• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/wireless/rt2x00/
1/*
2	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10	<http://rt2x00.serialmonkey.com>
11
12	This program is free software; you can redistribute it and/or modify
13	it under the terms of the GNU General Public License as published by
14	the Free Software Foundation; either version 2 of the License, or
15	(at your option) any later version.
16
17	This program is distributed in the hope that it will be useful,
18	but WITHOUT ANY WARRANTY; without even the implied warranty of
19	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20	GNU General Public License for more details.
21
22	You should have received a copy of the GNU General Public License
23	along with this program; if not, write to the
24	Free Software Foundation, Inc.,
25	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28/*
29	Module: rt2800pci
30	Abstract: rt2800pci device specific routines.
31	Supported chipsets: RT2800E & RT2800ED.
32 */
33
34#include <linux/delay.h>
35#include <linux/etherdevice.h>
36#include <linux/init.h>
37#include <linux/kernel.h>
38#include <linux/module.h>
39#include <linux/pci.h>
40#include <linux/platform_device.h>
41#include <linux/eeprom_93cx6.h>
42
43#include "rt2x00.h"
44#include "rt2x00pci.h"
45#include "rt2x00soc.h"
46#include "rt2800lib.h"
47#include "rt2800.h"
48#include "rt2800pci.h"
49
50/*
51 * Allow hardware encryption to be disabled.
52 */
53static int modparam_nohwcrypt = 0;
54module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58{
59	unsigned int i;
60	u32 reg;
61
62	/*
63	 * SOC devices don't support MCU requests.
64	 */
65	if (rt2x00_is_soc(rt2x00dev))
66		return;
67
68	for (i = 0; i < 200; i++) {
69		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75			break;
76
77		udelay(REGISTER_BUSY_DELAY);
78	}
79
80	if (i == 200)
81		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85}
86
87#ifdef CONFIG_RT2800PCI_SOC
88static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89{
90	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000);
91
92	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93}
94#else
95static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
96{
97}
98#endif /* CONFIG_RT2800PCI_SOC */
99
100#ifdef CONFIG_RT2800PCI_PCI
101static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
102{
103	struct rt2x00_dev *rt2x00dev = eeprom->data;
104	u32 reg;
105
106	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
107
108	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
109	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
110	eeprom->reg_data_clock =
111	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
112	eeprom->reg_chip_select =
113	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
114}
115
116static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
117{
118	struct rt2x00_dev *rt2x00dev = eeprom->data;
119	u32 reg = 0;
120
121	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
122	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
123	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
124			   !!eeprom->reg_data_clock);
125	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
126			   !!eeprom->reg_chip_select);
127
128	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
129}
130
131static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
132{
133	struct eeprom_93cx6 eeprom;
134	u32 reg;
135
136	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
137
138	eeprom.data = rt2x00dev;
139	eeprom.register_read = rt2800pci_eepromregister_read;
140	eeprom.register_write = rt2800pci_eepromregister_write;
141	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
142	{
143	case 0:
144		eeprom.width = PCI_EEPROM_WIDTH_93C46;
145		break;
146	case 1:
147		eeprom.width = PCI_EEPROM_WIDTH_93C66;
148		break;
149	default:
150		eeprom.width = PCI_EEPROM_WIDTH_93C86;
151		break;
152	}
153	eeprom.reg_data_in = 0;
154	eeprom.reg_data_out = 0;
155	eeprom.reg_data_clock = 0;
156	eeprom.reg_chip_select = 0;
157
158	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
159			       EEPROM_SIZE / sizeof(u16));
160}
161
162static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
163{
164	return rt2800_efuse_detect(rt2x00dev);
165}
166
167static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
168{
169	rt2800_read_eeprom_efuse(rt2x00dev);
170}
171#else
172static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
173{
174}
175
176static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
177{
178	return 0;
179}
180
181static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
182{
183}
184#endif /* CONFIG_RT2800PCI_PCI */
185
186/*
187 * Firmware functions
188 */
189static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
190{
191	return FIRMWARE_RT2860;
192}
193
194static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
195				    const u8 *data, const size_t len)
196{
197	u32 reg;
198
199	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
200
201	/*
202	 * enable Host program ram write selection
203	 */
204	reg = 0;
205	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
206	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
207
208	/*
209	 * Write firmware to device.
