• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, write to the
17	Free Software Foundation, Inc.,
18	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22	Module: rt61pci
23	Abstract: rt61pci device specific routines.
24	Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27#include <linux/crc-itu-t.h>
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/slab.h>
34#include <linux/pci.h>
35#include <linux/eeprom_93cx6.h>
36
37#include "rt2x00.h"
38#include "rt2x00pci.h"
39#include "rt61pci.h"
40
41/*
42 * Allow hardware encryption to be disabled.
43 */
44static int modparam_nohwcrypt = 0;
45module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
48/*
49 * Register access.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attempt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 */
59#define WAIT_FOR_BBP(__dev, __reg) \
60	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61#define WAIT_FOR_RF(__dev, __reg) \
62	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63#define WAIT_FOR_MCU(__dev, __reg) \
64	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65			       H2M_MAILBOX_CSR_OWNER, (__reg))
66
67static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68			      const unsigned int word, const u8 value)
69{
70	u32 reg;
71
72	mutex_lock(&rt2x00dev->csr_mutex);
73
74	/*
75	 * Wait until the BBP becomes available, afterwards we
76	 * can safely write the new data into the register.
77	 */
78	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79		reg = 0;
80		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86	}
87
88	mutex_unlock(&rt2x00dev->csr_mutex);
89}
90
91static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92			     const unsigned int word, u8 *value)
93{
94	u32 reg;
95
96	mutex_lock(&rt2x00dev->csr_mutex);
97
98	/*
99	 * Wait until the BBP becomes available, afterwards we
100	 * can safely write the read request into the register.
101	 * After the data has been written, we wait until hardware
102	 * returns the correct value, if at any time the register
103	 * doesn't become available in time, reg will be 0xffffffff
104	 * which means we return 0xff to the caller.
105	 */
106	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107		reg = 0;
108		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111
112		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113
114		WAIT_FOR_BBP(rt2x00dev, &reg);
115	}
116
117	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118
119	mutex_unlock(&rt2x00dev->csr_mutex);
120}
121
122static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123			     const unsigned int word, const u32 value)
124{
125	u32 reg;
126
127	mutex_lock(&rt2x00dev->csr_mutex);
128
129	/*
130	 * Wait until the RF becomes available, afterwards we
131	 * can safely write the new data into the register.
132	 */
133	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134		reg = 0;
135		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141		rt2x00_rf_write(rt2x00dev, word, value);
142	}
143
144	mutex_unlock(&rt2x00dev->csr_mutex);
145}
146
147static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148				const u8 command, const u8 token,
149				const u8 arg0, const u8 arg1)
150{
151	u32 reg;
152
153	mutex_lock(&rt2x00dev->csr_mutex);
154
155	/*
156	 * Wait until the MCU becomes available, afterwards we
157	 * can safely write the new data into the register.
158	 */
159	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170	}
171
172	mutex_unlock(&rt2x00dev->csr_mutex);
173
174}
175
176static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177{
178	struct rt2x00_dev *rt2x00dev = eeprom->data;
179	u32 reg;
180
181	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185	eeprom->reg_data_clock =
186	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187	eeprom->reg_chip_select =
188	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189}
190
191static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192{
193	struct rt2x00_dev *rt2x00dev = eeprom->data;
194	u32 reg = 0;
195
196	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199			   !!eeprom->reg_data_clock);
200	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201			   !!eeprom->reg_chip_select);
202
203	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204}
205
206#ifdef CONFIG_RT2X00_LIB_DEBUGFS
207static const struct rt2x00debug rt61pci_rt2x00debug = {
208	.owner	= THIS_MODULE,
209	.csr	= {
210		.read		= rt2x00pci_register_read,
211		.write		= rt2x00pci_register_write,
212		.flags		= RT2X00DEBUGFS_OFFSET,
213		.word_base	= CSR_REG_BASE,
214		.word_size	= sizeof(u32),
215		.word_count	= CSR_REG_SIZE / sizeof(u32),
216	},
217	.eeprom	= {
218		.read		= rt2x00_eeprom_read,
219		.write		= rt2x00_eeprom_write,
220		.word_base	= EEPROM_BASE,
221		.word_size	= sizeof(u16),
222		.word_count	= EEPROM_SIZE / sizeof(u16),
223	},
224	.bbp	= {
225		.read		= rt61pci_bbp_read,
226		.write		= rt61pci_bbp_write,
227		.word_base	= BBP_BASE,
228		.word_size	= sizeof(u8),
229		.word_count	= BBP_SIZE / sizeof(u8),
230	},
231	.rf	= {
232		.read		= rt2x00_rf_read,
233		.write		= rt61pci_rf_write,
234		.word_base	= RF_BASE,
235		.word_size	= sizeof(u32),
236		.word_count	= RF_SIZE / sizeof(u32),
237	},
238};
239#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
241static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242{
243	u32 reg;
244
245	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247}
248
249#ifdef CONFIG_RT2X00_LIB_LEDS
250static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251				   enum led_brightness brightness)
252{
253	struct rt2x00_led *led =
254	    container_of(led_cdev, struct rt2x00_led, led_dev);
255	unsigned int enabled = brightness != LED_OFF;
256	unsigned int a_mode =
257	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258	unsigned int bg_mode =
259	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261	if (led->type == LED_TYPE_RADIO) {
262		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263				   MCU_LEDCS_RADIO_STATUS, enabled);
264
265		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266				    (led->rt2x00dev->led_mcu_reg & 0xff),
267				    ((led->rt2x00dev->led_mcu_reg >> 8)));
268	} else if (led->type == LED_TYPE_ASSOC) {
269		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272				   MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275				    (led->rt2x00dev->led_mcu_reg & 0xff),
276				    ((led->rt2x00dev->led_mcu_reg >> 8)));
277	} else if (led->type == LED_TYPE_QUALITY) {
278		/*
279		 * The brightness is divided into 6 levels (0 - 5),
280		 * this means we need to convert the brightness
281		 * argument into the matching level within that range.
282		 */
283		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284				    brightness / (LED_FULL / 6), 0);
285	}
286}
287
288static int rt61pci_blink_set(struct led_classdev *led_cdev,
289			     unsigned long *delay_on,
290			     unsigned long *delay_off)
291{
292	struct rt2x00_led *led =
293	    container_of(led_cdev, struct rt2x00_led, led_dev);
294	u32 reg;
295
296	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301	return 0;
302}
303
304static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305			     struct rt2x00_led *led,
306			     enum led_type type)
307{
308	led->rt2x00dev = rt2x00dev;
309	led->type = type;
310	led->led_dev.brightness_set = rt61pci_brightness_set;
311	led->led_dev.blink_set = rt61pci_blink_set;
312	led->flags = LED_INITIALIZED;
313}
314#endif /* CONFIG_RT2X00_LIB_LEDS */
315
316/*
317 * Configuration handlers.
318 */
319static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320				     struct rt2x00lib_crypto *crypto,
321				     struct ieee80211_key_conf *key)
322{
323	struct hw_key_entry key_entry;
324	struct rt2x00_field32 field;
325	u32 mask;
326	u32 reg;
327
328	if (crypto->cmd == SET_KEY) {
329		/*
330		 * rt2x00lib can't determine the correct free
331		 * key_idx for shared keys. We have 1 register
332		 * with key valid bits. The goal is simple, read
333		 * the register, if that is full we have no slots
334		 * left.
335		 * Note that each BSS is allowed to have up to 4
336		 * shared keys, so put a mask over the allowed
337		 * entries.
338		 */
339		mask = (0xf << crypto->bssidx);
340
341		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342		reg &= mask;
343
344		if (reg && reg == mask)
345			return -ENOSPC;
346
347		key->hw_key_idx += reg ? ffz(reg) : 0;
348
349		/*
350		 * Upload key to hardware
351		 */
352		memcpy(key_entry.key, crypto->key,
353		       sizeof(key_entry.key));
354		memcpy(key_entry.tx_mic, crypto->tx_mic,
355		       sizeof(key_entry.tx_mic));
356		memcpy(key_entry.rx_mic, crypto->rx_mic,
357		       sizeof(key_entry.rx_mic));
358
359		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360		rt2x00pci_register_multiwrite(rt2x00dev, reg,
361					      &key_entry, sizeof(key_entry));
362
363		/*
364		 * The cipher types are stored over 2 registers.
365		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367		 * Using the correct defines correctly will cause overhead,
368		 * so just calculate the correct offset.
