• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/ide/
1/*
2 * Support for IDE interfaces on PowerMacs.
3 *
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
6 *
7 *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9 *
10 *  This program is free software; you can redistribute it and/or
11 *  modify it under the terms of the GNU General Public License
12 *  as published by the Free Software Foundation; either version
13 *  2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 *  Copyright (c) 1995-1998  Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/delay.h>
29#include <linux/ide.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/pci.h>
33#include <linux/adb.h>
34#include <linux/pmu.h>
35#include <linux/scatterlist.h>
36#include <linux/slab.h>
37
38#include <asm/prom.h>
39#include <asm/io.h>
40#include <asm/dbdma.h>
41#include <asm/ide.h>
42#include <asm/pci-bridge.h>
43#include <asm/machdep.h>
44#include <asm/pmac_feature.h>
45#include <asm/sections.h>
46#include <asm/irq.h>
47#include <asm/mediabay.h>
48
49#define DRV_NAME "ide-pmac"
50
51#undef IDE_PMAC_DEBUG
52
53#define DMA_WAIT_TIMEOUT	50
54
55typedef struct pmac_ide_hwif {
56	unsigned long			regbase;
57	int				irq;
58	int				kind;
59	int				aapl_bus_id;
60	unsigned			broken_dma : 1;
61	unsigned			broken_dma_warn : 1;
62	struct device_node*		node;
63	struct macio_dev		*mdev;
64	u32				timings[4];
65	volatile u32 __iomem *		*kauai_fcr;
66	ide_hwif_t			*hwif;
67
68	/* Those fields are duplicating what is in hwif. We currently
69	 * can't use the hwif ones because of some assumptions that are
70	 * beeing done by the generic code about the kind of dma controller
71	 * and format of the dma table. This will have to be fixed though.
72	 */
73	volatile struct dbdma_regs __iomem *	dma_regs;
74	struct dbdma_cmd*		dma_table_cpu;
75} pmac_ide_hwif_t;
76
77enum {
78	controller_ohare,	/* OHare based */
79	controller_heathrow,	/* Heathrow/Paddington */
80	controller_kl_ata3,	/* KeyLargo ATA-3 */
81	controller_kl_ata4,	/* KeyLargo ATA-4 */
82	controller_un_ata6,	/* UniNorth2 ATA-6 */
83	controller_k2_ata6,	/* K2 ATA-6 */
84	controller_sh_ata6,	/* Shasta ATA-6 */
85};
86
87static const char* model_name[] = {
88	"OHare ATA",		/* OHare based */
89	"Heathrow ATA",		/* Heathrow/Paddington */
90	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
91	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
92	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
93	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
94	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
95};
96
97/*
98 * Extra registers, both 32-bit little-endian
99 */
100#define IDE_TIMING_CONFIG	0x200
101#define IDE_INTERRUPT		0x300
102
103/* Kauai (U2) ATA has different register setup */
104#define IDE_KAUAI_PIO_CONFIG	0x200
105#define IDE_KAUAI_ULTRA_CONFIG	0x210
106#define IDE_KAUAI_POLL_CONFIG	0x220
107
108/*
109 * Timing configuration register definitions
110 */
111
112/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
113#define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
114#define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
115#define IDE_SYSCLK_NS		30	/* 33Mhz cell */
116#define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
117
118/* 133Mhz cell, found in shasta.
119 * See comments about 100 Mhz Uninorth 2...
120 * Note that PIO_MASK and MDMA_MASK seem to overlap
121 */
122#define TR_133_PIOREG_PIO_MASK		0xff000fff
123#define TR_133_PIOREG_MDMA_MASK		0x00fff800
124#define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
125#define TR_133_UDMAREG_UDMA_EN		0x00000001
126
127/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
128 * this one yet, it appears as a pci device (106b/0033) on uninorth
129 * internal PCI bus and it's clock is controlled like gem or fw. It
130 * appears to be an evolution of keylargo ATA4 with a timing register
131 * extended to 2 32bits registers and a similar DBDMA channel. Other
132 * registers seem to exist but I can't tell much about them.
133 *
134 * So far, I'm using pre-calculated tables for this extracted from
135 * the values used by the MacOS X driver.
136 *
137 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
138 * register controls the UDMA timings. At least, it seems bit 0
139 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
140 * cycle time in units of 10ns. Bits 8..15 are used by I don't
141 * know their meaning yet
142 */
143#define TR_100_PIOREG_PIO_MASK		0xff000fff
144#define TR_100_PIOREG_MDMA_MASK		0x00fff000
145#define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
146#define TR_100_UDMAREG_UDMA_EN		0x00000001
147
148
149/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
150 * 40 connector cable and to 4 on 80 connector one.
151 * Clock unit is 15ns (66Mhz)
152 *
153 * 3 Values can be programmed:
154 *  - Write data setup, which appears to match the cycle time. They
155 *    also call it DIOW setup.
156 *  - Ready to pause time (from spec)
157 *  - Address setup. That one is weird. I don't see where exactly
158 *    it fits in UDMA cycles, I got it's name from an obscure piece
159 *    of commented out code in Darwin. They leave it to 0, we do as
160 *    well, despite a comment that would lead to think it has a
161 *    min value of 45ns.
162 * Apple also add 60ns to the write data setup (or cycle time ?) on
163 * reads.
164 */
165#define TR_66_UDMA_MASK			0xfff00000
166#define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
167#define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
168#define TR_66_UDMA_ADDRSETUP_SHIFT	29
169#define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
170#define TR_66_UDMA_RDY2PAUS_SHIFT	25
171#define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
172#define TR_66_UDMA_WRDATASETUP_SHIFT	21
173#define TR_66_MDMA_MASK			0x000ffc00
174#define TR_66_MDMA_RECOVERY_MASK	0x000f8000
175#define TR_66_MDMA_RECOVERY_SHIFT	15
176#define TR_66_MDMA_ACCESS_MASK		0x00007c00
177#define TR_66_MDMA_ACCESS_SHIFT		10
178#define TR_66_PIO_MASK			0x000003ff
179#define TR_66_PIO_RECOVERY_MASK		0x000003e0
180#define TR_66_PIO_RECOVERY_SHIFT	5
181#define TR_66_PIO_ACCESS_MASK		0x0000001f
182#define TR_66_PIO_ACCESS_SHIFT		0
183
184/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
185 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
186 *
187 * The access time and recovery time can be programmed. Some older
188 * Darwin code base limit OHare to 150ns cycle time. I decided to do
189 * the same here fore safety against broken old hardware ;)
190 * The HalfTick bit, when set, adds half a clock (15ns) to the access
191 * time and removes one from recovery. It's not supported on KeyLargo
192 * implementation afaik. The E bit appears to be set for PIO mode 0 and
193 * is used to reach long timings used in this mode.
