• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/net/irda/
1/*
2 * SuperH IrDA Driver
3 *
4 * Copyright (C) 2009 Renesas Solutions Corp.
5 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6 *
7 * Based on bfin_sir.c
8 * Copyright 2006-2009 Analog Devices Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15#include <linux/module.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18#include <net/irda/wrapper.h>
19#include <net/irda/irda_device.h>
20#include <asm/clock.h>
21
22#define DRIVER_NAME "sh_sir"
23
24#define RX_PHASE	(1 << 0)
25#define TX_PHASE	(1 << 1)
26#define TX_COMP_PHASE	(1 << 2) /* tx complete */
27#define NONE_PHASE	(1 << 31)
28
29#define IRIF_RINTCLR	0x0016 /* DMA rx interrupt source clear */
30#define IRIF_TINTCLR	0x0018 /* DMA tx interrupt source clear */
31#define IRIF_SIR0	0x0020 /* IrDA-SIR10 control */
32#define IRIF_SIR1	0x0022 /* IrDA-SIR10 baudrate error correction */
33#define IRIF_SIR2	0x0024 /* IrDA-SIR10 baudrate count */
34#define IRIF_SIR3	0x0026 /* IrDA-SIR10 status */
35#define IRIF_SIR_FRM	0x0028 /* Hardware frame processing set */
36#define IRIF_SIR_EOF	0x002A /* EOF value */
37#define IRIF_SIR_FLG	0x002C /* Flag clear */
38#define IRIF_UART_STS2	0x002E /* UART status 2 */
39#define IRIF_UART0	0x0030 /* UART control */
40#define IRIF_UART1	0x0032 /* UART status */
41#define IRIF_UART2	0x0034 /* UART mode */
42#define IRIF_UART3	0x0036 /* UART transmit data */
43#define IRIF_UART4	0x0038 /* UART receive data */
44#define IRIF_UART5	0x003A /* UART interrupt mask */
45#define IRIF_UART6	0x003C /* UART baud rate error correction */
46#define IRIF_UART7	0x003E /* UART baud rate count set */
47#define IRIF_CRC0	0x0040 /* CRC engine control */
48#define IRIF_CRC1	0x0042 /* CRC engine input data */
49#define IRIF_CRC2	0x0044 /* CRC engine calculation */
50#define IRIF_CRC3	0x0046 /* CRC engine output data 1 */
51#define IRIF_CRC4	0x0048 /* CRC engine output data 2 */
52
53/* IRIF_SIR0 */
54#define IRTPW		(1 << 1) /* transmit pulse width select */
55#define IRERRC		(1 << 0) /* Clear receive pulse width error */
56
57/* IRIF_SIR3 */
58#define IRERR		(1 << 0) /* received pulse width Error */
59
60/* IRIF_SIR_FRM */
61#define EOFD		(1 << 9) /* EOF detection flag */
62#define FRER		(1 << 8) /* Frame Error bit */
63#define FRP		(1 << 0) /* Frame processing set */
64
65/* IRIF_UART_STS2 */
66#define IRSME		(1 << 6) /* Receive Sum     Error flag */
67#define IROVE		(1 << 5) /* Receive Overrun Error flag */
68#define IRFRE		(1 << 4) /* Receive Framing Error flag */
69#define IRPRE		(1 << 3) /* Receive Parity  Error flag */
70
71/* IRIF_UART0_*/
72#define TBEC		(1 << 2) /* Transmit Data Clear */
73#define RIE		(1 << 1) /* Receive Enable */
74#define TIE		(1 << 0) /* Transmit Enable */
75
76/* IRIF_UART1 */
77#define URSME		(1 << 6) /* Receive Sum Error Flag */
78#define UROVE		(1 << 5) /* Receive Overrun Error Flag */
79#define URFRE		(1 << 4) /* Receive Framing Error Flag */
80#define URPRE		(1 << 3) /* Receive Parity Error Flag */
81#define RBF		(1 << 2) /* Receive Buffer Full Flag */
82#define TSBE		(1 << 1) /* Transmit Shift Buffer Empty Flag */
83#define TBE		(1 << 0) /* Transmit Buffer Empty flag */
84#define TBCOMP		(TSBE | TBE)
85
86/* IRIF_UART5 */
87#define RSEIM		(1 << 6) /* Receive Sum Error Flag IRQ Mask */
88#define RBFIM		(1 << 2) /* Receive Buffer Full Flag IRQ Mask */
89#define TSBEIM		(1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
90#define TBEIM		(1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
91#define RX_MASK		(RSEIM  | RBFIM)
92
93/* IRIF_CRC0 */
94#define CRC_RST		(1 << 15) /* CRC Engine Reset */
95#define CRC_CT_MASK	0x0FFF
96
97/************************************************************************
98
99
100			structure
101
102
103************************************************************************/
104struct sh_sir_self {
105	void __iomem		*membase;
106	unsigned int		 irq;
107	struct clk		*clk;
108
109	struct net_device	*ndev;
110
111	struct irlap_cb		*irlap;
112	struct qos_info		qos;
113
114	iobuff_t		tx_buff;