369		 */
370		if (key->hw_key_idx < 8) {
371			field.bit_offset = (3 * key->hw_key_idx);
372			field.bit_mask = 0x7 << field.bit_offset;
373
374			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375			rt2x00_set_field32(&reg, field, crypto->cipher);
376			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377		} else {
378			field.bit_offset = (3 * (key->hw_key_idx - 8));
379			field.bit_mask = 0x7 << field.bit_offset;
380
381			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382			rt2x00_set_field32(&reg, field, crypto->cipher);
383			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384		}
385
386		/*
387		 * The driver does not support the IV/EIV generation
388		 * in hardware. However it doesn't support the IV/EIV
389		 * inside the ieee80211 frame either, but requires it
390		 * to be provided separately for the descriptor.
391		 * rt2x00lib will cut the IV/EIV data out of all frames
392		 * given to us by mac80211, but we must tell mac80211
393		 * to generate the IV/EIV data.
394		 */
395		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396	}
397
398	/*
399	 * SEC_CSR0 contains only single-bit fields to indicate
400	 * a particular key is valid. Because using the FIELD32()
401	 * defines directly will cause a lot of overhead, we use
402	 * a calculation to determine the correct bit directly.
403	 */
404	mask = 1 << key->hw_key_idx;
405
406	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407	if (crypto->cmd == SET_KEY)
408		reg |= mask;
409	else if (crypto->cmd == DISABLE_KEY)
410		reg &= ~mask;
411	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413	return 0;
414}
415
416static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417				       struct rt2x00lib_crypto *crypto,
418				       struct ieee80211_key_conf *key)
419{
420	struct hw_pairwise_ta_entry addr_entry;
421	struct hw_key_entry key_entry;
422	u32 mask;
423	u32 reg;
424
425	if (crypto->cmd == SET_KEY) {
426		/*
427		 * rt2x00lib can't determine the correct free
428		 * key_idx for pairwise keys. We have 2 registers
429		 * with key valid bits. The goal is simple: read
430		 * the first register. If that is full, move to
431		 * the next register.
432		 * When both registers are full, we drop the key.
433		 * Otherwise, we use the first invalid entry.
434		 */
435		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436		if (reg && reg == ~0) {
437			key->hw_key_idx = 32;
438			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439			if (reg && reg == ~0)
440				return -ENOSPC;
441		}
442
443		key->hw_key_idx += reg ? ffz(reg) : 0;
444
445		/*
446		 * Upload key to hardware
447		 */
448		memcpy(key_entry.key, crypto->key,
449		       sizeof(key_entry.key));
450		memcpy(key_entry.tx_mic, crypto->tx_mic,
451		       sizeof(key_entry.tx_mic));
452		memcpy(key_entry.rx_mic, crypto->rx_mic,
453		       sizeof(key_entry.rx_mic));
454
455		memset(&addr_entry, 0, sizeof(addr_entry));
456		memcpy(&addr_entry, crypto->address, ETH_ALEN);
457		addr_entry.cipher = crypto->cipher;
458
459		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460		rt2x00pci_register_multiwrite(rt2x00dev, reg,
461					      &key_entry, sizeof(key_entry));
462
463		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464		rt2x00pci_register_multiwrite(rt2x00dev, reg,
465					      &addr_entry, sizeof(addr_entry));
466
467		/*
468		 * Enable pairwise lookup table for given BSS idx.
469		 * Without this, received frames will not be decrypted
470		 * by the hardware.
471		 */
472		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473		reg |= (1 << crypto->bssidx);
474		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476		/*
477		 * The driver does not support the IV/EIV generation
478		 * in hardware. However it doesn't support the IV/EIV
479		 * inside the ieee80211 frame either, but requires it
480		 * to be provided separately for the descriptor.
481		 * rt2x00lib will cut the IV/EIV data out of all frames
482		 * given to us by mac80211, but we must tell mac80211
483		 * to generate the IV/EIV data.
484		 */
485		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486	}
487
488	/*
489	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490	 * a particular key is valid. Because using the FIELD32()
491	 * defines directly will cause a lot of overhead, we use
492	 * a calculation to determine the correct bit directly.
493	 */
494	if (key->hw_key_idx < 32) {
495		mask = 1 << key->hw_key_idx;
496
497		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498		if (crypto->cmd == SET_KEY)
499			reg |= mask;
500		else if (crypto->cmd == DISABLE_KEY)
501			reg &= ~mask;
502		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503	} else {
504		mask = 1 << (key->hw_key_idx - 32);
505
506		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507		if (crypto->cmd == SET_KEY)
508			reg |= mask;
509		else if (crypto->cmd == DISABLE_KEY)
510			reg &= ~mask;
511		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512	}
513
514	return 0;
515}
516
517static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518				  const unsigned int filter_flags)
519{
520	u32 reg;
521
522	/*
523	 * Start configuration steps.
524	 * Note that the version error will always be dropped
525	 * and broadcast frames will always be accepted since
526	 * there is no filter for it at this time.
527	 */
528	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530			   !(filter_flags & FIF_FCSFAIL));
531	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532			   !(filter_flags & FIF_PLCPFAIL));
533	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536			   !(filter_flags & FIF_PROMISC_IN_BSS));
537	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
539			   !rt2x00dev->intf_ap_count);
540	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542			   !(filter_flags & FIF_ALLMULTI));
543	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545			   !(filter_flags & FIF_CONTROL));
546	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547}
548
549static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550				struct rt2x00_intf *intf,
551				struct rt2x00intf_conf *conf,
552				const unsigned int flags)
553{
554	unsigned int beacon_base;
555	u32 reg;
556
557	if (flags & CONFIG_UPDATE_TYPE) {
558		/*
559		 * Clear current synchronisation setup.
560		 * For the Beacon base registers, we only need to clear
561		 * the first byte since that byte contains the VALID and OWNER
562		 * bits which (when set to 0) will invalidate the entire beacon.
563		 */
564		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
565		rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
566
567		/*
568		 * Enable synchronisation.
569		 */
570		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
575	}
576
577	if (flags & CONFIG_UPDATE_MAC) {
578		reg = le32_to_cpu(conf->mac[1]);
579		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
580		conf->mac[1] = cpu_to_le32(reg);
581
582		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
583					      conf->mac, sizeof(conf->mac));
584	}
585
586	if (flags & CONFIG_UPDATE_BSSID) {
587		reg = le32_to_cpu(conf->bssid[1]);
588		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
589		conf->bssid[1] = cpu_to_le32(reg);
590
591		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
592					      conf->bssid, sizeof(conf->bssid));
593	}
594}
595
596static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
597			       struct rt2x00lib_erp *erp)
598{
599	u32 reg;
600
601	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
602	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
603	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
604	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
605
606	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
607	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
608	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
609			   !!erp->short_preamble);
610	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
611
612	rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
613
614	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
615	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
616			   erp->beacon_int * 16);
617	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
618
619	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
620	rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
621	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622
623	rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
624	rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
625	rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
626	rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
627	rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
628}
629
630static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
631				      struct antenna_setup *ant)
632{
633	u8 r3;
634	u8 r4;
635	u8 r77;
636
637	rt61pci_bbp_read(rt2x00dev, 3, &r3);
638	rt61pci_bbp_read(rt2x00dev, 4, &r4);
639	rt61pci_bbp_read(rt2x00dev, 77, &r77);
640
641	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
642
643	/*
644	 * Configure the RX antenna.
645	 */
646	switch (ant->rx) {
647	case ANTENNA_HW_DIVERSITY:
648		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651		break;
652	case ANTENNA_A:
653		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657		else
658			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659		break;
660	case ANTENNA_B:
661	default:
662		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666		else
667			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668		break;
669	}
670
671	rt61pci_bbp_write(rt2x00dev, 77, r77);
672	rt61pci_bbp_write(rt2x00dev, 3, r3);
673	rt61pci_bbp_write(rt2x00dev, 4, r4);
674}
675
676static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677				      struct antenna_setup *ant)
678{
679	u8 r3;
680	u8 r4;
681	u8 r77;
682
683	rt61pci_bbp_read(rt2x00dev, 3, &r3);
684	rt61pci_bbp_read(rt2x00dev, 4, &r4);
685	rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
688	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
689			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
690
691	/*
692	 * Configure the RX antenna.