194 */
195#define TR_33_MDMA_MASK			0x003ff800
196#define TR_33_MDMA_RECOVERY_MASK	0x001f0000
197#define TR_33_MDMA_RECOVERY_SHIFT	16
198#define TR_33_MDMA_ACCESS_MASK		0x0000f800
199#define TR_33_MDMA_ACCESS_SHIFT		11
200#define TR_33_MDMA_HALFTICK		0x00200000
201#define TR_33_PIO_MASK			0x000007ff
202#define TR_33_PIO_E			0x00000400
203#define TR_33_PIO_RECOVERY_MASK		0x000003e0
204#define TR_33_PIO_RECOVERY_SHIFT	5
205#define TR_33_PIO_ACCESS_MASK		0x0000001f
206#define TR_33_PIO_ACCESS_SHIFT		0
207
208/*
209 * Interrupt register definitions
210 */
211#define IDE_INTR_DMA			0x80000000
212#define IDE_INTR_DEVICE			0x40000000
213
214/*
215 * FCR Register on Kauai. Not sure what bit 0x4 is  ...
216 */
217#define KAUAI_FCR_UATA_MAGIC		0x00000004
218#define KAUAI_FCR_UATA_RESET_N		0x00000002
219#define KAUAI_FCR_UATA_ENABLE		0x00000001
220
221/* Rounded Multiword DMA timings
222 *
223 * I gave up finding a generic formula for all controller
224 * types and instead, built tables based on timing values
225 * used by Apple in Darwin's implementation.
226 */
227struct mdma_timings_t {
228	int	accessTime;
229	int	recoveryTime;
230	int	cycleTime;
231};
232
233struct mdma_timings_t mdma_timings_33[] =
234{
235    { 240, 240, 480 },
236    { 180, 180, 360 },
237    { 135, 135, 270 },
238    { 120, 120, 240 },
239    { 105, 105, 210 },
240    {  90,  90, 180 },
241    {  75,  75, 150 },
242    {  75,  45, 120 },
243    {   0,   0,   0 }
244};
245
246struct mdma_timings_t mdma_timings_33k[] =
247{
248    { 240, 240, 480 },
249    { 180, 180, 360 },
250    { 150, 150, 300 },
251    { 120, 120, 240 },
252    {  90, 120, 210 },
253    {  90,  90, 180 },
254    {  90,  60, 150 },
255    {  90,  30, 120 },
256    {   0,   0,   0 }
257};
258
259struct mdma_timings_t mdma_timings_66[] =
260{
261    { 240, 240, 480 },
262    { 180, 180, 360 },
263    { 135, 135, 270 },
264    { 120, 120, 240 },
265    { 105, 105, 210 },
266    {  90,  90, 180 },
267    {  90,  75, 165 },
268    {  75,  45, 120 },
269    {   0,   0,   0 }
270};
271
272/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
273struct {
274	int	addrSetup; /* ??? */
275	int	rdy2pause;
276	int	wrDataSetup;
277} kl66_udma_timings[] =
278{
279    {   0, 180,  120 },	/* Mode 0 */
280    {   0, 150,  90 },	/*      1 */
281    {   0, 120,  60 },	/*      2 */
282    {   0, 90,   45 },	/*      3 */
283    {   0, 90,   30 }	/*      4 */
284};
285
286/* UniNorth 2 ATA/100 timings */
287struct kauai_timing {
288	int	cycle_time;
289	u32	timing_reg;
290};
291
292static struct kauai_timing	kauai_pio_timings[] =
293{
294	{ 930	, 0x08000fff },
295	{ 600	, 0x08000a92 },
296	{ 383	, 0x0800060f },
297	{ 360	, 0x08000492 },
298	{ 330	, 0x0800048f },
299	{ 300	, 0x080003cf },
300	{ 270	, 0x080003cc },
301	{ 240	, 0x0800038b },
302	{ 239	, 0x0800030c },
303	{ 180	, 0x05000249 },
304	{ 120	, 0x04000148 },
305	{ 0	, 0 },
306};
307
308static struct kauai_timing	kauai_mdma_timings[] =
309{
310	{ 1260	, 0x00fff000 },
311	{ 480	, 0x00618000 },
312	{ 360	, 0x00492000 },
313	{ 270	, 0x0038e000 },
314	{ 240	, 0x0030c000 },
315	{ 210	, 0x002cb000 },
316	{ 180	, 0x00249000 },
317	{ 150	, 0x00209000 },
318	{ 120	, 0x00148000 },
319	{ 0	, 0 },
320};
321
322static struct kauai_timing	kauai_udma_timings[] =
323{
324	{ 120	, 0x000070c0 },
325	{ 90	, 0x00005d80 },
326	{ 60	, 0x00004a60 },
327	{ 45	, 0x00003a50 },
328	{ 30	, 0x00002a30 },
329	{ 20	, 0x00002921 },
330	{ 0	, 0 },
331};
332
333static struct kauai_timing	shasta_pio_timings[] =
334{
335	{ 930	, 0x08000fff },
336	{ 600	, 0x0A000c97 },
337	{ 383	, 0x07000712 },
338	{ 360	, 0x040003cd },
339	{ 330	, 0x040003cd },
340	{ 300	, 0x040003cd },
341	{ 270	, 0x040003cd },
342	{ 240	, 0x040003cd },
343	{ 239	, 0x040003cd },
344	{ 180	, 0x0400028b },
345	{ 120	, 0x0400010a },
346	{ 0	, 0 },
347};
348
349static struct kauai_timing	shasta_mdma_timings[] =
350{
351	{ 1260	, 0x00fff000 },
352	{ 480	, 0x00820800 },
353	{ 360	, 0x00820800 },
354	{ 270	, 0x00820800 },
355	{ 240	, 0x00820800 },
356	{ 210	, 0x00820800 },
357	{ 180	, 0x00820800 },
358	{ 150	, 0x0028b000 },
359	{ 120	, 0x001ca000 },
360	{ 0	, 0 },
361};
362
363static struct kauai_timing	shasta_udma133_timings[] =
364{
365	{ 120   , 0x00035901, },
366	{ 90    , 0x000348b1, },
367	{ 60    , 0x00033881, },
368	{ 45    , 0x00033861, },
369	{ 30    , 0x00033841, },
370	{ 20    , 0x00033031, },
371	{ 15    , 0x00033021, },
372	{ 0	, 0 },
373};
374
375
376static inline u32
377kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
378{
379	int i;
380
381	for (i=0; table[i].cycle_time; i++)
382		if (cycle_time > table[i+1].cycle_time)
383			return table[i].timing_reg;
384	BUG();
385	return 0;
386}
387
388/* allow up to 256 DBDMA commands per xfer */
389#define MAX_DCMDS		256
390
391/*
392 * Wait 1s for disk to answer on IDE bus after a hard reset
393 * of the device (via GPIO/FCR).