115	iobuff_t		rx_buff;
116};
117
118/************************************************************************
119
120
121			common function
122
123
124************************************************************************/
125static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
126{
127	iowrite16(data, self->membase + offset);
128}
129
130static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
131{
132	return ioread16(self->membase + offset);
133}
134
135static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
136			       u16 mask, u16 data)
137{
138	u16 old, new;
139
140	old = sh_sir_read(self, offset);
141	new = (old & ~mask) | data;
142	if (old != new)
143		sh_sir_write(self, offset, new);
144}
145
146/************************************************************************
147
148
149			CRC function
150
151
152************************************************************************/
153static void sh_sir_crc_reset(struct sh_sir_self *self)
154{
155	sh_sir_write(self, IRIF_CRC0, CRC_RST);
156}
157
158static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
159{
160	sh_sir_write(self, IRIF_CRC1, (u16)data);
161}
162
163static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
164{
165	return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
166}
167
168static u16 sh_sir_crc_out(struct sh_sir_self *self)
169{
170	return sh_sir_read(self, IRIF_CRC4);
171}
172
173static int sh_sir_crc_init(struct sh_sir_self *self)
174{
175	struct device *dev = &self->ndev->dev;
176	int ret = -EIO;
177	u16 val;
178
179	sh_sir_crc_reset(self);
180
181	sh_sir_crc_add(self, 0xCC);
182	sh_sir_crc_add(self, 0xF5);
183	sh_sir_crc_add(self, 0xF1);
184	sh_sir_crc_add(self, 0xA7);
185
186	val = sh_sir_crc_cnt(self);
187	if (4 != val) {
188		dev_err(dev, "CRC count error %x\n", val);
189		goto crc_init_out;
190	}
191
192	val = sh_sir_crc_out(self);
193	if (0x51DF != val) {
194		dev_err(dev, "CRC result error%x\n", val);
195		goto crc_init_out;
196	}
197
198	ret = 0;
199
200crc_init_out:
201
202	sh_sir_crc_reset(self);
203	return ret;
204}
205
206/************************************************************************
207
208
209			baud rate functions
210
211
212************************************************************************/
213#define SCLK_BASE 1843200 /* 1.8432MHz */
214
215static u32 sh_sir_find_sclk(struct clk *irda_clk)
216{
217	struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
218	struct clk *pclk = clk_get(NULL, "peripheral_clk");
219	u32 limit, min = 0xffffffff, tmp;
220	int i, index = 0;
221
222	limit = clk_get_rate(pclk);
223	clk_put(pclk);
224
225	/* IrDA can not set over peripheral_clk */
226	for (i = 0;
227	     freq_table[i].frequency != CPUFREQ_TABLE_END;
228	     i++) {
229		u32 freq = freq_table[i].frequency;
230
231		if (freq == CPUFREQ_ENTRY_INVALID)
232			continue;
233
234		/* IrDA should not over peripheral_clk */
235		if (freq > limit)
236			continue;
237
238		tmp = freq % SCLK_BASE;
239		if (tmp < min) {
240			min = tmp;
241			index = i;
242		}
243	}
244
245	return freq_table[index].frequency;
246}
247
248#define ERR_ROUNDING(a) ((a + 5000) / 10000)
249static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
250{
251	struct clk *clk;
252	struct device *dev = &self->ndev->dev;
253	u32 rate;
254	u16 uabca, uabc;
255	u16 irbca, irbc;
256	u32 min, rerr, tmp;
257	int i;
258
259	/* Baud Rate Error Correction x 10000 */
260	u32 rate_err_array[] = {
261		0000, 0625, 1250, 1875,
262		2500, 3125, 3750, 4375,
263		5000, 5625, 6250, 6875,
264		7500, 8125, 8750, 9375,
265	};
266
267	switch (baudrate) {
268	case 9600:
269		break;
270	default:
271		dev_err(dev, "un-supported baudrate %d\n", baudrate);
272		return -EIO;
273	}
274
275	clk = clk_get(NULL, "irda_clk");
276	if (!clk) {
277		dev_err(dev, "can not get irda_clk\n");
278		return -EIO;
279	}
280
281	clk_set_rate(clk, sh_sir_find_sclk(clk));
282	rate = clk_get_rate(clk);
283	clk_put(clk);
284
285	dev_dbg(dev, "selected sclk = %d\n", rate);
286
287	/*
288	 * CALCULATION
289	 *
290	 * 1843200 = system rate / (irbca + (irbc + 1))