693	 */
694	switch (ant->rx) {
695	case ANTENNA_HW_DIVERSITY:
696		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
697		break;
698	case ANTENNA_A:
699		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
700		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
701		break;
702	case ANTENNA_B:
703	default:
704		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
705		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
706		break;
707	}
708
709	rt61pci_bbp_write(rt2x00dev, 77, r77);
710	rt61pci_bbp_write(rt2x00dev, 3, r3);
711	rt61pci_bbp_write(rt2x00dev, 4, r4);
712}
713
714static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
715					   const int p1, const int p2)
716{
717	u32 reg;
718
719	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
720
721	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
722	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
723
724	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
725	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
726
727	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
728}
729
730static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
731					struct antenna_setup *ant)
732{
733	u8 r3;
734	u8 r4;
735	u8 r77;
736
737	rt61pci_bbp_read(rt2x00dev, 3, &r3);
738	rt61pci_bbp_read(rt2x00dev, 4, &r4);
739	rt61pci_bbp_read(rt2x00dev, 77, &r77);
740
741	/*
742	 * Configure the RX antenna.
743	 */
744	switch (ant->rx) {
745	case ANTENNA_A:
746		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
747		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
748		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
749		break;
750	case ANTENNA_HW_DIVERSITY:
751	case ANTENNA_B:
752	default:
753		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
754		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
755		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
756		break;
757	}
758
759	rt61pci_bbp_write(rt2x00dev, 77, r77);
760	rt61pci_bbp_write(rt2x00dev, 3, r3);
761	rt61pci_bbp_write(rt2x00dev, 4, r4);
762}
763
764struct antenna_sel {
765	u8 word;
766	/*
767	 * value[0] -> non-LNA
768	 * value[1] -> LNA
769	 */
770	u8 value[2];
771};
772
773static const struct antenna_sel antenna_sel_a[] = {
774	{ 96,  { 0x58, 0x78 } },
775	{ 104, { 0x38, 0x48 } },
776	{ 75,  { 0xfe, 0x80 } },
777	{ 86,  { 0xfe, 0x80 } },
778	{ 88,  { 0xfe, 0x80 } },
779	{ 35,  { 0x60, 0x60 } },
780	{ 97,  { 0x58, 0x58 } },
781	{ 98,  { 0x58, 0x58 } },
782};
783
784static const struct antenna_sel antenna_sel_bg[] = {
785	{ 96,  { 0x48, 0x68 } },
786	{ 104, { 0x2c, 0x3c } },
787	{ 75,  { 0xfe, 0x80 } },
788	{ 86,  { 0xfe, 0x80 } },
789	{ 88,  { 0xfe, 0x80 } },
790	{ 35,  { 0x50, 0x50 } },
791	{ 97,  { 0x48, 0x48 } },
792	{ 98,  { 0x48, 0x48 } },
793};
794
795static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
796			       struct antenna_setup *ant)
797{
798	const struct antenna_sel *sel;
799	unsigned int lna;
800	unsigned int i;
801	u32 reg;
802
803	/*
804	 * We should never come here because rt2x00lib is supposed
805	 * to catch this and send us the correct antenna explicitely.
806	 */
807	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
808	       ant->tx == ANTENNA_SW_DIVERSITY);
809
810	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
811		sel = antenna_sel_a;
812		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
813	} else {
814		sel = antenna_sel_bg;
815		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
816	}
817
818	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
819		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
820
821	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
822
823	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
824			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
825	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
826			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
827
828	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
829
830	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
831		rt61pci_config_antenna_5x(rt2x00dev, ant);
832	else if (rt2x00_rf(rt2x00dev, RF2527))
833		rt61pci_config_antenna_2x(rt2x00dev, ant);
834	else if (rt2x00_rf(rt2x00dev, RF2529)) {
835		if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
836			rt61pci_config_antenna_2x(rt2x00dev, ant);
837		else
838			rt61pci_config_antenna_2529(rt2x00dev, ant);
839	}
840}
841
842static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
843				    struct rt2x00lib_conf *libconf)
844{
845	u16 eeprom;
846	short lna_gain = 0;
847
848	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
849		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
850			lna_gain += 14;
851
852		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
853		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
854	} else {
855		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
856			lna_gain += 14;
857
858		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
859		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
860	}
861
862	rt2x00dev->lna_gain = lna_gain;
863}
864
865static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
866				   struct rf_channel *rf, const int txpower)
867{
868	u8 r3;
869	u8 r94;
870	u8 smart;
871
872	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
873	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
874
875	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
876
877	rt61pci_bbp_read(rt2x00dev, 3, &r3);
878	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
879	rt61pci_bbp_write(rt2x00dev, 3, r3);
880
881	r94 = 6;
882	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
883		r94 += txpower - MAX_TXPOWER;
884	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
885		r94 += txpower;
886	rt61pci_bbp_write(rt2x00dev, 94, r94);
887
888	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
889	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
890	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
891	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
892
893	udelay(200);
894
895	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
896	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
897	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
898	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
899
900	udelay(200);
901
902	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
903	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
904	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
905	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
906
907	msleep(1);
908}
909
910static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
911				   const int txpower)
912{
913	struct rf_channel rf;
914
915	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
916	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
917	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
918	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
919
920	rt61pci_config_channel(rt2x00dev, &rf, txpower);
921}
922
923static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
924				    struct rt2x00lib_conf *libconf)
925{
926	u32 reg;
927
928	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
929	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
930	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
931	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
932	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
933			   libconf->conf->long_frame_max_tx_count);
934	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
935			   libconf->conf->short_frame_max_tx_count);
936	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
937}
938
939static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
940				struct rt2x00lib_conf *libconf)
941{
942	enum dev_state state =
943	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
944		STATE_SLEEP : STATE_AWAKE;
945	u32 reg;
946
947	if (state == STATE_SLEEP) {
948		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
949		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
950				   rt2x00dev->beacon_int - 10);
951		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
952				   libconf->conf->listen_interval - 1);
953		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
954
955		/* We must first disable autowake before it can be enabled */
956		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
957		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
958
959		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
960		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
961
962		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
963		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
964		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
965
966		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
967	} else {
968		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
969		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
970		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
971		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
972		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
973		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
974
975		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
976		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
977		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
978
979		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
980	}
981}
982
983static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
984			   struct rt2x00lib_conf *libconf,
985			   const unsigned int flags)
986{
987	/* Always recalculate LNA gain before changing configuration */
988	rt61pci_config_lna_gain(rt2x00dev, libconf);
989
990	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
991		rt61pci_config_channel(rt2x00dev, &libconf->rf,
992				       libconf->conf->power_level);
993	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
994	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
995		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
996	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
997		rt61pci_config_retry_limit(rt2x00dev, libconf);
998	if (flags & IEEE80211_CONF_CHANGE_PS)
999		rt61pci_config_ps(rt2x00dev, libconf);
1000}
1001
1002/*
1003 * Link tuning
1004 */
1005static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1006			       struct link_qual *qual)
1007{
1008	u32 reg;
1009
1010	/*
1011	 * Update FCS error count from register.
1012	 */
1013	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1014	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1015
1016	/*
1017	 * Update False CCA count from register.
1018	 */
1019	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1020	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1021}
1022
1023static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1024				   struct link_qual *qual, u8 vgc_level)
1025{
1026	if (qual->vgc_level != vgc_level) {
1027		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1028		qual->vgc_level = vgc_level;
1029		qual->vgc_level_reg = vgc_level;
1030	}
1031}
1032
1033static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1034				struct link_qual *qual)
1035{
1036	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1037}
1038
1039static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1040			       struct link_qual *qual, const u32 count)
1041{
1042	u8 up_bound;
1043	u8 low_bound;
1044
1045	/*
1046	 * Determine r17 bounds.
1047	 */
1048	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1049		low_bound = 0x28;
1050		up_bound = 0x48;
1051		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1052			low_bound += 0x10;
1053			up_bound += 0x10;
1054		}
1055	} else {
1056		low_bound = 0x20;
1057		up_bound = 0x40;
1058		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1059			low_bound += 0x10;
1060			up_bound += 0x10;
1061		}
1062	}
1063
1064	/*
1065	 * If we are not associated, we should go straight to the
1066	 * dynamic CCA tuning.
1067	 */
1068	if (!rt2x00dev->intf_associated)
1069		goto dynamic_cca_tune;
1070
1071	/*
1072	 * Special big-R17 for very short distance
1073	 */
1074	if (qual->rssi >= -35) {
1075		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1076		return;
1077	}
1078
1079	/*
1080	 * Special big-R17 for short distance
1081	 */
1082	if (qual->rssi >= -58) {
1083		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1084		return;
1085	}
1086
1087	/*
1088	 * Special big-R17 for middle-short distance
1089	 */
1090	if (qual->rssi >= -66) {
1091		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1092		return;
1093	}
1094
1095	/*
1096	 * Special mid-R17 for middle distance
1097	 */
1098	if (qual->rssi >= -74) {
1099		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1100		return;
1101	}
1102
1103	/*
1104	 * Special case: Change up_bound based on the rssi.