394 *
395 * Some devices seem to "pollute" the bus even after dropping
396 * the BSY bit (typically some combo drives slave on the UDMA
397 * bus) after a hard reset. Since we hard reset all drives on
398 * KeyLargo ATA66, we have to keep that delay around. I may end
399 * up not hard resetting anymore on these and keep the delay only
400 * for older interfaces instead (we have to reset when coming
401 * from MacOS...) --BenH.
402 */
403#define IDE_WAKEUP_DELAY	(1*HZ)
404
405static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
406
407#define PMAC_IDE_REG(x) \
408	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
409
410/*
411 * Apply the timings of the proper unit (master/slave) to the shared
412 * timing register when selecting that unit. This version is for
413 * ASICs with a single timing register
414 */
415static void pmac_ide_apply_timings(ide_drive_t *drive)
416{
417	ide_hwif_t *hwif = drive->hwif;
418	pmac_ide_hwif_t *pmif =
419		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
420
421	if (drive->dn & 1)
422		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
423	else
424		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
425	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
426}
427
428/*
429 * Apply the timings of the proper unit (master/slave) to the shared
430 * timing register when selecting that unit. This version is for
431 * ASICs with a dual timing register (Kauai)
432 */
433static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
434{
435	ide_hwif_t *hwif = drive->hwif;
436	pmac_ide_hwif_t *pmif =
437		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
438
439	if (drive->dn & 1) {
440		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
441		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
442	} else {
443		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
444		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
445	}
446	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
447}
448
449/*
450 * Force an update of controller timing values for a given drive
451 */
452static void
453pmac_ide_do_update_timings(ide_drive_t *drive)
454{
455	ide_hwif_t *hwif = drive->hwif;
456	pmac_ide_hwif_t *pmif =
457		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
458
459	if (pmif->kind == controller_sh_ata6 ||
460	    pmif->kind == controller_un_ata6 ||
461	    pmif->kind == controller_k2_ata6)
462		pmac_ide_kauai_apply_timings(drive);
463	else
464		pmac_ide_apply_timings(drive);
465}
466
467static void pmac_dev_select(ide_drive_t *drive)
468{
469	pmac_ide_apply_timings(drive);
470
471	writeb(drive->select | ATA_DEVICE_OBS,
472	       (void __iomem *)drive->hwif->io_ports.device_addr);
473}
474
475static void pmac_kauai_dev_select(ide_drive_t *drive)
476{
477	pmac_ide_kauai_apply_timings(drive);
478
479	writeb(drive->select | ATA_DEVICE_OBS,
480	       (void __iomem *)drive->hwif->io_ports.device_addr);
481}
482
483static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
484{
485	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
486	(void)readl((void __iomem *)(hwif->io_ports.data_addr
487				     + IDE_TIMING_CONFIG));
488}
489
490static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
491{
492	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
493	(void)readl((void __iomem *)(hwif->io_ports.data_addr
494				     + IDE_TIMING_CONFIG));
495}
496
497/*
498 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
499 */
500static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
501{
502	pmac_ide_hwif_t *pmif =
503		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
504	const u8 pio = drive->pio_mode - XFER_PIO_0;
505	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
506	u32 *timings, t;
507	unsigned accessTicks, recTicks;
508	unsigned accessTime, recTime;
509	unsigned int cycle_time;
510
511	/* which drive is it ? */
512	timings = &pmif->timings[drive->dn & 1];
513	t = *timings;
514
515	cycle_time = ide_pio_cycle_time(drive, pio);
516
517	switch (pmif->kind) {
518	case controller_sh_ata6: {
519		/* 133Mhz cell */
520		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
521		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
522		break;
523		}
524	case controller_un_ata6:
525	case controller_k2_ata6: {
526		/* 100Mhz cell */
527		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
528		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
529		break;
530		}
531	case controller_kl_ata4:
532		/* 66Mhz cell */
533		recTime = cycle_time - tim->active - tim->setup;
534		recTime = max(recTime, 150U);
535		accessTime = tim->active;
536		accessTime = max(accessTime, 150U);
537		accessTicks = SYSCLK_TICKS_66(accessTime);
538		accessTicks = min(accessTicks, 0x1fU);
539		recTicks = SYSCLK_TICKS_66(recTime);
540		recTicks = min(recTicks, 0x1fU);
541		t = (t & ~TR_66_PIO_MASK) |
542			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
543			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
544		break;
545	default: {
546		/* 33Mhz cell */
547		int ebit = 0;
548		recTime = cycle_time - tim->active - tim->setup;
549		recTime = max(recTime, 150U);
550		accessTime = tim->active;
551		accessTime = max(accessTime, 150U);
552		accessTicks = SYSCLK_TICKS(accessTime);
553		accessTicks = min(accessTicks, 0x1fU);
554		accessTicks = max(accessTicks, 4U);
555		recTicks = SYSCLK_TICKS(recTime);
556		recTicks = min(recTicks, 0x1fU);
557		recTicks = max(recTicks, 5U) - 4;
558		if (recTicks > 9) {
559			recTicks--; /* guess, but it's only for PIO0, so... */
560			ebit = 1;
561		}
562		t = (t & ~TR_33_PIO_MASK) |
563				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
564				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
565		if (ebit)
566			t |= TR_33_PIO_E;
567		break;
568		}
569	}
570
571#ifdef IDE_PMAC_DEBUG
572	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
573		drive->name, pio,  *timings);
574#endif
575
576	*timings = t;
577	pmac_ide_do_update_timings(drive);
578}
579
580/*
581 * Calculate KeyLargo ATA/66 UDMA timings
582 */
583static int
584set_timings_udma_ata4(u32 *timings, u8 speed)
585{
586	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
587
588	if (speed > XFER_UDMA_4)
589		return 1;
590
591	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
592	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
593	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
594
595	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