210	 */
211	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
212				   data, len);
213
214	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
215	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
216
217	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
218	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
219
220	return 0;
221}
222
223/*
224 * Initialization functions.
225 */
226static bool rt2800pci_get_entry_state(struct queue_entry *entry)
227{
228	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
229	u32 word;
230
231	if (entry->queue->qid == QID_RX) {
232		rt2x00_desc_read(entry_priv->desc, 1, &word);
233
234		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
235	} else {
236		rt2x00_desc_read(entry_priv->desc, 1, &word);
237
238		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
239	}
240}
241
242static void rt2800pci_clear_entry(struct queue_entry *entry)
243{
244	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
245	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
246	u32 word;
247
248	if (entry->queue->qid == QID_RX) {
249		rt2x00_desc_read(entry_priv->desc, 0, &word);
250		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
251		rt2x00_desc_write(entry_priv->desc, 0, word);
252
253		rt2x00_desc_read(entry_priv->desc, 1, &word);
254		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
255		rt2x00_desc_write(entry_priv->desc, 1, word);
256	} else {
257		rt2x00_desc_read(entry_priv->desc, 1, &word);
258		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
259		rt2x00_desc_write(entry_priv->desc, 1, word);
260	}
261}
262
263static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
264{
265	struct queue_entry_priv_pci *entry_priv;
266	u32 reg;
267
268	/*
269	 * Initialize registers.
270	 */
271	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
272	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
273	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
274	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
275	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
276
277	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
278	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
279	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
280	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
281	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
282
283	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
284	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
285	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
286	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
287	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
288
289	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
290	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
291	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
292	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
293	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
294
295	entry_priv = rt2x00dev->rx->entries[0].priv_data;
296	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
297	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
298	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
299	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
300
301	/*
302	 * Enable global DMA configuration
303	 */
304	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
305	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
306	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
307	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
308	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
309
310	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
311
312	return 0;
313}
314
315/*
316 * Device state switch handlers.
317 */
318static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
319				enum dev_state state)
320{
321	u32 reg;
322
323	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
324	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
325			   (state == STATE_RADIO_RX_ON) ||
326			   (state == STATE_RADIO_RX_ON_LINK));
327	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
328}
329
330static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
331				 enum dev_state state)
332{
333	int mask = (state == STATE_RADIO_IRQ_ON) ||
334		   (state == STATE_RADIO_IRQ_ON_ISR);
335	u32 reg;
336
337	/*
338	 * When interrupts are being enabled, the interrupt registers
339	 * should clear the register to assure a clean state.
340	 */
341	if (state == STATE_RADIO_IRQ_ON) {
342		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
343		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
344	}
345
346	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
347	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
348	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
349	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
350	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
351	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
352	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
353	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
354	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
355	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
356	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
357	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
358	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
359	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
360	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
361	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
362	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
363	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
364	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
365	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
366}
367
368static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
369{
370	u32 reg;
371
372	/*
373	 * Reset DMA indexes
374	 */
375	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
376	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
377	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
378	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
379	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
380	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
381	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
382	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
383	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
384
385	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
386	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
387
388	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
389
390	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
391	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
392	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
393	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
394
395	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
396
397	return 0;
398}
399
400static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
401{
402	u32 reg;
403	u16 word;
404
405	/*
406	 * Initialize all registers.
407	 */
408	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
409		     rt2800pci_init_queues(rt2x00dev) ||
410		     rt2800_init_registers(rt2x00dev) ||
411		     rt2800_wait_wpdma_ready(rt2x00dev) ||
412		     rt2800_init_bbp(rt2x00dev) ||
413		     rt2800_init_rfcsr(rt2x00dev)))
414		return -EIO;
415
416	/*
417	 * Send signal to firmware during boot time.
418	 */
419	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
420
421	/*
422	 * Enable RX.