1105	 * Lower up_bound when rssi is weaker then -74 dBm.
1106	 */
1107	up_bound -= 2 * (-74 - qual->rssi);
1108	if (low_bound > up_bound)
1109		up_bound = low_bound;
1110
1111	if (qual->vgc_level > up_bound) {
1112		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1113		return;
1114	}
1115
1116dynamic_cca_tune:
1117
1118	/*
1119	 * r17 does not yet exceed upper limit, continue and base
1120	 * the r17 tuning on the false CCA count.
1121	 */
1122	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1123		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1124	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1125		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1126}
1127
1128/*
1129 * Firmware functions
1130 */
1131static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1132{
1133	u16 chip;
1134	char *fw_name;
1135
1136	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1137	switch (chip) {
1138	case RT2561_PCI_ID:
1139		fw_name = FIRMWARE_RT2561;
1140		break;
1141	case RT2561s_PCI_ID:
1142		fw_name = FIRMWARE_RT2561s;
1143		break;
1144	case RT2661_PCI_ID:
1145		fw_name = FIRMWARE_RT2661;
1146		break;
1147	default:
1148		fw_name = NULL;
1149		break;
1150	}
1151
1152	return fw_name;
1153}
1154
1155static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1156				  const u8 *data, const size_t len)
1157{
1158	u16 fw_crc;
1159	u16 crc;
1160
1161	/*
1162	 * Only support 8kb firmware files.
1163	 */
1164	if (len != 8192)
1165		return FW_BAD_LENGTH;
1166
1167	/*
1168	 * The last 2 bytes in the firmware array are the crc checksum itself.
1169	 * This means that we should never pass those 2 bytes to the crc
1170	 * algorithm.
1171	 */
1172	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1173
1174	/*
1175	 * Use the crc itu-t algorithm.
1176	 */
1177	crc = crc_itu_t(0, data, len - 2);
1178	crc = crc_itu_t_byte(crc, 0);
1179	crc = crc_itu_t_byte(crc, 0);
1180
1181	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1182}
1183
1184static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1185				 const u8 *data, const size_t len)
1186{
1187	int i;
1188	u32 reg;
1189
1190	/*
1191	 * Wait for stable hardware.
1192	 */
1193	for (i = 0; i < 100; i++) {
1194		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1195		if (reg)
1196			break;
1197		msleep(1);
1198	}
1199
1200	if (!reg) {
1201		ERROR(rt2x00dev, "Unstable hardware.\n");
1202		return -EBUSY;
1203	}
1204
1205	/*
1206	 * Prepare MCU and mailbox for firmware loading.
1207	 */
1208	reg = 0;
1209	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1210	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1211	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1212	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1213	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1214
1215	/*
1216	 * Write firmware to device.
1217	 */
1218	reg = 0;
1219	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1220	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1221	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1222
1223	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1224				      data, len);
1225
1226	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1227	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1228
1229	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1230	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1231
1232	for (i = 0; i < 100; i++) {
1233		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1234		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1235			break;
1236		msleep(1);
1237	}
1238
1239	if (i == 100) {
1240		ERROR(rt2x00dev, "MCU Control register not ready.\n");
1241		return -EBUSY;
1242	}
1243
1244	/*
1245	 * Hardware needs another millisecond before it is ready.
1246	 */
1247	msleep(1);
1248
1249	/*
1250	 * Reset MAC and BBP registers.
1251	 */
1252	reg = 0;
1253	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1254	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1255	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1256
1257	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1258	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1259	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1260	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1261
1262	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1263	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1264	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1265
1266	return 0;
1267}
1268
1269/*
1270 * Initialization functions.
1271 */
1272static bool rt61pci_get_entry_state(struct queue_entry *entry)
1273{
1274	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1275	u32 word;
1276
1277	if (entry->queue->qid == QID_RX) {
1278		rt2x00_desc_read(entry_priv->desc, 0, &word);
1279
1280		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1281	} else {
1282		rt2x00_desc_read(entry_priv->desc, 0, &word);
1283
1284		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1285		        rt2x00_get_field32(word, TXD_W0_VALID));
1286	}
1287}
1288
1289static void rt61pci_clear_entry(struct queue_entry *entry)
1290{
1291	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1292	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1293	u32 word;
1294
1295	if (entry->queue->qid == QID_RX) {
1296		rt2x00_desc_read(entry_priv->desc, 5, &word);
1297		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1298				   skbdesc->skb_dma);
1299		rt2x00_desc_write(entry_priv->desc, 5, word);
1300
1301		rt2x00_desc_read(entry_priv->desc, 0, &word);
1302		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1303		rt2x00_desc_write(entry_priv->desc, 0, word);
1304	} else {
1305		rt2x00_desc_read(entry_priv->desc, 0, &word);
1306		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1307		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1308		rt2x00_desc_write(entry_priv->desc, 0, word);
1309	}
1310}
1311
1312static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1313{
1314	struct queue_entry_priv_pci *entry_priv;
1315	u32 reg;
1316
1317	/*
1318	 * Initialize registers.
1319	 */
1320	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1321	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1322			   rt2x00dev->tx[0].limit);
1323	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1324			   rt2x00dev->tx[1].limit);
1325	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1326			   rt2x00dev->tx[2].limit);
1327	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1328			   rt2x00dev->tx[3].limit);
1329	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1330
1331	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1332	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1333			   rt2x00dev->tx[0].desc_size / 4);
1334	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1335
1336	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1337	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1338	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1339			   entry_priv->desc_dma);
1340	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1341
1342	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1343	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1344	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1345			   entry_priv->desc_dma);
1346	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1347
1348	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1349	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1350	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1351			   entry_priv->desc_dma);
1352	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1353
1354	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1355	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1356	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1357			   entry_priv->desc_dma);
1358	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1359
1360	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1361	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1362	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1363			   rt2x00dev->rx->desc_size / 4);
1364	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1365	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1366
1367	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1368	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1369	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1370			   entry_priv->desc_dma);
1371	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1372
1373	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1374	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1375	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1376	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1377	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1378	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1379
1380	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1381	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1382	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1383	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1384	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1385	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1386
1387	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1388	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1389	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1390
1391	return 0;
1392}
1393
1394static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1395{
1396	u32 reg;
1397
1398	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1399	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1400	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1401	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1402	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1403
1404	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1405	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1406	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1407	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1408	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1409	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1410	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1411	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1412	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1413	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1414
1415	/*
1416	 * CCK TXD BBP registers
1417	 */
1418	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1419	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1420	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1421	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1422	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1423	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1424	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1425	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1426	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1427	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1428
1429	/*
1430	 * OFDM TXD BBP registers
1431	 */
1432	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1433	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1434	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1435	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1436	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1437	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1438	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1439	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1440
1441	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1442	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1443	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1444	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1445	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1446	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1447
1448	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1449	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1450	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1451	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1452	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1453	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1454
1455	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1456	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1457	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1458	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1459	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1460	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1461	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1462	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1463
1464	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1465
1466	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1467
1468	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1469	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1470	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1471
1472	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1473
1474	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1475		return -EBUSY;
1476
1477	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1478
1479	/*
1480	 * Invalidate all Shared Keys (SEC_CSR0),
1481	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1482	 */
1483	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1484	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1485	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1486
1487	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1488	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1489	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1490	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1491
1492	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1493
1494	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1495
1496	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1497
1498	/*
1499	 * Clear all beacons
1500	 * For the Beacon base registers we only need to clear
1501	 * the first byte since that byte contains the VALID and OWNER
1502	 * bits which (when set to 0) will invalidate the entire beacon.
1503	 */
1504	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1505	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1506	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1507	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1508
1509	/*
1510	 * We must clear the error counters.
1511	 * These registers are cleared on read,
1512	 * so we may pass a useless variable to store the value.
1513	 */
1514	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1515	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1516	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1517
1518	/*
1519	 * Reset MAC and BBP registers.