596			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
597			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
598			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
599			TR_66_UDMA_EN;
600#ifdef IDE_PMAC_DEBUG
601	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
602		speed & 0xf,  *timings);
603#endif
604
605	return 0;
606}
607
608/*
609 * Calculate Kauai ATA/100 UDMA timings
610 */
611static int
612set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
613{
614	struct ide_timing *t = ide_timing_find_mode(speed);
615	u32 tr;
616
617	if (speed > XFER_UDMA_5 || t == NULL)
618		return 1;
619	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
620	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
621	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
622
623	return 0;
624}
625
626/*
627 * Calculate Shasta ATA/133 UDMA timings
628 */
629static int
630set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
631{
632	struct ide_timing *t = ide_timing_find_mode(speed);
633	u32 tr;
634
635	if (speed > XFER_UDMA_6 || t == NULL)
636		return 1;
637	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
638	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
639	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
640
641	return 0;
642}
643
644/*
645 * Calculate MDMA timings for all cells
646 */
647static void
648set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
649		 	u8 speed)
650{
651	u16 *id = drive->id;
652	int cycleTime, accessTime = 0, recTime = 0;
653	unsigned accessTicks, recTicks;
654	struct mdma_timings_t* tm = NULL;
655	int i;
656
657	/* Get default cycle time for mode */
658	switch(speed & 0xf) {
659		case 0: cycleTime = 480; break;
660		case 1: cycleTime = 150; break;
661		case 2: cycleTime = 120; break;
662		default:
663			BUG();
664			break;
665	}
666
667	/* Check if drive provides explicit DMA cycle time */
668	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
669		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
670
671	/* OHare limits according to some old Apple sources */
672	if ((intf_type == controller_ohare) && (cycleTime < 150))
673		cycleTime = 150;
674	/* Get the proper timing array for this controller */
675	switch(intf_type) {
676	        case controller_sh_ata6:
677		case controller_un_ata6:
678		case controller_k2_ata6:
679			break;
680		case controller_kl_ata4:
681			tm = mdma_timings_66;
682			break;
683		case controller_kl_ata3:
684			tm = mdma_timings_33k;
685			break;
686		default:
687			tm = mdma_timings_33;
688			break;
689	}
690	if (tm != NULL) {
691		/* Lookup matching access & recovery times */
692		i = -1;
693		for (;;) {
694			if (tm[i+1].cycleTime < cycleTime)
695				break;
696			i++;
697		}
698		cycleTime = tm[i].cycleTime;
699		accessTime = tm[i].accessTime;
700		recTime = tm[i].recoveryTime;
701
702#ifdef IDE_PMAC_DEBUG
703		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
704			drive->name, cycleTime, accessTime, recTime);
705#endif
706	}
707	switch(intf_type) {
708	case controller_sh_ata6: {
709		/* 133Mhz cell */
710		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
711		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
712		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
713		}
714	case controller_un_ata6:
715	case controller_k2_ata6: {
716		/* 100Mhz cell */
717		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
718		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
719		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
720		}
721		break;
722	case controller_kl_ata4:
723		/* 66Mhz cell */
724		accessTicks = SYSCLK_TICKS_66(accessTime);
725		accessTicks = min(accessTicks, 0x1fU);
726		accessTicks = max(accessTicks, 0x1U);
727		recTicks = SYSCLK_TICKS_66(recTime);
728		recTicks = min(recTicks, 0x1fU);
729		recTicks = max(recTicks, 0x3U);
730		/* Clear out mdma bits and disable udma */
731		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
732			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
733			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
734		break;
735	case controller_kl_ata3:
736		/* 33Mhz cell on KeyLargo */
737		accessTicks = SYSCLK_TICKS(accessTime);
738		accessTicks = max(accessTicks, 1U);
739		accessTicks = min(accessTicks, 0x1fU);
740		accessTime = accessTicks * IDE_SYSCLK_NS;
741		recTicks = SYSCLK_TICKS(recTime);
742		recTicks = max(recTicks, 1U);
743		recTicks = min(recTicks, 0x1fU);
744		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
745				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
746				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
747		break;
748	default: {
749		/* 33Mhz cell on others */
750		int halfTick = 0;
751		int origAccessTime = accessTime;
752		int origRecTime = recTime;
753
754		accessTicks = SYSCLK_TICKS(accessTime);
755		accessTicks = max(accessTicks, 1U);
756		accessTicks = min(accessTicks, 0x1fU);
757		accessTime = accessTicks * IDE_SYSCLK_NS;
758		recTicks = SYSCLK_TICKS(recTime);
759		recTicks = max(recTicks, 2U) - 1;
760		recTicks = min(recTicks, 0x1fU);
761		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
762		if ((accessTicks > 1) &&
763		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
764		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
765            		halfTick = 1;
766			accessTicks--;
767		}
768		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
769				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
770				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
771		if (halfTick)
772			*timings |= TR_33_MDMA_HALFTICK;
773		}
774	}
775#ifdef IDE_PMAC_DEBUG
776	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
777		drive->name, speed & 0xf,  *timings);
778#endif
779}
780
781static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
782{
783	pmac_ide_hwif_t *pmif =
784		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
785	int ret = 0;
786	u32 *timings, *timings2, tl[2];
787	u8 unit = drive->dn & 1;
788	const u8 speed = drive->dma_mode;
789
790	timings = &pmif->timings[unit];
791	timings2 = &pmif->timings[unit+2];
792
793	/* Copy timings to local image */
794	tl[0] = *timings;
795	tl[1] = *timings2;
796
797	if (speed >= XFER_UDMA_0) {
798		if (pmif->kind == controller_kl_ata4)
799			ret = set_timings_udma_ata4(&tl[0], speed);
800		else if (pmif->kind == controller_un_ata6
801			 || pmif->kind == controller_k2_ata6)
802			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