423	 */
424	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
425	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
426	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
427	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
428
429	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
430	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
431	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
432	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
433	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
434	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
435
436	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
437	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
438	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
439	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
440
441	/*
442	 * Initialize LED control
443	 */
444	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
445	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
446			      word & 0xff, (word >> 8) & 0xff);
447
448	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
449	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
450			      word & 0xff, (word >> 8) & 0xff);
451
452	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
453	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
454			      word & 0xff, (word >> 8) & 0xff);
455
456	return 0;
457}
458
459static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
460{
461	u32 reg;
462
463	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
464	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
465	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
466	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
467	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
468	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
469	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
470
471	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
472	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
473	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
474
475	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
476
477	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
478	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
479	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
480	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
481	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
482	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
483	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
484	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
485	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
486
487	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
488	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
489
490	/* Wait for DMA, ignore error */
491	rt2800_wait_wpdma_ready(rt2x00dev);
492}
493
494static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
495			       enum dev_state state)
496{
497	/*
498	 * Always put the device to sleep (even when we intend to wakeup!)
499	 * if the device is booting and wasn't asleep it will return
500	 * failure when attempting to wakeup.
501	 */
502	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
503
504	if (state == STATE_AWAKE) {
505		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
506		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
507	}
508
509	return 0;
510}
511
512static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
513				      enum dev_state state)
514{
515	int retval = 0;
516
517	switch (state) {
518	case STATE_RADIO_ON:
519		/*
520		 * Before the radio can be enabled, the device first has
521		 * to be woken up. After that it needs a bit of time
522		 * to be fully awake and then the radio can be enabled.
523		 */
524		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
525		msleep(1);
526		retval = rt2800pci_enable_radio(rt2x00dev);
527		break;
528	case STATE_RADIO_OFF:
529		/*
530		 * After the radio has been disabled, the device should
531		 * be put to sleep for powersaving.
532		 */
533		rt2800pci_disable_radio(rt2x00dev);
534		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
535		break;
536	case STATE_RADIO_RX_ON:
537	case STATE_RADIO_RX_ON_LINK:
538	case STATE_RADIO_RX_OFF:
539	case STATE_RADIO_RX_OFF_LINK:
540		rt2800pci_toggle_rx(rt2x00dev, state);
541		break;
542	case STATE_RADIO_IRQ_ON:
543	case STATE_RADIO_IRQ_ON_ISR:
544	case STATE_RADIO_IRQ_OFF:
545	case STATE_RADIO_IRQ_OFF_ISR:
546		rt2800pci_toggle_irq(rt2x00dev, state);
547		break;
548	case STATE_DEEP_SLEEP:
549	case STATE_SLEEP:
550	case STATE_STANDBY:
551	case STATE_AWAKE:
552		retval = rt2800pci_set_state(rt2x00dev, state);
553		break;
554	default:
555		retval = -ENOTSUPP;
556		break;
557	}
558
559	if (unlikely(retval))
560		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
561		      state, retval);
562
563	return retval;
564}
565
566/*
567 * TX descriptor initialization
568 */
569static void rt2800pci_write_tx_data(struct queue_entry* entry,
570				    struct txentry_desc *txdesc)
571{
572	__le32 *txwi = (__le32 *) entry->skb->data;
573
574	rt2800_write_txwi(txwi, txdesc);
575}
576
577
578static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
579				    struct sk_buff *skb,
580				    struct txentry_desc *txdesc)
581{
582	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
583	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
584	__le32 *txd = entry_priv->desc;
585	u32 word;
586
587	/*
588	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
589	 * must contains a TXWI structure + 802.11 header + padding + 802.11
590	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
591	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
592	 * data. It means that LAST_SEC0 is always 0.
593	 */
594
595	/*
596	 * Initialize TX descriptor
597	 */
598	rt2x00_desc_read(txd, 0, &word);
599	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
600	rt2x00_desc_write(txd, 0, word);
601
602	rt2x00_desc_read(txd, 1, &word);
603	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
604	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
605			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
606	rt2x00_set_field32(&word, TXD_W1_BURST,
607			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
608	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
609	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
610	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
611	rt2x00_desc_write(txd, 1, word);
612
613	rt2x00_desc_read(txd, 2, &word);
614	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
615			   skbdesc->skb_dma + TXWI_DESC_SIZE);
616	rt2x00_desc_write(txd, 2, word);
617
618	rt2x00_desc_read(txd, 3, &word);
619	rt2x00_set_field32(&word, TXD_W3_WIV,
620			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
621	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
622	rt2x00_desc_write(txd, 3, word);
623
624	/*
625	 * Register descriptor details in skb frame descriptor.