291	 */
292
293	irbc = rate / SCLK_BASE;
294
295	tmp = rate - (SCLK_BASE * irbc);
296	tmp *= 10000;
297
298	rerr = tmp / SCLK_BASE;
299
300	min = 0xffffffff;
301	irbca = 0;
302	for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
303		tmp = abs(rate_err_array[i] - rerr);
304		if (min > tmp) {
305			min = tmp;
306			irbca = i;
307		}
308	}
309
310	tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
311	if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
312		dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
313
314	dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
315	       SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
316
317	irbca = (irbca & 0xF) << 4;
318	irbc  = (irbc - 1) & 0xF;
319
320	if (!irbc) {
321		dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
322		return -EIO;
323	}
324
325	sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
326	sh_sir_write(self, IRIF_SIR1, irbca);
327	sh_sir_write(self, IRIF_SIR2, irbc);
328
329	/*
330	 * CALCULATION
331	 *
332	 * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
333	 */
334
335	uabc = rate / baudrate;
336	uabc = (uabc / 16) - 1;
337	uabc = (uabc + 1) * 16;
338
339	tmp = rate - (uabc * baudrate);
340	tmp *= 10000;
341
342	rerr = tmp / baudrate;
343
344	min = 0xffffffff;
345	uabca = 0;
346	for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
347		tmp = abs(rate_err_array[i] - rerr);
348		if (min > tmp) {
349			min = tmp;
350			uabca = i;
351		}
352	}
353
354	tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
355	if ((baudrate / 100) < abs(tmp - baudrate))
356		dev_warn(dev, "UART freq error margin over %d\n", tmp);
357
358	dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
359	       baudrate, tmp,
360	       uabc, rate_err_array[uabca]);
361
362	uabca = (uabca & 0xF) << 4;
363	uabc  = (uabc / 16) - 1;
364
365	sh_sir_write(self, IRIF_UART6, uabca);
366	sh_sir_write(self, IRIF_UART7, uabc);
367
368	return 0;
369}
370
371/************************************************************************
372
373
374			iobuf function
375
376
377************************************************************************/
378static int __sh_sir_init_iobuf(iobuff_t *io, int size)
379{
380	io->head = kmalloc(size, GFP_KERNEL);
381	if (!io->head)
382		return -ENOMEM;
383
384	io->truesize	= size;
385	io->in_frame	= FALSE;
386	io->state	= OUTSIDE_FRAME;
387	io->data	= io->head;
388
389	return 0;
390}
391
392static void sh_sir_remove_iobuf(struct sh_sir_self *self)
393{
394	kfree(self->rx_buff.head);
395	kfree(self->tx_buff.head);
396
397	self->rx_buff.head = NULL;
398	self->tx_buff.head = NULL;
399}
400
401static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
402{
403	int err = -ENOMEM;
404
405	if (self->rx_buff.head ||
406	    self->tx_buff.head) {
407		dev_err(&self->ndev->dev, "iobuff has already existed.");
408		return err;
409	}
410
411	err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
412	if (err)
413		goto iobuf_err;
414
415	err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
416
417iobuf_err:
418	if (err)
419		sh_sir_remove_iobuf(self);
420
421	return err;
422}
423
424/************************************************************************
425
426
427			status function
428
429
430************************************************************************/
431static void sh_sir_clear_all_err(struct sh_sir_self *self)
432{
433	/* Clear error flag for receive pulse width */
434	sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
435
436	/* Clear frame / EOF error flag */
437	sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
438
439	/* Clear all status error */
440	sh_sir_write(self, IRIF_UART_STS2, 0);
441}
442
443static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
444{
445	u16 uart5 = 0;
446	u16 uart0 = 0;
447
448	switch (phase) {
449	case TX_PHASE:
450		uart5 = TBEIM;
451		uart0 = TBEC | TIE;
452		break;
453	case TX_COMP_PHASE:
454		uart5 = TSBEIM;
455		uart0 = TIE;
456		break;
457	case RX_PHASE:
458		uart5 = RX_MASK;
459		uart0 = RIE;
460		break;