1520	 */
1521	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1522	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1523	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1524	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1525
1526	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1527	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1528	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1529	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1530
1531	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1532	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1533	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1534
1535	return 0;
1536}
1537
1538static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1539{
1540	unsigned int i;
1541	u8 value;
1542
1543	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1544		rt61pci_bbp_read(rt2x00dev, 0, &value);
1545		if ((value != 0xff) && (value != 0x00))
1546			return 0;
1547		udelay(REGISTER_BUSY_DELAY);
1548	}
1549
1550	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1551	return -EACCES;
1552}
1553
1554static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1555{
1556	unsigned int i;
1557	u16 eeprom;
1558	u8 reg_id;
1559	u8 value;
1560
1561	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1562		return -EACCES;
1563
1564	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1565	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1566	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1567	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1568	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1569	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1570	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1571	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1572	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1573	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1574	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1575	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1576	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1577	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1578	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1579	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1580	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1581	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1582	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1583	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1584	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1585	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1586	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1587	rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1588
1589	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1590		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1591
1592		if (eeprom != 0xffff && eeprom != 0x0000) {
1593			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1594			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1595			rt61pci_bbp_write(rt2x00dev, reg_id, value);
1596		}
1597	}
1598
1599	return 0;
1600}
1601
1602/*
1603 * Device state switch handlers.
1604 */
1605static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1606			      enum dev_state state)
1607{
1608	u32 reg;
1609
1610	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1611	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1612			   (state == STATE_RADIO_RX_OFF) ||
1613			   (state == STATE_RADIO_RX_OFF_LINK));
1614	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1615}
1616
1617static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1618			       enum dev_state state)
1619{
1620	int mask = (state == STATE_RADIO_IRQ_OFF) ||
1621		   (state == STATE_RADIO_IRQ_OFF_ISR);
1622	u32 reg;
1623
1624	/*
1625	 * When interrupts are being enabled, the interrupt registers
1626	 * should clear the register to assure a clean state.
1627	 */
1628	if (state == STATE_RADIO_IRQ_ON) {
1629		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1630		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1631
1632		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1633		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1634	}
1635
1636	/*
1637	 * Only toggle the interrupts bits we are going to use.
1638	 * Non-checked interrupt bits are disabled by default.
1639	 */
1640	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1641	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1642	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1643	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1644	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1645	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1646
1647	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1648	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1649	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1650	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1651	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1652	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1653	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1654	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1655	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1656	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1657}
1658
1659static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1660{
1661	u32 reg;
1662
1663	/*
1664	 * Initialize all registers.
1665	 */
1666	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1667		     rt61pci_init_registers(rt2x00dev) ||
1668		     rt61pci_init_bbp(rt2x00dev)))
1669		return -EIO;
1670
1671	/*
1672	 * Enable RX.
1673	 */
1674	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1675	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1676	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1677
1678	return 0;
1679}
1680
1681static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1682{
1683	/*
1684	 * Disable power
1685	 */
1686	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1687}
1688
1689static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1690{
1691	u32 reg, reg2;
1692	unsigned int i;
1693	char put_to_sleep;
1694
1695	put_to_sleep = (state != STATE_AWAKE);
1696
1697	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1698	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1699	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1700	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1701
1702	/*
1703	 * Device is not guaranteed to be in the requested state yet.
1704	 * We must wait until the register indicates that the
1705	 * device has entered the correct state.
1706	 */
1707	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1708		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1709		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1710		if (state == !put_to_sleep)
1711			return 0;
1712		rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1713		msleep(10);
1714	}
1715
1716	return -EBUSY;
1717}
1718
1719static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1720				    enum dev_state state)
1721{
1722	int retval = 0;
1723
1724	switch (state) {
1725	case STATE_RADIO_ON:
1726		retval = rt61pci_enable_radio(rt2x00dev);
1727		break;
1728	case STATE_RADIO_OFF:
1729		rt61pci_disable_radio(rt2x00dev);
1730		break;
1731	case STATE_RADIO_RX_ON:
1732	case STATE_RADIO_RX_ON_LINK:
1733	case STATE_RADIO_RX_OFF:
1734	case STATE_RADIO_RX_OFF_LINK:
1735		rt61pci_toggle_rx(rt2x00dev, state);
1736		break;
1737	case STATE_RADIO_IRQ_ON:
1738	case STATE_RADIO_IRQ_ON_ISR:
1739	case STATE_RADIO_IRQ_OFF:
1740	case STATE_RADIO_IRQ_OFF_ISR:
1741		rt61pci_toggle_irq(rt2x00dev, state);
1742		break;
1743	case STATE_DEEP_SLEEP:
1744	case STATE_SLEEP:
1745	case STATE_STANDBY:
1746	case STATE_AWAKE:
1747		retval = rt61pci_set_state(rt2x00dev, state);
1748		break;
1749	default:
1750		retval = -ENOTSUPP;
1751		break;
1752	}
1753
1754	if (unlikely(retval))
1755		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1756		      state, retval);
1757
1758	return retval;
1759}
1760
1761/*
1762 * TX descriptor initialization
1763 */
1764static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1765				  struct sk_buff *skb,
1766				  struct txentry_desc *txdesc)
1767{
1768	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1769	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1770	__le32 *txd = entry_priv->desc;
1771	u32 word;
1772
1773	/*
1774	 * Start writing the descriptor words.
1775	 */
1776	rt2x00_desc_read(txd, 1, &word);
1777	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1778	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1779	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1780	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1781	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1782	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1783			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1784	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1785	rt2x00_desc_write(txd, 1, word);
1786
1787	rt2x00_desc_read(txd, 2, &word);
1788	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1789	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1790	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1791	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1792	rt2x00_desc_write(txd, 2, word);
1793
1794	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1795		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1796		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1797	}
1798
1799	rt2x00_desc_read(txd, 5, &word);
1800	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1801	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1802			   skbdesc->entry->entry_idx);
1803	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1804			   TXPOWER_TO_DEV(rt2x00dev->tx_power));
1805	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1806	rt2x00_desc_write(txd, 5, word);
1807
1808	if (txdesc->queue != QID_BEACON) {
1809		rt2x00_desc_read(txd, 6, &word);
1810		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1811				   skbdesc->skb_dma);
1812		rt2x00_desc_write(txd, 6, word);
1813
1814		rt2x00_desc_read(txd, 11, &word);
1815		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1816				   txdesc->length);
1817		rt2x00_desc_write(txd, 11, word);
1818	}
1819
1820	/*
1821	 * Writing TXD word 0 must the last to prevent a race condition with
1822	 * the device, whereby the device may take hold of the TXD before we
1823	 * finished updating it.
1824	 */
1825	rt2x00_desc_read(txd, 0, &word);
1826	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1827	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1828	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1829			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1830	rt2x00_set_field32(&word, TXD_W0_ACK,
1831			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1832	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1833			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1834	rt2x00_set_field32(&word, TXD_W0_OFDM,
1835			   (txdesc->rate_mode == RATE_MODE_OFDM));
1836	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1837	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1838			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1839	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1840			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1841	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1842			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1843	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1844	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1845	rt2x00_set_field32(&word, TXD_W0_BURST,
1846			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1847	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1848	rt2x00_desc_write(txd, 0, word);
1849
1850	/*
1851	 * Register descriptor details in skb frame descriptor.
1852	 */
1853	skbdesc->desc = txd;
1854	skbdesc->desc_len =
1855		(txdesc->queue == QID_BEACON) ?  TXINFO_SIZE : TXD_DESC_SIZE;
1856}
1857
1858/*
1859 * TX data initialization
1860 */
1861static void rt61pci_write_beacon(struct queue_entry *entry,
1862				 struct txentry_desc *txdesc)
1863{
1864	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1865	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1866	unsigned int beacon_base;
1867	u32 reg;
1868
1869	/*
1870	 * Disable beaconing while we are reloading the beacon data,
1871	 * otherwise we might be sending out invalid data.
1872	 */
1873	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1874	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1875	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1876
1877	/*
1878	 * Write the TX descriptor for the beacon.
1879	 */
1880	rt61pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1881
1882	/*
1883	 * Dump beacon to userspace through debugfs.
1884	 */
1885	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1886
1887	/*
1888	 * Write entire beacon with descriptor to register.
1889	 */
1890	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1891	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1892				      entry_priv->desc, TXINFO_SIZE);
1893	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1894				      entry->skb->data, entry->skb->len);
1895
1896	/*
1897	 * Enable beaconing again.
1898	 *
1899	 * For Wi-Fi faily generated beacons between participating
1900	 * stations. Set TBTT phase adaptive adjustment step to 8us.
1901	 */
1902	rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1903
1904	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1905	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1906	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1907	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1908
1909	/*
1910	 * Clean up beacon skb.