626	 */
627	skbdesc->desc = txd;
628	skbdesc->desc_len = TXD_DESC_SIZE;
629}
630
631/*
632 * TX data initialization
633 */
634static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
635				    const enum data_queue_qid queue_idx)
636{
637	struct data_queue *queue;
638	unsigned int idx, qidx = 0;
639
640	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
641		return;
642
643	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
644	idx = queue->index[Q_INDEX];
645
646	if (queue_idx == QID_MGMT)
647		qidx = 5;
648	else
649		qidx = queue_idx;
650
651	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
652}
653
654static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
655				    const enum data_queue_qid qid)
656{
657	u32 reg;
658
659	if (qid == QID_BEACON) {
660		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
661		return;
662	}
663
664	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
665	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
666	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
667	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
668	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
669	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
670}
671
672/*
673 * RX control handlers
674 */
675static void rt2800pci_fill_rxdone(struct queue_entry *entry,
676				  struct rxdone_entry_desc *rxdesc)
677{
678	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
679	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
680	__le32 *rxd = entry_priv->desc;
681	u32 word;
682
683	rt2x00_desc_read(rxd, 3, &word);
684
685	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
686		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
687
688	/*
689	 * Unfortunately we don't know the cipher type used during
690	 * decryption. This prevents us from correct providing
691	 * correct statistics through debugfs.
692	 */
693	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
694
695	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
696		/*
697		 * Hardware has stripped IV/EIV data from 802.11 frame during
698		 * decryption. Unfortunately the descriptor doesn't contain
699		 * any fields with the EIV/IV data either, so they can't
700		 * be restored by rt2x00lib.
701		 */
702		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
703
704		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
705			rxdesc->flags |= RX_FLAG_DECRYPTED;
706		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
707			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
708	}
709
710	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
711		rxdesc->dev_flags |= RXDONE_MY_BSS;
712
713	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
714		rxdesc->dev_flags |= RXDONE_L2PAD;
715
716	/*
717	 * Process the RXWI structure that is at the start of the buffer.
718	 */
719	rt2800_process_rxwi(entry, rxdesc);
720
721	/*
722	 * Set RX IDX in register to inform hardware that we have handled
723	 * this entry and it is available for reuse again.
724	 */
725	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
726}
727
728/*
729 * Interrupt functions.
730 */
731static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
732{
733	struct data_queue *queue;
734	struct queue_entry *entry;
735	__le32 *txwi;
736	struct txdone_entry_desc txdesc;
737	u32 word;
738	u32 reg;
739	int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
740	u16 mcs, real_mcs;
741	int i;
742
743	/*
744	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
745	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
746	 * flag is not set anymore.
747	 *
748	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
749	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
750	 * tx ring size for now.
751	 */
752	for (i = 0; i < TX_ENTRIES; i++) {
753		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
754		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
755			break;
756
757		wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
758		ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
759		pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
760
761		/*
762		 * Skip this entry when it contains an invalid
763		 * queue identication number.
764		 */
765		if (pid <= 0 || pid > QID_RX)
766			continue;
767
768		queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
769		if (unlikely(!queue))
770			continue;
771
772		/*
773		 * Inside each queue, we process each entry in a chronological
774		 * order. We first check that the queue is not empty.
775		 */
776		if (rt2x00queue_empty(queue))
777			continue;
778		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
779
780		/* Check if we got a match by looking at WCID/ACK/PID
781		 * fields */
782		txwi = (__le32 *) entry->skb->data;
783
784		rt2x00_desc_read(txwi, 1, &word);
785		tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
786		tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
787		tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);
788
789		if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
790			WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
791
792		/*
793		 * Obtain the status about this packet.
794		 */
795		txdesc.flags = 0;
796		rt2x00_desc_read(txwi, 0, &word);
797		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
798		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
799
800		/*
801		 * Ralink has a retry mechanism using a global fallback
802		 * table. We setup this fallback table to try the immediate
803		 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
804		 * always contains the MCS used for the last transmission, be
805		 * it successful or not.
806		 */
807		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
808			/*
809			 * Transmission succeeded. The number of retries is
810			 * mcs - real_mcs
811			 */
812			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
813			txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
814		} else {
815			/*
816			 * Transmission failed. The number of retries is
817			 * always 7 in this case (for a total number of 8
818			 * frames sent).
