernel_ctx_switch(unsigned int in_kernel)
289{
290	add_event_entry(ESCAPE_CODE);
291	if (in_kernel)
292		add_event_entry(KERNEL_ENTER_SWITCH_CODE);
293	else
294		add_event_entry(KERNEL_EXIT_SWITCH_CODE);
295}
296
297static void
298add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
299{
300	add_event_entry(ESCAPE_CODE);
301	add_event_entry(CTX_SWITCH_CODE);
302	add_event_entry(task->pid);
303	add_event_entry(cookie);
304	/* Another code for daemon back-compat */
305	add_event_entry(ESCAPE_CODE);
306	add_event_entry(CTX_TGID_CODE);
307	add_event_entry(task->tgid);
308}
309
310
311static void add_cookie_switch(unsigned long cookie)
312{
313	add_event_entry(ESCAPE_CODE);
314	add_event_entry(COOKIE_SWITCH_CODE);
315	add_event_entry(cookie);
316}
317
318
319static void add_trace_begin(void)
320{
321	add_event_entry(ESCAPE_CODE);
322	add_event_entry(TRACE_BEGIN_CODE);
323}
324
325static void add_data(struct op_entry *entry, struct mm_struct *mm)
326{
327	unsigned long code, pc, val;
328	unsigned long cookie;
329	off_t offset;
330
331	if (!op_cpu_buffer_get_data(entry, &code))
332		return;
333	if (!op_cpu_buffer_get_data(entry, &pc))
334		return;
335	if (!op_cpu_buffer_get_size(entry))
336		return;
337
338	if (mm) {
339		cookie = lookup_dcookie(mm, pc, &offset);
340
341		if (cookie == NO_COOKIE)
342			offset = pc;
343		if (cookie == INVALID_COOKIE) {
344			atomic_inc(&oprofile_stats.sample_lost_no_mapping);
345			offset = pc;
346		}
347		if (cookie != last_cookie) {
348			add_cookie_switch(cookie);
349			last_cookie = cookie;
350		}
351	} else
352		offset = pc;
353
354	add_event_entry(ESCAPE_CODE);
355	add_event_entry(code);
356	add_event_entry(offset);	/* Offset from Dcookie */
357
358	while (op_cpu_buffer_get_data(entry, &val))
359		add_event_entry(val);
360}
361
362static inline void add_sample_entry(unsigned long offset, unsigned long event)
363{
364	add_event_entry(offset);
365	add_event_entry(event);
366}
367
368
369/*
370 * Add a sample to the global event buffer. If possible the
371 * sample is converted into a persistent dentry/offset pair
372 * for later lookup from userspace. Return 0 on failure.
373 */
374static int
375add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
376{
377	unsigned long cookie;
378	off_t offset;
379
380	if (in_kernel) {
381		add_sample_entry(s->eip, s->event);
382		return 1;
383	}
384
385	/* add userspace sample */
386
387	if (!mm) {
388		atomic_inc(&oprofile_stats.sample_lost_no_mm);
389		return 0;
390	}
391
392	cookie = lookup_dcookie(mm, s->eip, &offset);
393
394	if (cookie == INVALID_COOKIE) {
395		atomic_inc(&oprofile_stats.sample_lost_no_mapping);
396		return 0;
397	}
398
399	if (cookie != last_cookie) {
400		add_cookie_switch(cookie);
401		last_cookie = cookie;
402	}
403
404	add_sample_entry(offset, s->event);
405
406	return 1;
407}
408
409
410static void release_mm(struct mm_struct *mm)
411{
412	if (!mm)
413		return;
414	up_read(&mm->mmap_sem);
415	mmput(mm);
416}
417
418
419static struct mm_struct *take_tasks_mm(struct task_struct *task)
420{
421	struct mm_struct *mm = get_task_mm(task);
422	if (mm)
423		down_read(&mm->mmap_sem);
424	return mm;
425}
426
427
428static inline int is_code(unsigned long val)
429{
430	return val == ESCAPE_CODE;
431}
432
433
434/* Move tasks along towards death. Any tasks on dead_tasks
435 * will definitely have no remaining references in any
436 * CPU buffers at this point, because we use two lists,
437 * and to have reached the list, it must have gone through
438 * one full sync already.