461	default:
462		break;
463	}
464
465	sh_sir_write(self, IRIF_UART5, uart5);
466	sh_sir_write(self, IRIF_UART0, uart0);
467}
468
469static int sh_sir_is_which_phase(struct sh_sir_self *self)
470{
471	u16 val = sh_sir_read(self, IRIF_UART5);
472
473	if (val & TBEIM)
474		return TX_PHASE;
475
476	if (val & TSBEIM)
477		return TX_COMP_PHASE;
478
479	if (val & RX_MASK)
480		return RX_PHASE;
481
482	return NONE_PHASE;
483}
484
485static void sh_sir_tx(struct sh_sir_self *self, int phase)
486{
487	switch (phase) {
488	case TX_PHASE:
489		if (0 >= self->tx_buff.len) {
490			sh_sir_set_phase(self, TX_COMP_PHASE);
491		} else {
492			sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
493			self->tx_buff.len--;
494			self->tx_buff.data++;
495		}
496		break;
497	case TX_COMP_PHASE:
498		sh_sir_set_phase(self, RX_PHASE);
499		netif_wake_queue(self->ndev);
500		break;
501	default:
502		dev_err(&self->ndev->dev, "should not happen\n");
503		break;
504	}
505}
506
507static int sh_sir_read_data(struct sh_sir_self *self)
508{
509	u16 val;
510	int timeout = 1024;
511
512	while (timeout--) {
513		val = sh_sir_read(self, IRIF_UART1);
514
515		/* data get */
516		if (val & RBF) {
517			if (val & (URSME | UROVE | URFRE | URPRE))
518				break;
519
520			return (int)sh_sir_read(self, IRIF_UART4);
521		}
522
523		udelay(1);
524	}
525
526	dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
527		val, sh_sir_read(self, IRIF_UART_STS2));
528
529	/* read data register for clear error */
530	sh_sir_read(self, IRIF_UART4);
531
532	return -1;
533}
534
535static void sh_sir_rx(struct sh_sir_self *self)
536{
537	int timeout = 1024;
538	int data;
539
540	while (timeout--) {
541		data = sh_sir_read_data(self);
542		if (data < 0)
543			break;
544
545		async_unwrap_char(self->ndev, &self->ndev->stats,
546				  &self->rx_buff, (u8)data);
547		self->ndev->last_rx = jiffies;
548
549		if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
550			continue;
551
552		break;
553	}
554}
555
556static irqreturn_t sh_sir_irq(int irq, void *dev_id)
557{
558	struct sh_sir_self *self = dev_id;
559	struct device *dev = &self->ndev->dev;
560	int phase = sh_sir_is_which_phase(self);
561
562	switch (phase) {
563	case TX_COMP_PHASE:
564	case TX_PHASE:
565		sh_sir_tx(self, phase);
566		break;
567	case RX_PHASE:
568		if (sh_sir_read(self, IRIF_SIR3))
569			dev_err(dev, "rcv pulse width error occurred\n");
570
571		sh_sir_rx(self);
572		sh_sir_clear_all_err(self);
573		break;
574	default:
575		dev_err(dev, "unknown interrupt\n");
576	}
577
578	 return IRQ_HANDLED;
579}
580
581/************************************************************************
582
583
584			net_device_ops function
585
586
587************************************************************************/
588static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
589{
590	struct sh_sir_self *self = netdev_priv(ndev);
591	int speed = irda_get_next_speed(skb);
592
593	if ((0 < speed) &&
594	    (9600 != speed)) {
595		dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
596		return -EIO;
597	}
598
599	netif_stop_queue(ndev);
600
601	self->tx_buff.data = self->tx_buff.head;
602	self->tx_buff.len = 0;
603	if (skb->len)
604		self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
605						   self->tx_buff.truesize);
606
607	sh_sir_set_phase(self, TX_PHASE);
608	dev_kfree_skb(skb);
609
610	return 0;
611}
612
613static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
614{
615	return 0;
616}
617
618static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
619{
620	struct sh_sir_self *self = netdev_priv(ndev);
621
622	return &self->ndev->stats;
623}
624
625static int sh_sir_open(struct net_device *ndev)
626{
627	struct sh_sir_self *self = netdev_priv(ndev);
628	int err;
629
630	clk_enable(self->clk);
631	err = sh_sir_crc_init(self);
632	if (err)
633		goto open_err;
634
635	sh_sir_set_baudrate(self, 9600);
636
637	self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
638	if (!self->irlap) {
639		err = -ENODEV;
640		goto open_err;
641	}
642
643	/*