819			 */
820			__set_bit(TXDONE_FAILURE, &txdesc.flags);
821			txdesc.retry = 7;
822		}
823
824		/*
825		 * the frame was retried at least once
826		 * -> hw used fallback rates
827		 */
828		if (txdesc.retry)
829			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
830
831		rt2x00lib_txdone(entry, &txdesc);
832	}
833}
834
835static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
836{
837	struct ieee80211_conf conf = { .flags = 0 };
838	struct rt2x00lib_conf libconf = { .conf = &conf };
839
840	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
841}
842
843static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
844{
845	struct rt2x00_dev *rt2x00dev = dev_instance;
846	u32 reg = rt2x00dev->irqvalue[0];
847
848	/*
849	 * 1 - Pre TBTT interrupt.
850	 */
851	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
852		rt2x00lib_pretbtt(rt2x00dev);
853
854	/*
855	 * 2 - Beacondone interrupt.
856	 */
857	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
858		rt2x00lib_beacondone(rt2x00dev);
859
860	/*
861	 * 3 - Rx ring done interrupt.
862	 */
863	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
864		rt2x00pci_rxdone(rt2x00dev);
865
866	/*
867	 * 4 - Tx done interrupt.
868	 */
869	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
870		rt2800pci_txdone(rt2x00dev);
871
872	/*
873	 * 5 - Auto wakeup interrupt.
874	 */
875	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
876		rt2800pci_wakeup(rt2x00dev);
877
878	/* Enable interrupts again. */
879	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
880					      STATE_RADIO_IRQ_ON_ISR);
881
882	return IRQ_HANDLED;
883}
884
885static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
886{
887	struct rt2x00_dev *rt2x00dev = dev_instance;
888	u32 reg;
889
890	/* Read status and ACK all interrupts */
891	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
892	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
893
894	if (!reg)
895		return IRQ_NONE;
896
897	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
898		return IRQ_HANDLED;
899
900	/* Store irqvalue for use in the interrupt thread. */
901	rt2x00dev->irqvalue[0] = reg;
902
903	/* Disable interrupts, will be enabled again in the interrupt thread. */
904	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
905					      STATE_RADIO_IRQ_OFF_ISR);
906
907
908	return IRQ_WAKE_THREAD;
909}
910
911/*
912 * Device probe functions.
913 */
914static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
915{
916	/*
917	 * Read EEPROM into buffer
918	 */
919	if (rt2x00_is_soc(rt2x00dev))
920		rt2800pci_read_eeprom_soc(rt2x00dev);
921	else if (rt2800pci_efuse_detect(rt2x00dev))
922		rt2800pci_read_eeprom_efuse(rt2x00dev);
923	else
924		rt2800pci_read_eeprom_pci(rt2x00dev);
925
926	return rt2800_validate_eeprom(rt2x00dev);
927}
928
929static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
930{
931	int retval;
932
933	/*
934	 * Allocate eeprom data.
935	 */
936	retval = rt2800pci_validate_eeprom(rt2x00dev);
937	if (retval)
938		return retval;
939
940	retval = rt2800_init_eeprom(rt2x00dev);
941	if (retval)
942		return retval;
943
944	/*
945	 * Initialize hw specifications.
946	 */
947	retval = rt2800_probe_hw_mode(rt2x00dev);
948	if (retval)
949		return retval;
950
951	/*
952	 * This device has multiple filters for control frames
953	 * and has a separate filter for PS Poll frames.
954	 */
955	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
956	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
957
958	/*
959	 * This device has a pre tbtt interrupt and thus fetches
960	 * a new beacon directly prior to transmission.
961	 */
962	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
963
964	/*
965	 * This device requires firmware.
966	 */
967	if (!rt2x00_is_soc(rt2x00dev))
968		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
969	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
970	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
971	if (!modparam_nohwcrypt)
972		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
973	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
974
975	/*
976	 * Set the rssi offset.