803		else if (pmif->kind == controller_sh_ata6)
804			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
805		else
806			ret = -1;
807	} else
808		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
809
810	if (ret)
811		return;
812
813	/* Apply timings to controller */
814	*timings = tl[0];
815	*timings2 = tl[1];
816
817	pmac_ide_do_update_timings(drive);
818}
819
820/*
821 * Blast some well known "safe" values to the timing registers at init or
822 * wakeup from sleep time, before we do real calculation
823 */
824static void
825sanitize_timings(pmac_ide_hwif_t *pmif)
826{
827	unsigned int value, value2 = 0;
828
829	switch(pmif->kind) {
830		case controller_sh_ata6:
831			value = 0x0a820c97;
832			value2 = 0x00033031;
833			break;
834		case controller_un_ata6:
835		case controller_k2_ata6:
836			value = 0x08618a92;
837			value2 = 0x00002921;
838			break;
839		case controller_kl_ata4:
840			value = 0x0008438c;
841			break;
842		case controller_kl_ata3:
843			value = 0x00084526;
844			break;
845		case controller_heathrow:
846		case controller_ohare:
847		default:
848			value = 0x00074526;
849			break;
850	}
851	pmif->timings[0] = pmif->timings[1] = value;
852	pmif->timings[2] = pmif->timings[3] = value2;
853}
854
855static int on_media_bay(pmac_ide_hwif_t *pmif)
856{
857	return pmif->mdev && pmif->mdev->media_bay != NULL;
858}
859
860/* Suspend call back, should be called after the child devices
861 * have actually been suspended
862 */
863static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
864{
865	/* We clear the timings */
866	pmif->timings[0] = 0;
867	pmif->timings[1] = 0;
868
869	disable_irq(pmif->irq);
870
871	/* The media bay will handle itself just fine */
872	if (on_media_bay(pmif))
873		return 0;
874
875	/* Kauai has bus control FCRs directly here */
876	if (pmif->kauai_fcr) {
877		u32 fcr = readl(pmif->kauai_fcr);
878		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
879		writel(fcr, pmif->kauai_fcr);
880	}
881
882	/* Disable the bus on older machines and the cell on kauai */
883	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
884			    0);
885
886	return 0;
887}
888
889/* Resume call back, should be called before the child devices
890 * are resumed
891 */
892static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
893{
894	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
895	if (!on_media_bay(pmif)) {
896		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
897		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
898		msleep(10);
899		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
900
901		/* Kauai has it different */
902		if (pmif->kauai_fcr) {
903			u32 fcr = readl(pmif->kauai_fcr);
904			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
905			writel(fcr, pmif->kauai_fcr);
906		}
907
908		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
909	}
910
911	/* Sanitize drive timings */
912	sanitize_timings(pmif);
913
914	enable_irq(pmif->irq);
915
916	return 0;
917}
918
919static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
920{
921	pmac_ide_hwif_t *pmif =
922		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
923	struct device_node *np = pmif->node;
924	const char *cable = of_get_property(np, "cable-type", NULL);
925	struct device_node *root = of_find_node_by_path("/");
926	const char *model = of_get_property(root, "model", NULL);
927
928	/* Get cable type from device-tree. */
929	if (cable && !strncmp(cable, "80-", 3)) {
930		/* Some drives fail to detect 80c cable in PowerBook */
931		/* These machine use proprietary short IDE cable anyway */
932		if (!strncmp(model, "PowerBook", 9))
933			return ATA_CBL_PATA40_SHORT;
934		else
935			return ATA_CBL_PATA80;
936	}
937
938	/*
939	 * G5's seem to have incorrect cable type in device-tree.
940	 * Let's assume they have a 80 conductor cable, this seem
941	 * to be always the case unless the user mucked around.
942	 */
943	if (of_device_is_compatible(np, "K2-UATA") ||
944	    of_device_is_compatible(np, "shasta-ata"))
945		return ATA_CBL_PATA80;
946
947	return ATA_CBL_PATA40;
948}
949
950static void pmac_ide_init_dev(ide_drive_t *drive)
951{
952	ide_hwif_t *hwif = drive->hwif;
953	pmac_ide_hwif_t *pmif =
954		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
955
956	if (on_media_bay(pmif)) {
957		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
958			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
959			return;
960		}
961		drive->dev_flags |= IDE_DFLAG_NOPROBE;
962	}
963}
964
965static const struct ide_tp_ops pmac_tp_ops = {
966	.exec_command		= pmac_exec_command,
967	.read_status		= ide_read_status,
968	.read_altstatus		= ide_read_altstatus,
969	.write_devctl		= pmac_write_devctl,
970
971	.dev_select		= pmac_dev_select,
972	.tf_load		= ide_tf_load,
973	.tf_read		= ide_tf_read,
974
975	.input_data		= ide_input_data,
976	.output_data		= ide_output_data,
977};
978
979static const struct ide_tp_ops pmac_ata6_tp_ops = {
980	.exec_command		= pmac_exec_command,
981	.read_status		= ide_read_status,
982	.read_altstatus		= ide_read_altstatus,
983	.write_devctl		= pmac_write_devctl,
984
985	.dev_select		= pmac_kauai_dev_select,
986	.tf_load		= ide_tf_load,
987	.tf_read		= ide_tf_read,
988
989	.input_data		= ide_input_data,
990	.output_data		= ide_output_data,
991};
992
993static const struct ide_port_ops pmac_ide_ata4_port_ops = {
994	.init_dev		= pmac_ide_init_dev,
995	.set_pio_mode		= pmac_ide_set_pio_mode,
996	.set_dma_mode		= pmac_ide_set_dma_mode,
997	.cable_detect		= pmac_ide_cable_detect,
998};
999
1000static const struct ide_port_ops pmac_ide_port_ops = {
1001	.init_dev		= pmac_ide_init_dev,
1002	.set_pio_mode		= pmac_ide_set_pio_mode,
1003	.set_dma_mode		= pmac_ide_set_dma_mode,
1004};
1005
1006static const struct ide_dma_ops pmac_dma_ops;
1007
1008static const struct ide_port_info pmac_port_info = {
1009	.name			= DRV_NAME,
1010	.init_dma		= pmac_ide_init_dma,
1011	.chipset		= ide_pmac,
1012	.tp_ops			= &pmac_tp_ops,
1013	.port_ops		= &pmac_ide_port_ops,
1014	.dma_ops		= &pmac_dma_ops,
1015	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1016				  IDE_HFLAG_POST_SET_MODE |
1017				  IDE_HFLAG_MMIO |
1018				  IDE_HFLAG_UNMASK_IRQS,
1019	.pio_mask		= ATA_PIO4,
1020	.mwdma_mask		= ATA_MWDMA2,
1021};
1022
1023/*
1024 * Setup, register & probe an IDE channel driven by this driver, this is
1025 * called by one of the 2 probe functions (macio or PCI).