1911	 */
1912	dev_kfree_skb_any(entry->skb);
1913	entry->skb = NULL;
1914}
1915
1916static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1917				  const enum data_queue_qid queue)
1918{
1919	u32 reg;
1920
1921	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1922	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1923	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1924	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1925	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1926	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1927}
1928
1929static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1930				  const enum data_queue_qid qid)
1931{
1932	u32 reg;
1933
1934	if (qid == QID_BEACON) {
1935		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1936		return;
1937	}
1938
1939	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1940	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1941	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1942	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1943	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1944	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1945}
1946
1947/*
1948 * RX control handlers
1949 */
1950static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1951{
1952	u8 offset = rt2x00dev->lna_gain;
1953	u8 lna;
1954
1955	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1956	switch (lna) {
1957	case 3:
1958		offset += 90;
1959		break;
1960	case 2:
1961		offset += 74;
1962		break;
1963	case 1:
1964		offset += 64;
1965		break;
1966	default:
1967		return 0;
1968	}
1969
1970	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1971		if (lna == 3 || lna == 2)
1972			offset += 10;
1973	}
1974
1975	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1976}
1977
1978static void rt61pci_fill_rxdone(struct queue_entry *entry,
1979				struct rxdone_entry_desc *rxdesc)
1980{
1981	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1982	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1983	u32 word0;
1984	u32 word1;
1985
1986	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1987	rt2x00_desc_read(entry_priv->desc, 1, &word1);
1988
1989	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1990		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1991
1992	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1993	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1994
1995	if (rxdesc->cipher != CIPHER_NONE) {
1996		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1997		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1998		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1999
2000		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2001		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2002
2003		/*
2004		 * Hardware has stripped IV/EIV data from 802.11 frame during
2005		 * decryption. It has provided the data separately but rt2x00lib
2006		 * should decide if it should be reinserted.
2007		 */
2008		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2009
2010		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2011
2012		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2013			rxdesc->flags |= RX_FLAG_DECRYPTED;
2014		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2015			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2016	}
2017
2018	/*
2019	 * Obtain the status about this packet.
2020	 * When frame was received with an OFDM bitrate,
2021	 * the signal is the PLCP value. If it was received with
2022	 * a CCK bitrate the signal is the rate in 100kbit/s.
2023	 */
2024	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2025	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2026	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2027
2028	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2029		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2030	else
2031		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2032	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2033		rxdesc->dev_flags |= RXDONE_MY_BSS;
2034}
2035
2036/*
2037 * Interrupt functions.
2038 */
2039static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2040{
2041	struct data_queue *queue;
2042	struct queue_entry *entry;
2043	struct queue_entry *entry_done;
2044	struct queue_entry_priv_pci *entry_priv;
2045	struct txdone_entry_desc txdesc;
2046	u32 word;
2047	u32 reg;
2048	int type;
2049	int index;
2050	int i;
2051
2052	/*
2053	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2054	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2055	 * flag is not set anymore.
2056	 *
2057	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2058	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2059	 * tx ring size for now.
2060	 */
2061	for (i = 0; i < TX_ENTRIES; i++) {
2062		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2063		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2064			break;
2065
2066		/*
2067		 * Skip this entry when it contains an invalid
2068		 * queue identication number.
2069		 */
2070		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2071		queue = rt2x00queue_get_queue(rt2x00dev, type);
2072		if (unlikely(!queue))
2073			continue;
2074
2075		/*
2076		 * Skip this entry when it contains an invalid
2077		 * index number.
2078		 */
2079		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2080		if (unlikely(index >= queue->limit))
2081			continue;
2082
2083		entry = &queue->entries[index];
2084		entry_priv = entry->priv_data;
2085		rt2x00_desc_read(entry_priv->desc, 0, &word);
2086
2087		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2088		    !rt2x00_get_field32(word, TXD_W0_VALID))
2089			return;
2090
2091		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2092		while (entry != entry_done) {
2093			/* Catch up.
2094			 * Just report any entries we missed as failed.
2095			 */
2096			WARNING(rt2x00dev,
2097				"TX status report missed for entry %d\n",
2098				entry_done->entry_idx);
2099
2100			txdesc.flags = 0;
2101			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2102			txdesc.retry = 0;
2103
2104			rt2x00lib_txdone(entry_done, &txdesc);
2105			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2106		}
2107
2108		/*
2109		 * Obtain the status about this packet.
2110		 */
2111		txdesc.flags = 0;
2112		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2113		case 0: /* Success, maybe with retry */
2114			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
2115			break;
2116		case 6: /* Failure, excessive retries */
2117			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2118			/* Don't break, this is a failed frame! */
2119		default: /* Failure */
2120			__set_bit(TXDONE_FAILURE, &txdesc.flags);
2121		}
2122		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2123
2124		/*
2125		 * the frame was retried at least once
2126		 * -> hw used fallback rates
2127		 */
2128		if (txdesc.retry)
2129			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
2130
2131		rt2x00lib_txdone(entry, &txdesc);
2132	}
2133}
2134
2135static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2136{
2137	struct ieee80211_conf conf = { .flags = 0 };
2138	struct rt2x00lib_conf libconf = { .conf = &conf };
2139
2140	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2141}
2142
2143static irqreturn_t rt61pci_interrupt_thread(int irq, void *dev_instance)
2144{
2145	struct rt2x00_dev *rt2x00dev = dev_instance;
2146	u32 reg = rt2x00dev->irqvalue[0];
2147	u32 reg_mcu = rt2x00dev->irqvalue[1];
2148
2149	/*
2150	 * Handle interrupts, walk through all bits
2151	 * and run the tasks, the bits are checked in order of
2152	 * priority.
2153	 */
2154
2155	/*
2156	 * 1 - Rx ring done interrupt.
2157	 */
2158	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2159		rt2x00pci_rxdone(rt2x00dev);
2160
2161	/*
2162	 * 2 - Tx ring done interrupt.
2163	 */
2164	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2165		rt61pci_txdone(rt2x00dev);
2166
2167	/*
2168	 * 3 - Handle MCU command done.
2169	 */
2170	if (reg_mcu)
2171		rt2x00pci_register_write(rt2x00dev,
2172					 M2H_CMD_DONE_CSR, 0xffffffff);
2173
2174	/*
2175	 * 4 - MCU Autowakeup interrupt.
2176	 */
2177	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2178		rt61pci_wakeup(rt2x00dev);
2179
2180	/*
2181	 * 5 - Beacon done interrupt.
2182	 */
2183	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2184		rt2x00lib_beacondone(rt2x00dev);
2185
2186	/* Enable interrupts again. */
2187	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2188					      STATE_RADIO_IRQ_ON_ISR);
2189	return IRQ_HANDLED;
2190}
2191
2192
2193static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2194{
2195	struct rt2x00_dev *rt2x00dev = dev_instance;
2196	u32 reg_mcu;
2197	u32 reg;
2198
2199	/*
2200	 * Get the interrupt sources & saved to local variable.
2201	 * Write register value back to clear pending interrupts.
2202	 */
2203	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2204	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2205
2206	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2207	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2208
2209	if (!reg && !reg_mcu)
2210		return IRQ_NONE;
2211
2212	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2213		return IRQ_HANDLED;
2214
2215	/* Store irqvalues for use in the interrupt thread. */
2216	rt2x00dev->irqvalue[0] = reg;
2217	rt2x00dev->irqvalue[1] = reg_mcu;
2218
2219	/* Disable interrupts, will be enabled again in the interrupt thread. */
2220	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2221					      STATE_RADIO_IRQ_OFF_ISR);
2222	return IRQ_WAKE_THREAD;
2223}
2224
2225/*
2226 * Device probe functions.
2227 */
2228static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2229{
2230	struct eeprom_93cx6 eeprom;
2231	u32 reg;
2232	u16 word;
2233	u8 *mac;
2234	s8 value;
2235
2236	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2237
2238	eeprom.data = rt2x00dev;
2239	eeprom.register_read = rt61pci_eepromregister_read;
2240	eeprom.register_write = rt61pci_eepromregister_write;
2241	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2242	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2243	eeprom.reg_data_in = 0;
2244	eeprom.reg_data_out = 0;
2245	eeprom.reg_data_clock = 0;
2246	eeprom.reg_chip_select = 0;
2247
2248	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2249			       EEPROM_SIZE / sizeof(u16));
2250
2251	/*
2252	 * Start validation of the data that has been read.