977	 */
978	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
979
980	return 0;
981}
982
983static const struct ieee80211_ops rt2800pci_mac80211_ops = {
984	.tx			= rt2x00mac_tx,
985	.start			= rt2x00mac_start,
986	.stop			= rt2x00mac_stop,
987	.add_interface		= rt2x00mac_add_interface,
988	.remove_interface	= rt2x00mac_remove_interface,
989	.config			= rt2x00mac_config,
990	.configure_filter	= rt2x00mac_configure_filter,
991	.set_key		= rt2x00mac_set_key,
992	.sw_scan_start		= rt2x00mac_sw_scan_start,
993	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
994	.get_stats		= rt2x00mac_get_stats,
995	.get_tkip_seq		= rt2800_get_tkip_seq,
996	.set_rts_threshold	= rt2800_set_rts_threshold,
997	.bss_info_changed	= rt2x00mac_bss_info_changed,
998	.conf_tx		= rt2800_conf_tx,
999	.get_tsf		= rt2800_get_tsf,
1000	.rfkill_poll		= rt2x00mac_rfkill_poll,
1001	.ampdu_action		= rt2800_ampdu_action,
1002};
1003
1004static const struct rt2800_ops rt2800pci_rt2800_ops = {
1005	.register_read		= rt2x00pci_register_read,
1006	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
1007	.register_write		= rt2x00pci_register_write,
1008	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
1009	.register_multiread	= rt2x00pci_register_multiread,
1010	.register_multiwrite	= rt2x00pci_register_multiwrite,
1011	.regbusy_read		= rt2x00pci_regbusy_read,
1012	.drv_write_firmware	= rt2800pci_write_firmware,
1013	.drv_init_registers	= rt2800pci_init_registers,
1014};
1015
1016static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1017	.irq_handler		= rt2800pci_interrupt,
1018	.irq_handler_thread	= rt2800pci_interrupt_thread,
1019	.probe_hw		= rt2800pci_probe_hw,
1020	.get_firmware_name	= rt2800pci_get_firmware_name,
1021	.check_firmware		= rt2800_check_firmware,
1022	.load_firmware		= rt2800_load_firmware,
1023	.initialize		= rt2x00pci_initialize,
1024	.uninitialize		= rt2x00pci_uninitialize,
1025	.get_entry_state	= rt2800pci_get_entry_state,
1026	.clear_entry		= rt2800pci_clear_entry,
1027	.set_device_state	= rt2800pci_set_device_state,
1028	.rfkill_poll		= rt2800_rfkill_poll,
1029	.link_stats		= rt2800_link_stats,
1030	.reset_tuner		= rt2800_reset_tuner,
1031	.link_tuner		= rt2800_link_tuner,
1032	.write_tx_desc		= rt2800pci_write_tx_desc,
1033	.write_tx_data		= rt2800pci_write_tx_data,
1034	.write_beacon		= rt2800_write_beacon,
1035	.kick_tx_queue		= rt2800pci_kick_tx_queue,
1036	.kill_tx_queue		= rt2800pci_kill_tx_queue,
1037	.fill_rxdone		= rt2800pci_fill_rxdone,
1038	.config_shared_key	= rt2800_config_shared_key,
1039	.config_pairwise_key	= rt2800_config_pairwise_key,
1040	.config_filter		= rt2800_config_filter,
1041	.config_intf		= rt2800_config_intf,
1042	.config_erp		= rt2800_config_erp,
1043	.config_ant		= rt2800_config_ant,
1044	.config			= rt2800_config,
1045};
1046
1047static const struct data_queue_desc rt2800pci_queue_rx = {
1048	.entry_num		= RX_ENTRIES,
1049	.data_size		= AGGREGATION_SIZE,
1050	.desc_size		= RXD_DESC_SIZE,
1051	.priv_size		= sizeof(struct queue_entry_priv_pci),
1052};
1053
1054static const struct data_queue_desc rt2800pci_queue_tx = {
1055	.entry_num		= TX_ENTRIES,
1056	.data_size		= AGGREGATION_SIZE,
1057	.desc_size		= TXD_DESC_SIZE,
1058	.priv_size		= sizeof(struct queue_entry_priv_pci),
1059};
1060
1061static const struct data_queue_desc rt2800pci_queue_bcn = {
1062	.entry_num		= 8 * BEACON_ENTRIES,
1063	.data_size		= 0, /* No DMA required for beacons */
1064	.desc_size		= TXWI_DESC_SIZE,
1065	.priv_size		= sizeof(struct queue_entry_priv_pci),
1066};
1067
1068static const struct rt2x00_ops rt2800pci_ops = {
1069	.name			= KBUILD_MODNAME,
1070	.max_sta_intf		= 1,
1071	.max_ap_intf		= 8,
1072	.eeprom_size		= EEPROM_SIZE,
1073	.rf_size		= RF_SIZE,
1074	.tx_queues		= NUM_TX_QUEUES,
1075	.extra_tx_headroom	= TXWI_DESC_SIZE,
1076	.rx			= &rt2800pci_queue_rx,
1077	.tx			= &rt2800pci_queue_tx,
1078	.bcn			= &rt2800pci_queue_bcn,
1079	.lib			= &rt2800pci_rt2x00_ops,
1080	.drv			= &rt2800pci_rt2800_ops,
1081	.hw			= &rt2800pci_mac80211_ops,
1082#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1083	.debugfs		= &rt2800_rt2x00debug,
1084#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1085};
1086
1087/*
1088 * RT2800pci module information.