1026 */
1027static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1028					   struct ide_hw *hw)
1029{
1030	struct device_node *np = pmif->node;
1031	const int *bidp;
1032	struct ide_host *host;
1033	ide_hwif_t *hwif;
1034	struct ide_hw *hws[] = { hw };
1035	struct ide_port_info d = pmac_port_info;
1036	int rc;
1037
1038	pmif->broken_dma = pmif->broken_dma_warn = 0;
1039	if (of_device_is_compatible(np, "shasta-ata")) {
1040		pmif->kind = controller_sh_ata6;
1041		d.tp_ops = &pmac_ata6_tp_ops;
1042		d.port_ops = &pmac_ide_ata4_port_ops;
1043		d.udma_mask = ATA_UDMA6;
1044	} else if (of_device_is_compatible(np, "kauai-ata")) {
1045		pmif->kind = controller_un_ata6;
1046		d.tp_ops = &pmac_ata6_tp_ops;
1047		d.port_ops = &pmac_ide_ata4_port_ops;
1048		d.udma_mask = ATA_UDMA5;
1049	} else if (of_device_is_compatible(np, "K2-UATA")) {
1050		pmif->kind = controller_k2_ata6;
1051		d.tp_ops = &pmac_ata6_tp_ops;
1052		d.port_ops = &pmac_ide_ata4_port_ops;
1053		d.udma_mask = ATA_UDMA5;
1054	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1055		if (strcmp(np->name, "ata-4") == 0) {
1056			pmif->kind = controller_kl_ata4;
1057			d.port_ops = &pmac_ide_ata4_port_ops;
1058			d.udma_mask = ATA_UDMA4;
1059		} else
1060			pmif->kind = controller_kl_ata3;
1061	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1062		pmif->kind = controller_heathrow;
1063	} else {
1064		pmif->kind = controller_ohare;
1065		pmif->broken_dma = 1;
1066	}
1067
1068	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1069	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1070
1071	/* On Kauai-type controllers, we make sure the FCR is correct */
1072	if (pmif->kauai_fcr)
1073		writel(KAUAI_FCR_UATA_MAGIC |
1074		       KAUAI_FCR_UATA_RESET_N |
1075		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1076
1077	/* Make sure we have sane timings */
1078	sanitize_timings(pmif);
1079
1080	/* If we are on a media bay, wait for it to settle and lock it */
1081	if (pmif->mdev)
1082		lock_media_bay(pmif->mdev->media_bay);
1083
1084	host = ide_host_alloc(&d, hws, 1);
1085	if (host == NULL) {
1086		rc = -ENOMEM;
1087		goto bail;
1088	}
1089	hwif = pmif->hwif = host->ports[0];
1090
1091	if (on_media_bay(pmif)) {
1092		/* Fixup bus ID for media bay */
1093		if (!bidp)
1094			pmif->aapl_bus_id = 1;
1095	} else if (pmif->kind == controller_ohare) {
1096		/* The code below is having trouble on some ohare machines
1097		 * (timing related ?). Until I can put my hand on one of these
1098		 * units, I keep the old way
1099		 */
1100		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1101	} else {
1102 		/* This is necessary to enable IDE when net-booting */
1103		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1104		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1105		msleep(10);
1106		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1107		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1108	}
1109
1110	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1111	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1112	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1113	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1114
1115	rc = ide_host_register(host, &d, hws);
1116	if (rc)
1117		pmif->hwif = NULL;
1118
1119	if (pmif->mdev)
1120		unlock_media_bay(pmif->mdev->media_bay);
1121
1122 bail:
1123	if (rc && host)
1124		ide_host_free(host);
1125	return rc;
1126}
1127
1128static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1129{
1130	int i;
1131
1132	for (i = 0; i < 8; ++i)
1133		hw->io_ports_array[i] = base + i * 0x10;
1134
1135	hw->io_ports.ctl_addr = base + 0x160;
1136}
1137
1138/*
1139 * Attach to a macio probed interface
1140 */
1141static int __devinit
1142pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1143{
1144	void __iomem *base;
1145	unsigned long regbase;
1146	pmac_ide_hwif_t *pmif;
1147	int irq, rc;
1148	struct ide_hw hw;
1149
1150	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1151	if (pmif == NULL)
1152		return -ENOMEM;
1153
1154	if (macio_resource_count(mdev) == 0) {
1155		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1156				    mdev->ofdev.dev.of_node->full_name);
1157		rc = -ENXIO;
1158		goto out_free_pmif;
1159	}
1160
1161	/* Request memory resource for IO ports */
1162	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1163		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1164				"%s!\n", mdev->ofdev.dev.of_node->full_name);
1165		rc = -EBUSY;
1166		goto out_free_pmif;
1167	}
1168
1169	if (macio_irq_count(mdev) == 0) {
1170		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1171				    "13\n", mdev->ofdev.dev.of_node->full_name);
1172		irq = irq_create_mapping(NULL, 13);
1173	} else
1174		irq = macio_irq(mdev, 0);
1175
1176	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1177	regbase = (unsigned long) base;
1178
1179	pmif->mdev = mdev;
1180	pmif->node = mdev->ofdev.dev.of_node;
1181	pmif->regbase = regbase;
1182	pmif->irq = irq;
1183	pmif->kauai_fcr = NULL;
1184
1185	if (macio_resource_count(mdev) >= 2) {
1186		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1187			printk(KERN_WARNING "ide-pmac: can't request DMA "
1188					    "resource for %s!\n",
1189					    mdev->ofdev.dev.of_node->full_name);
1190		else
1191			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1192	} else
1193		pmif->dma_regs = NULL;
1194
1195	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1196
1197	memset(&hw, 0, sizeof(hw));
1198	pmac_ide_init_ports(&hw, pmif->regbase);
1199	hw.irq = irq;
1200	hw.dev = &mdev->bus->pdev->dev;
1201	hw.parent = &mdev->ofdev.dev;
1202
1203	rc = pmac_ide_setup_device(pmif, &hw);
1204	if (rc != 0) {
1205		/* The inteface is released to the common IDE layer */
1206		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1207		iounmap(base);
1208		if (pmif->dma_regs) {
1209			iounmap(pmif->dma_regs);
1210			macio_release_resource(mdev, 1);
1211		}
1212		macio_release_resource(mdev, 0);
1213		kfree(pmif);
1214	}
1215
1216	return rc;
1217
1218out_free_pmif:
1219	kfree(pmif);