2253	 */
2254	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2255	if (!is_valid_ether_addr(mac)) {
2256		random_ether_addr(mac);
2257		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2258	}
2259
2260	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2261	if (word == 0xffff) {
2262		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2263		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2264				   ANTENNA_B);
2265		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2266				   ANTENNA_B);
2267		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2268		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2269		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2270		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2271		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2272		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2273	}
2274
2275	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2276	if (word == 0xffff) {
2277		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2278		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2279		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2280		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2281		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2282		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2283		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2284		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2285		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2286	}
2287
2288	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2289	if (word == 0xffff) {
2290		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2291				   LED_MODE_DEFAULT);
2292		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2293		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2294	}
2295
2296	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2297	if (word == 0xffff) {
2298		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2299		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2300		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2301		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2302	}
2303
2304	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2305	if (word == 0xffff) {
2306		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2307		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2308		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2309		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2310	} else {
2311		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2312		if (value < -10 || value > 10)
2313			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2314		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2315		if (value < -10 || value > 10)
2316			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2317		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2318	}
2319
2320	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2321	if (word == 0xffff) {
2322		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2323		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2324		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2325		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2326	} else {
2327		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2328		if (value < -10 || value > 10)
2329			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2330		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2331		if (value < -10 || value > 10)
2332			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2333		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2334	}
2335
2336	return 0;
2337}
2338
2339static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2340{
2341	u32 reg;
2342	u16 value;
2343	u16 eeprom;
2344
2345	/*
2346	 * Read EEPROM word for configuration.
2347	 */
2348	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2349
2350	/*
2351	 * Identify RF chipset.
2352	 */
2353	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2354	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2355	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2356			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2357
2358	if (!rt2x00_rf(rt2x00dev, RF5225) &&
2359	    !rt2x00_rf(rt2x00dev, RF5325) &&
2360	    !rt2x00_rf(rt2x00dev, RF2527) &&
2361	    !rt2x00_rf(rt2x00dev, RF2529)) {
2362		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2363		return -ENODEV;
2364	}
2365
2366	/*
2367	 * Determine number of antennas.
2368	 */
2369	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2370		__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2371
2372	/*
2373	 * Identify default antenna configuration.
2374	 */
2375	rt2x00dev->default_ant.tx =
2376	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2377	rt2x00dev->default_ant.rx =
2378	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2379
2380	/*
2381	 * Read the Frame type.
2382	 */
2383	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2384		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2385
2386	/*
2387	 * Detect if this device has a hardware controlled radio.
2388	 */
2389	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2390		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2391
2392	/*
2393	 * Read frequency offset and RF programming sequence.
2394	 */
2395	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2396	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2397		__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2398
2399	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2400
2401	/*
2402	 * Read external LNA informations.
2403	 */
2404	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2405
2406	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2407		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2408	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2409		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2410
2411	/*
2412	 * When working with a RF2529 chip without double antenna,
2413	 * the antenna settings should be gathered from the NIC
2414	 * eeprom word.
2415	 */
2416	if (rt2x00_rf(rt2x00dev, RF2529) &&
2417	    !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2418		rt2x00dev->default_ant.rx =
2419		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2420		rt2x00dev->default_ant.tx =
2421		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2422
2423		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2424			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2425		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2426			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2427	}
2428
2429	/*
2430	 * Store led settings, for correct led behaviour.
2431	 * If the eeprom value is invalid,
2432	 * switch to default led mode.
2433	 */
2434#ifdef CONFIG_RT2X00_LIB_LEDS
2435	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2436	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2437
2438	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2439	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2440	if (value == LED_MODE_SIGNAL_STRENGTH)
2441		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2442				 LED_TYPE_QUALITY);
2443
2444	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2445	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2446			   rt2x00_get_field16(eeprom,
2447					      EEPROM_LED_POLARITY_GPIO_0));
2448	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2449			   rt2x00_get_field16(eeprom,
2450					      EEPROM_LED_POLARITY_GPIO_1));
2451	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2452			   rt2x00_get_field16(eeprom,
2453					      EEPROM_LED_POLARITY_GPIO_2));
2454	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2455			   rt2x00_get_field16(eeprom,
2456					      EEPROM_LED_POLARITY_GPIO_3));
2457	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2458			   rt2x00_get_field16(eeprom,
2459					      EEPROM_LED_POLARITY_GPIO_4));
2460	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2461			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2462	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2463			   rt2x00_get_field16(eeprom,
2464					      EEPROM_LED_POLARITY_RDY_G));
2465	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2466			   rt2x00_get_field16(eeprom,
2467					      EEPROM_LED_POLARITY_RDY_A));
2468#endif /* CONFIG_RT2X00_LIB_LEDS */
2469
2470	return 0;
2471}
2472
2473/*
2474 * RF value list for RF5225 & RF5325
2475 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2476 */
2477static const struct rf_channel rf_vals_noseq[] = {
2478	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2479	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2480	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2481	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2482	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2483	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2484	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2485	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2486	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2487	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2488	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2489	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2490	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2491	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2492
2493	/* 802.11 UNI / HyperLan 2 */
2494	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2495	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2496	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2497	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2498	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2499	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2500	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2501	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2502
2503	/* 802.11 HyperLan 2 */
2504	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2505	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2506	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2507	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2508	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2509	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2510	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2511	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2512	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2513	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2514
2515	/* 802.11 UNII */
2516	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2517	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2518	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2519	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2520	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2521	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2522
2523	/* MMAC(Japan)J52 ch 34,38,42,46 */
2524	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2525	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2526	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2527	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2528};
2529
2530/*
2531 * RF value list for RF5225 & RF5325
2532 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2533 */
2534static const struct rf_channel rf_vals_seq[] = {
2535	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2536	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2537	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2538	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2539	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2540	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2541	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2542	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2543	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2544	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2545	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2546	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2547	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2548	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2549
2550	/* 802.11 UNI / HyperLan 2 */
2551	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2552	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2553	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2554	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2555	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2556	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2557	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2558	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2559
2560	/* 802.11 HyperLan 2 */
2561	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2562	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2563	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2564	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2565	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2566	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2567	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2568	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2569	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2570	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2571
2572	/* 802.11 UNII */
2573	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2574	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2575	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2576	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2577	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2578	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2579
2580	/* MMAC(Japan)J52 ch 34,38,42,46 */
2581	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2582	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2583	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2584	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2585};
2586
2587static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2588{
2589	struct hw_mode_spec *spec = &rt2x00dev->spec;
2590	struct channel_info *info;
2591	char *tx_power;
2592	unsigned int i;
2593
2594	/*
2595	 * Disable powersaving as default.
2596	 */
2597	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2598
2599	/*
2600	 * Initialize all hw fields.
2601	 */
2602	rt2x00dev->hw->flags =
2603	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2604	    IEEE80211_HW_SIGNAL_DBM |
2605	    IEEE80211_HW_SUPPORTS_PS |
2606	    IEEE80211_HW_PS_NULLFUNC_STACK;
2607
2608	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2609	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2610				rt2x00_eeprom_addr(rt2x00dev,
2611						   EEPROM_MAC_ADDR_0));
2612
2613	/*
2614	 * As rt61 has a global fallback table we cannot specify
2615	 * more then one tx rate per frame but since the hw will
2616	 * try several rates (based on the fallback table) we should
2617	 * still initialize max_rates to the maximum number of rates
2618	 * we are going to try. Otherwise mac80211 will truncate our
2619	 * reported tx rates and the rc algortihm will end up with
2620	 * incorrect data.
2621	 */
2622	rt2x00dev->hw->max_rates = 7;
2623	rt2x00dev->hw->max_rate_tries = 1;
2624
2625	/*
2626	 * Initialize hw_mode information.
2627	 */
2628	spec->supported_bands = SUPPORT_BAND_2GHZ;
2629	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2630
2631	if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2632		spec->num_channels = 14;
2633		spec->channels = rf_vals_noseq;
2634	} else {
2635		spec->num_channels = 14;
2636		spec->channels = rf_vals_seq;
2637	}
2638
2639	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2640		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2641		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2642	}
2643
2644	/*
2645	 * Create channel information array
2646	 */
2647	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2648	if (!info)
2649		return -ENOMEM;
2650
2651	spec->channels_info = info;
2652
2653	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2654	for (i = 0; i < 14; i++) {
2655		info[i].max_power = MAX_TXPOWER;
2656		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2657	}
2658
2659	if (spec->num_channels > 14) {
2660		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2661		for (i = 14; i < spec->num_channels; i++) {
2662			info[i].max_power = MAX_TXPOWER;
2663			info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2664		}
2665	}
2666
2667	return 0;
2668}
2669
2670static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2671{
2672	int retval;
2673
2674	/*
2675	 * Disable power saving.
2676	 */
2677	rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2678
2679	/*
2680	 * Allocate eeprom data.
2681	 */
2682	retval = rt61pci_validate_eeprom(rt2x00dev);
2683	if (retval)
2684		return retval;
2685
2686	retval = rt61pci_init_eeprom(rt2x00dev);
2687	if (retval)
2688		return retval;
2689
2690	/*
2691	 * Initialize hw specifications.