1089 */
1090#ifdef CONFIG_RT2800PCI_PCI
1091static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1092	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1093	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1094	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1095	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1096	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1097	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1098	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1099	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1100	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1101	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1102	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1103	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1104#ifdef CONFIG_RT2800PCI_RT30XX
1105	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1106	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1107	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1108	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1109#endif
1110#ifdef CONFIG_RT2800PCI_RT35XX
1111	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1112	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1113	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1114	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1115	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1116#endif
1117	{ 0, }
1118};
1119#endif /* CONFIG_RT2800PCI_PCI */
1120
1121MODULE_AUTHOR(DRV_PROJECT);
1122MODULE_VERSION(DRV_VERSION);
1123MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1124MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1125#ifdef CONFIG_RT2800PCI_PCI
1126MODULE_FIRMWARE(FIRMWARE_RT2860);
1127MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1128#endif /* CONFIG_RT2800PCI_PCI */
1129MODULE_LICENSE("GPL");
1130
1131#ifdef CONFIG_RT2800PCI_SOC
1132static int rt2800soc_probe(struct platform_device *pdev)
1133{
1134	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1135}
1136
1137static struct platform_driver rt2800soc_driver = {
1138	.driver		= {
1139		.name		= "rt2800_wmac",
1140		.owner		= THIS_MODULE,
1141		.mod_name	= KBUILD_MODNAME,
1142	},
1143	.probe		= rt2800soc_probe,
1144	.remove		= __devexit_p(rt2x00soc_remove),
1145	.suspend	= rt2x00soc_suspend,
1146	.resume		= rt2x00soc_resume,
1147};
1148#endif /* CONFIG_RT2800PCI_SOC */
1149
1150#ifdef CONFIG_RT2800PCI_PCI
1151static struct pci_driver rt2800pci_driver = {
1152	.name		= KBUILD_MODNAME,
1153	.id_table	= rt2800pci_device_table,
1154	.probe		= rt2x00pci_probe,
1155	.remove		= __devexit_p(rt2x00pci_remove),
1156	.suspend	= rt2x00pci_suspend,
1157	.resume		= rt2x00pci_resume,
1158};
1159#endif /* CONFIG_RT2800PCI_PCI */
1160
1161static int __init rt2800pci_init(void)
1162{
1163	int ret = 0;
1164
1165#ifdef CONFIG_RT2800PCI_SOC
1166	ret = platform_driver_register(&rt2800soc_driver);
1167	if (ret)
1168		return ret;
1169#endif
1170#ifdef CONFIG_RT2800PCI_PCI
1171	ret = pci_register_driver(&rt2800pci_driver);
1172	if (ret) {
1173#ifdef CONFIG_RT2800PCI_SOC
1174		platform_driver_unregister(&rt2800soc_driver);
1175#endif
1176		return ret;
1177	}
1178#endif
1179
1180	return ret;
1181}
1182
1183static void __exit rt2800pci_exit(void)
1184{
1185#ifdef CONFIG_RT2800PCI_PCI
1186	pci_unregister_driver(&rt2800pci_driver);
1187#endif
1188#ifdef CONFIG_RT2800PCI_SOC
1189	platform_driver_unregister(&rt2800soc_driver);
1190#endif
1191}
1192
1193module_init(rt2800pci_init);
1194module_exit(rt2800pci_exit);
1195