1220	return rc;
1221}
1222
1223static int
1224pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1225{
1226	pmac_ide_hwif_t *pmif =
1227		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1228	int rc = 0;
1229
1230	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1231			&& (mesg.event & PM_EVENT_SLEEP)) {
1232		rc = pmac_ide_do_suspend(pmif);
1233		if (rc == 0)
1234			mdev->ofdev.dev.power.power_state = mesg;
1235	}
1236
1237	return rc;
1238}
1239
1240static int
1241pmac_ide_macio_resume(struct macio_dev *mdev)
1242{
1243	pmac_ide_hwif_t *pmif =
1244		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1245	int rc = 0;
1246
1247	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1248		rc = pmac_ide_do_resume(pmif);
1249		if (rc == 0)
1250			mdev->ofdev.dev.power.power_state = PMSG_ON;
1251	}
1252
1253	return rc;
1254}
1255
1256/*
1257 * Attach to a PCI probed interface
1258 */
1259static int __devinit
1260pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1261{
1262	struct device_node *np;
1263	pmac_ide_hwif_t *pmif;
1264	void __iomem *base;
1265	unsigned long rbase, rlen;
1266	int rc;
1267	struct ide_hw hw;
1268
1269	np = pci_device_to_OF_node(pdev);
1270	if (np == NULL) {
1271		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1272		return -ENODEV;
1273	}
1274
1275	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1276	if (pmif == NULL)
1277		return -ENOMEM;
1278
1279	if (pci_enable_device(pdev)) {
1280		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1281				    "%s\n", np->full_name);
1282		rc = -ENXIO;
1283		goto out_free_pmif;
1284	}
1285	pci_set_master(pdev);
1286
1287	if (pci_request_regions(pdev, "Kauai ATA")) {
1288		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1289				"%s\n", np->full_name);
1290		rc = -ENXIO;
1291		goto out_free_pmif;
1292	}
1293
1294	pmif->mdev = NULL;
1295	pmif->node = np;
1296
1297	rbase = pci_resource_start(pdev, 0);
1298	rlen = pci_resource_len(pdev, 0);
1299
1300	base = ioremap(rbase, rlen);
1301	pmif->regbase = (unsigned long) base + 0x2000;
1302	pmif->dma_regs = base + 0x1000;
1303	pmif->kauai_fcr = base;
1304	pmif->irq = pdev->irq;
1305
1306	pci_set_drvdata(pdev, pmif);
1307
1308	memset(&hw, 0, sizeof(hw));
1309	pmac_ide_init_ports(&hw, pmif->regbase);
1310	hw.irq = pdev->irq;
1311	hw.dev = &pdev->dev;
1312
1313	rc = pmac_ide_setup_device(pmif, &hw);
1314	if (rc != 0) {
1315		/* The inteface is released to the common IDE layer */
1316		pci_set_drvdata(pdev, NULL);
1317		iounmap(base);
1318		pci_release_regions(pdev);
1319		kfree(pmif);
1320	}
1321
1322	return rc;
1323
1324out_free_pmif:
1325	kfree(pmif);
1326	return rc;
1327}
1328
1329static int
1330pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1331{
1332	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1333	int rc = 0;
1334
1335	if (mesg.event != pdev->dev.power.power_state.event
1336			&& (mesg.event & PM_EVENT_SLEEP)) {
1337		rc = pmac_ide_do_suspend(pmif);
1338		if (rc == 0)
1339			pdev->dev.power.power_state = mesg;
1340	}
1341
1342	return rc;
1343}
1344
1345static int
1346pmac_ide_pci_resume(struct pci_dev *pdev)
1347{
1348	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1349	int rc = 0;
1350
1351	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1352		rc = pmac_ide_do_resume(pmif);
1353		if (rc == 0)
1354			pdev->dev.power.power_state = PMSG_ON;
1355	}
1356
1357	return rc;
1358}
1359
1360#ifdef CONFIG_PMAC_MEDIABAY
1361static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1362{
1363	pmac_ide_hwif_t *pmif =
1364		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1365
1366	switch(mb_state) {
1367	case MB_CD:
1368		if (!pmif->hwif->present)
1369			ide_port_scan(pmif->hwif);
1370		break;
1371	default:
1372		if (pmif->hwif->present)
1373			ide_port_unregister_devices(pmif->hwif);
1374	}
1375}
1376#endif /* CONFIG_PMAC_MEDIABAY */
1377
1378
1379static struct of_device_id pmac_ide_macio_match[] =
1380{
1381	{
1382	.name 		= "IDE",
1383	},
1384	{
1385	.name 		= "ATA",
1386	},
1387	{
1388	.type		= "ide",
1389	},
1390	{
1391	.type		= "ata",
1392	},
1393	{},
1394};
1395
1396static struct macio_driver pmac_ide_macio_driver =
1397{
1398	.driver = {
1399		.name 		= "ide-pmac",
1400		.owner		= THIS_MODULE,
1401		.of_match_table	= pmac_ide_macio_match,
1402	},
1403	.probe		= pmac_ide_macio_attach,
1404	.suspend	= pmac_ide_macio_suspend,
1405	.resume		= pmac_ide_macio_resume,
1406#ifdef CONFIG_PMAC_MEDIABAY
1407	.mediabay_event	= pmac_ide_macio_mb_event,
1408#endif
1409};
1410
1411static const struct pci_device_id pmac_ide_pci_match[] = {
1412	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1413	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1414	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1415	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1416	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1417	{},
1418};
1419
1420static struct pci_driver pmac_ide_pci_driver = {
1421	.name		= "ide-pmac",
1422	.id_table	= pmac_ide_pci_match,
1423	.probe		= pmac_ide_pci_attach,
1424	.suspend	= pmac_ide_pci_suspend,
1425	.resume		= pmac_ide_pci_resume,
1426};
1427MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1428
1429int __init pmac_ide_probe(void)
1430{
1431	int error;
1432
1433	if (!machine_is(powermac))
1434		return -ENODEV;
1435
1436#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1437	error = pci_register_driver(&pmac_ide_pci_driver);
1438	if (error)
1439		goto out;
1440	error = macio_register_driver(&pmac_ide_macio_driver);
1441	if (error) {
1442		pci_unregister_driver(&pmac_ide_pci_driver);
1443		goto out;
1444	}
1445#else
1446	error = macio_register_driver(&pmac_ide_macio_driver);
1447	if (error)
1448		goto out;
1449	error = pci_register_driver(&pmac_ide_pci_driver);
1450	if (error) {
1451		macio_unregister_driver(&pmac_ide_macio_driver);
1452		goto out;
1453	}
1454#endif
1455out:
1456	return error;
1457}
1458
1459/*
1460 * pmac_ide_build_dmatable builds the DBDMA command list
1461 * for a transfer and sets the DBDMA channel to point to it.