644	 * Now enable the interrupt then start the queue
645	 */
646	sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
647	sh_sir_read(self, IRIF_UART1); /* flag clear */
648	sh_sir_read(self, IRIF_UART4); /* flag clear */
649	sh_sir_set_phase(self, RX_PHASE);
650
651	netif_start_queue(ndev);
652
653	dev_info(&self->ndev->dev, "opened\n");
654
655	return 0;
656
657open_err:
658	clk_disable(self->clk);
659
660	return err;
661}
662
663static int sh_sir_stop(struct net_device *ndev)
664{
665	struct sh_sir_self *self = netdev_priv(ndev);
666
667	/* Stop IrLAP */
668	if (self->irlap) {
669		irlap_close(self->irlap);
670		self->irlap = NULL;
671	}
672
673	netif_stop_queue(ndev);
674
675	dev_info(&ndev->dev, "stoped\n");
676
677	return 0;
678}
679
680static const struct net_device_ops sh_sir_ndo = {
681	.ndo_open		= sh_sir_open,
682	.ndo_stop		= sh_sir_stop,
683	.ndo_start_xmit		= sh_sir_hard_xmit,
684	.ndo_do_ioctl		= sh_sir_ioctl,
685	.ndo_get_stats		= sh_sir_stats,
686};
687
688/************************************************************************
689
690
691			platform_driver function
692
693
694************************************************************************/
695static int __devinit sh_sir_probe(struct platform_device *pdev)
696{
697	struct net_device *ndev;
698	struct sh_sir_self *self;
699	struct resource *res;
700	char clk_name[8];
701	int irq;
702	int err = -ENOMEM;
703
704	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
705	irq = platform_get_irq(pdev, 0);
706	if (!res || irq < 0) {
707		dev_err(&pdev->dev, "Not enough platform resources.\n");
708		goto exit;
709	}
710
711	ndev = alloc_irdadev(sizeof(*self));
712	if (!ndev)
713		goto exit;
714
715	self = netdev_priv(ndev);
716	self->membase = ioremap_nocache(res->start, resource_size(res));
717	if (!self->membase) {
718		err = -ENXIO;
719		dev_err(&pdev->dev, "Unable to ioremap.\n");
720		goto err_mem_1;
721	}
722
723	err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
724	if (err)
725		goto err_mem_2;
726
727	snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
728	self->clk = clk_get(&pdev->dev, clk_name);
729	if (IS_ERR(self->clk)) {
730		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
731		goto err_mem_3;
732	}
733
734	irda_init_max_qos_capabilies(&self->qos);
735
736	ndev->netdev_ops	= &sh_sir_ndo;
737	ndev->irq		= irq;
738
739	self->ndev			= ndev;
740	self->qos.baud_rate.bits	&= IR_9600;
741	self->qos.min_turn_time.bits	= 1; /* 10 ms or more */
742
743	irda_qos_bits_to_value(&self->qos);
744
745	err = register_netdev(ndev);
746	if (err)
747		goto err_mem_4;
748
749	platform_set_drvdata(pdev, ndev);
750
751	if (request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self)) {
752		dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
753		goto err_mem_4;
754	}
755
756	dev_info(&pdev->dev, "SuperH IrDA probed\n");
757
758	goto exit;
759
760err_mem_4:
761	clk_put(self->clk);
762err_mem_3:
763	sh_sir_remove_iobuf(self);
764err_mem_2:
765	iounmap(self->membase);
766err_mem_1:
767	free_netdev(ndev);
768exit:
769	return err;
770}
771
772static int __devexit sh_sir_remove(struct platform_device *pdev)
773{
774	struct net_device *ndev = platform_get_drvdata(pdev);
775	struct sh_sir_self *self = netdev_priv(ndev);
776
777	if (!self)
778		return 0;
779
780	unregister_netdev(ndev);
781	clk_put(self->clk);
782	sh_sir_remove_iobuf(self);
783	iounmap(self->membase);
784	free_netdev(ndev);
785	platform_set_drvdata(pdev, NULL);
786
787	return 0;
788}
789
790static struct platform_driver sh_sir_driver = {
791	.probe   = sh_sir_probe,
792	.remove  = __devexit_p(sh_sir_remove),
793	.driver  = {
794		.name = DRIVER_NAME,
795	},
796};
797
798static int __init sh_sir_init(void)
799{
800	return platform_driver_register(&sh_sir_driver);
801}
802
803static void __exit sh_sir_exit(void)
804{
805	platform_driver_unregister(&sh_sir_driver);
806}
807
808module_init(sh_sir_init);
809module_exit(sh_sir_exit);
810
811MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
812MODULE_DESCRIPTION("SuperH IrDA driver");
813MODULE_LICENSE("GPL");
814