439 */
440static void process_task_mortuary(void)
441{
442	unsigned long flags;
443	LIST_HEAD(local_dead_tasks);
444	struct task_struct *task;
445	struct task_struct *ttask;
446
447	spin_lock_irqsave(&task_mortuary, flags);
448
449	list_splice_init(&dead_tasks, &local_dead_tasks);
450	list_splice_init(&dying_tasks, &dead_tasks);
451
452	spin_unlock_irqrestore(&task_mortuary, flags);
453
454	list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
455		list_del(&task->tasks);
456		free_task(task);
457	}
458}
459
460
461static void mark_done(int cpu)
462{
463	int i;
464
465	cpumask_set_cpu(cpu, marked_cpus);
466
467	for_each_online_cpu(i) {
468		if (!cpumask_test_cpu(i, marked_cpus))
469			return;
470	}
471
472	/* All CPUs have been processed at least once,
473	 * we can process the mortuary once
474	 */
475	process_task_mortuary();
476
477	cpumask_clear(marked_cpus);
478}
479
480
481typedef enum {
482	sb_bt_ignore = -2,
483	sb_buffer_start,
484	sb_bt_start,
485	sb_sample_start,
486} sync_buffer_state;
487
488/* Sync one of the CPU's buffers into the global event buffer.
489 * Here we need to go through each batch of samples punctuated
490 * by context switch notes, taking the task's mmap_sem and doing
491 * lookup in task->mm->mmap to convert EIP into dcookie/offset
492 * value.
493 */
494void sync_buffer(int cpu)
495{
496	struct mm_struct *mm = NULL;
497	struct mm_struct *oldmm;
498	unsigned long val;
499	struct task_struct *new;
500	unsigned long cookie = 0;
501	int in_kernel = 1;
502	sync_buffer_state state = sb_buffer_start;
503	unsigned int i;
504	unsigned long available;
505	unsigned long flags;
506	struct op_entry entry;
507	struct op_sample *sample;
508
509	mutex_lock(&buffer_mutex);
510
511	add_cpu_switch(cpu);
512
513	op_cpu_buffer_reset(cpu);
514	available = op_cpu_buffer_entries(cpu);
515
516	for (i = 0; i < available; ++i) {
517		sample = op_cpu_buffer_read_entry(&entry, cpu);
518		if (!sample)
519			break;
520
521		if (is_code(sample->eip)) {
522			flags = sample->event;
523			if (flags & TRACE_BEGIN) {
524				state = sb_bt_start;
525				add_trace_begin();
526			}
527			if (flags & KERNEL_CTX_SWITCH) {
528				/* kernel/userspace switch */
529				in_kernel = flags & IS_KERNEL;
530				if (state == sb_buffer_start)
531					state = sb_sample_start;
532				add_kernel_ctx_switch(flags & IS_KERNEL);
533			}
534			if (flags & USER_CTX_SWITCH
535			    && op_cpu_buffer_get_data(&entry, &val)) {
536				/* userspace context switch */
537				new = (struct task_struct *)val;
538				oldmm = mm;
539				release_mm(oldmm);
540				mm = take_tasks_mm(new);
541				if (mm != oldmm)
542					cookie = get_exec_dcookie(mm);
543				add_user_ctx_switch(new, cookie);
544			}
545			if (op_cpu_buffer_get_size(&entry))
546				add_data(&entry, mm);
547			continue;
548		}
549
550		if (state < sb_bt_start)
551			/* ignore sample */
552			continue;
553
554		if (add_sample(mm, sample, in_kernel))
555			continue;
556
557		/* ignore backtraces if failed to add a sample */
558		if (state == sb_bt_start) {
559			state = sb_bt_ignore;
560			atomic_inc(&oprofile_stats.bt_lost_no_mapping);
561		}
562	}
563	release_mm(mm);
564
565	mark_done(cpu);
566
567	mutex_unlock(&buffer_mutex);
568}
569
570/* The function can be used to add a buffer worth of data directly to
571 * the kernel buffer. The buffer is assumed to be a circular buffer.
572 * Take the entries from index start and end at index end, wrapping
573 * at max_entries.
574 */
575void oprofile_put_buff(unsigned long *buf, unsigned int start,
576		       unsigned int stop, unsigned int max)
577{
578	int i;
579
580	i = start;
581
582	mutex_lock(&buffer_mutex);
583	while (i != stop) {
584		add_event_entry(buf[i++]);
585
586		if (i >= max)
587			i = 0;
588	}
589
590	mutex_unlock(&buffer_mutex);
591}
592