2692	 */
2693	retval = rt61pci_probe_hw_mode(rt2x00dev);
2694	if (retval)
2695		return retval;
2696
2697	/*
2698	 * This device has multiple filters for control frames,
2699	 * but has no a separate filter for PS Poll frames.
2700	 */
2701	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2702
2703	/*
2704	 * This device requires firmware and DMA mapped skbs.
2705	 */
2706	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2707	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2708	if (!modparam_nohwcrypt)
2709		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2710	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2711
2712	/*
2713	 * Set the rssi offset.
2714	 */
2715	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2716
2717	return 0;
2718}
2719
2720/*
2721 * IEEE80211 stack callback functions.
2722 */
2723static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2724			   const struct ieee80211_tx_queue_params *params)
2725{
2726	struct rt2x00_dev *rt2x00dev = hw->priv;
2727	struct data_queue *queue;
2728	struct rt2x00_field32 field;
2729	int retval;
2730	u32 reg;
2731	u32 offset;
2732
2733	/*
2734	 * First pass the configuration through rt2x00lib, that will
2735	 * update the queue settings and validate the input. After that
2736	 * we are free to update the registers based on the value
2737	 * in the queue parameter.
2738	 */
2739	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2740	if (retval)
2741		return retval;
2742
2743	/*
2744	 * We only need to perform additional register initialization
2745	 * for WMM queues.
2746	 */
2747	if (queue_idx >= 4)
2748		return 0;
2749
2750	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2751
2752	/* Update WMM TXOP register */
2753	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2754	field.bit_offset = (queue_idx & 1) * 16;
2755	field.bit_mask = 0xffff << field.bit_offset;
2756
2757	rt2x00pci_register_read(rt2x00dev, offset, &reg);
2758	rt2x00_set_field32(&reg, field, queue->txop);
2759	rt2x00pci_register_write(rt2x00dev, offset, reg);
2760
2761	/* Update WMM registers */
2762	field.bit_offset = queue_idx * 4;
2763	field.bit_mask = 0xf << field.bit_offset;
2764
2765	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2766	rt2x00_set_field32(&reg, field, queue->aifs);
2767	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2768
2769	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2770	rt2x00_set_field32(&reg, field, queue->cw_min);
2771	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2772
2773	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2774	rt2x00_set_field32(&reg, field, queue->cw_max);
2775	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2776
2777	return 0;
2778}
2779
2780static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2781{
2782	struct rt2x00_dev *rt2x00dev = hw->priv;
2783	u64 tsf;
2784	u32 reg;
2785
2786	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2787	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2788	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2789	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2790
2791	return tsf;
2792}
2793
2794static const struct ieee80211_ops rt61pci_mac80211_ops = {
2795	.tx			= rt2x00mac_tx,
2796	.start			= rt2x00mac_start,
2797	.stop			= rt2x00mac_stop,
2798	.add_interface		= rt2x00mac_add_interface,
2799	.remove_interface	= rt2x00mac_remove_interface,
2800	.config			= rt2x00mac_config,
2801	.configure_filter	= rt2x00mac_configure_filter,
2802	.set_key		= rt2x00mac_set_key,
2803	.sw_scan_start		= rt2x00mac_sw_scan_start,
2804	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2805	.get_stats		= rt2x00mac_get_stats,
2806	.bss_info_changed	= rt2x00mac_bss_info_changed,
2807	.conf_tx		= rt61pci_conf_tx,
2808	.get_tsf		= rt61pci_get_tsf,
2809	.rfkill_poll		= rt2x00mac_rfkill_poll,
2810};
2811
2812static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2813	.irq_handler		= rt61pci_interrupt,
2814	.irq_handler_thread	= rt61pci_interrupt_thread,
2815	.probe_hw		= rt61pci_probe_hw,
2816	.get_firmware_name	= rt61pci_get_firmware_name,
2817	.check_firmware		= rt61pci_check_firmware,
2818	.load_firmware		= rt61pci_load_firmware,
2819	.initialize		= rt2x00pci_initialize,
2820	.uninitialize		= rt2x00pci_uninitialize,
2821	.get_entry_state	= rt61pci_get_entry_state,
2822	.clear_entry		= rt61pci_clear_entry,
2823	.set_device_state	= rt61pci_set_device_state,
2824	.rfkill_poll		= rt61pci_rfkill_poll,
2825	.link_stats		= rt61pci_link_stats,
2826	.reset_tuner		= rt61pci_reset_tuner,
2827	.link_tuner		= rt61pci_link_tuner,
2828	.write_tx_desc		= rt61pci_write_tx_desc,
2829	.write_beacon		= rt61pci_write_beacon,
2830	.kick_tx_queue		= rt61pci_kick_tx_queue,
2831	.kill_tx_queue		= rt61pci_kill_tx_queue,
2832	.fill_rxdone		= rt61pci_fill_rxdone,
2833	.config_shared_key	= rt61pci_config_shared_key,
2834	.config_pairwise_key	= rt61pci_config_pairwise_key,
2835	.config_filter		= rt61pci_config_filter,
2836	.config_intf		= rt61pci_config_intf,
2837	.config_erp		= rt61pci_config_erp,
2838	.config_ant		= rt61pci_config_ant,
2839	.config			= rt61pci_config,
2840};
2841
2842static const struct data_queue_desc rt61pci_queue_rx = {
2843	.entry_num		= RX_ENTRIES,
2844	.data_size		= DATA_FRAME_SIZE,
2845	.desc_size		= RXD_DESC_SIZE,
2846	.priv_size		= sizeof(struct queue_entry_priv_pci),
2847};
2848
2849static const struct data_queue_desc rt61pci_queue_tx = {
2850	.entry_num		= TX_ENTRIES,
2851	.data_size		= DATA_FRAME_SIZE,
2852	.desc_size		= TXD_DESC_SIZE,
2853	.priv_size		= sizeof(struct queue_entry_priv_pci),
2854};
2855
2856static const struct data_queue_desc rt61pci_queue_bcn = {
2857	.entry_num		= 4 * BEACON_ENTRIES,
2858	.data_size		= 0, /* No DMA required for beacons */
2859	.desc_size		= TXINFO_SIZE,
2860	.priv_size		= sizeof(struct queue_entry_priv_pci),
2861};
2862
2863static const struct rt2x00_ops rt61pci_ops = {
2864	.name			= KBUILD_MODNAME,
2865	.max_sta_intf		= 1,
2866	.max_ap_intf		= 4,
2867	.eeprom_size		= EEPROM_SIZE,
2868	.rf_size		= RF_SIZE,
2869	.tx_queues		= NUM_TX_QUEUES,
2870	.extra_tx_headroom	= 0,
2871	.rx			= &rt61pci_queue_rx,
2872	.tx			= &rt61pci_queue_tx,
2873	.bcn			= &rt61pci_queue_bcn,
2874	.lib			= &rt61pci_rt2x00_ops,
2875	.hw			= &rt61pci_mac80211_ops,
2876#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2877	.debugfs		= &rt61pci_rt2x00debug,
2878#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2879};
2880
2881/*
2882 * RT61pci module information.
2883 */
2884static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2885	/* RT2561s */
2886	{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2887	/* RT2561 v2 */
2888	{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2889	/* RT2661 */
2890	{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2891	{ 0, }
2892};
2893
2894MODULE_AUTHOR(DRV_PROJECT);
2895MODULE_VERSION(DRV_VERSION);
2896MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2897MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2898			"PCI & PCMCIA chipset based cards");
2899MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2900MODULE_FIRMWARE(FIRMWARE_RT2561);
2901MODULE_FIRMWARE(FIRMWARE_RT2561s);
2902MODULE_FIRMWARE(FIRMWARE_RT2661);
2903MODULE_LICENSE("GPL");
2904
2905static struct pci_driver rt61pci_driver = {
2906	.name		= KBUILD_MODNAME,
2907	.id_table	= rt61pci_device_table,
2908	.probe		= rt2x00pci_probe,
2909	.remove		= __devexit_p(rt2x00pci_remove),
2910	.suspend	= rt2x00pci_suspend,
2911	.resume		= rt2x00pci_resume,
2912};
2913
2914static int __init rt61pci_init(void)
2915{
2916	return pci_register_driver(&rt61pci_driver);
2917}
2918
2919static void __exit rt61pci_exit(void)
2920{
2921	pci_unregister_driver(&rt61pci_driver);
2922}
2923
2924module_init(rt61pci_init);
2925module_exit(rt61pci_exit);
2926