1462 */
1463static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1464{
1465	ide_hwif_t *hwif = drive->hwif;
1466	pmac_ide_hwif_t *pmif =
1467		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1468	struct dbdma_cmd *table;
1469	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1470	struct scatterlist *sg;
1471	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1472	int i = cmd->sg_nents, count = 0;
1473
1474	/* DMA table is already aligned */
1475	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1476
1477	/* Make sure DMA controller is stopped (necessary ?) */
1478	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1479	while (readl(&dma->status) & RUN)
1480		udelay(1);
1481
1482	/* Build DBDMA commands list */
1483	sg = hwif->sg_table;
1484	while (i && sg_dma_len(sg)) {
1485		u32 cur_addr;
1486		u32 cur_len;
1487
1488		cur_addr = sg_dma_address(sg);
1489		cur_len = sg_dma_len(sg);
1490
1491		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1492			if (pmif->broken_dma_warn == 0) {
1493				printk(KERN_WARNING "%s: DMA on non aligned address, "
1494				       "switching to PIO on Ohare chipset\n", drive->name);
1495				pmif->broken_dma_warn = 1;
1496			}
1497			return 0;
1498		}
1499		while (cur_len) {
1500			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1501
1502			if (count++ >= MAX_DCMDS) {
1503				printk(KERN_WARNING "%s: DMA table too small\n",
1504				       drive->name);
1505				return 0;
1506			}
1507			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1508			st_le16(&table->req_count, tc);
1509			st_le32(&table->phy_addr, cur_addr);
1510			table->cmd_dep = 0;
1511			table->xfer_status = 0;
1512			table->res_count = 0;
1513			cur_addr += tc;
1514			cur_len -= tc;
1515			++table;
1516		}
1517		sg = sg_next(sg);
1518		i--;
1519	}
1520
1521	/* convert the last command to an input/output last command */
1522	if (count) {
1523		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1524		/* add the stop command to the end of the list */
1525		memset(table, 0, sizeof(struct dbdma_cmd));
1526		st_le16(&table->command, DBDMA_STOP);
1527		mb();
1528		writel(hwif->dmatable_dma, &dma->cmdptr);
1529		return 1;
1530	}
1531
1532	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1533
1534	return 0; /* revert to PIO for this request */
1535}
1536
1537/*
1538 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1539 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1540 */
1541static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1542{
1543	ide_hwif_t *hwif = drive->hwif;
1544	pmac_ide_hwif_t *pmif =
1545		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1546	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1547	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1548
1549	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1550		return 1;
1551
1552	/* Apple adds 60ns to wrDataSetup on reads */
1553	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1554		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1555			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1556		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1557	}
1558
1559	return 0;
1560}
1561
1562/*
1563 * Kick the DMA controller into life after the DMA command has been issued
1564 * to the drive.
1565 */
1566static void
1567pmac_ide_dma_start(ide_drive_t *drive)
1568{
1569	ide_hwif_t *hwif = drive->hwif;
1570	pmac_ide_hwif_t *pmif =
1571		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1572	volatile struct dbdma_regs __iomem *dma;
1573
1574	dma = pmif->dma_regs;
1575
1576	writel((RUN << 16) | RUN, &dma->control);
1577	/* Make sure it gets to the controller right now */
1578	(void)readl(&dma->control);
1579}
1580
1581/*
1582 * After a DMA transfer, make sure the controller is stopped
1583 */
1584static int
1585pmac_ide_dma_end (ide_drive_t *drive)
1586{
1587	ide_hwif_t *hwif = drive->hwif;
1588	pmac_ide_hwif_t *pmif =
1589		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1590	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1591	u32 dstat;
1592
1593	dstat = readl(&dma->status);
1594	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1595
1596	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1597	 * in theory, but with ATAPI decices doing buffer underruns, that would
1598	 * cause us to disable DMA, which isn't what we want
1599	 */
1600	return (dstat & (RUN|DEAD)) != RUN;
1601}
1602
1603/*
1604 * Check out that the interrupt we got was for us. We can't always know this
1605 * for sure with those Apple interfaces (well, we could on the recent ones but
1606 * that's not implemented yet), on the other hand, we don't have shared interrupts
1607 * so it's not really a problem
1608 */
1609static int
1610pmac_ide_dma_test_irq (ide_drive_t *drive)
1611{
1612	ide_hwif_t *hwif = drive->hwif;
1613	pmac_ide_hwif_t *pmif =
1614		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1615	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1616	unsigned long status, timeout;
1617
1618	/* We have to things to deal with here:
1619	 *
1620	 * - The dbdma won't stop if the command was started
1621	 * but completed with an error without transferring all
1622	 * datas. This happens when bad blocks are met during
1623	 * a multi-block transfer.
1624	 *
1625	 * - The dbdma fifo hasn't yet finished flushing to
1626	 * to system memory when the disk interrupt occurs.
1627	 *
1628	 */
1629
1630	/* If ACTIVE is cleared, the STOP command have passed and
1631	 * transfer is complete.
1632	 */
1633	status = readl(&dma->status);
1634	if (!(status & ACTIVE))
1635		return 1;
1636
1637	/* If dbdma didn't execute the STOP command yet, the
1638	 * active bit is still set. We consider that we aren't
1639	 * sharing interrupts (which is hopefully the case with
1640	 * those controllers) and so we just try to flush the
1641	 * channel for pending data in the fifo
1642	 */
1643	udelay(1);
1644	writel((FLUSH << 16) | FLUSH, &dma->control);
1645	timeout = 0;
1646	for (;;) {
1647		udelay(1);
1648		status = readl(&dma->status);
1649		if ((status & FLUSH) == 0)
1650			break;
1651		if (++timeout > 100) {
1652			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1653			       hwif->index);
1654			break;
1655		}
1656	}
1657	return 1;
1658}
1659
1660static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1661{
1662}
1663
1664static void
1665pmac_ide_dma_lost_irq (ide_drive_t *drive)
1666{
1667	ide_hwif_t *hwif = drive->hwif;
1668	pmac_ide_hwif_t *pmif =
1669		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1670	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1671	unsigned long status = readl(&dma->status);
1672
1673	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1674}
1675
1676static const struct ide_dma_ops pmac_dma_ops = {
1677	.dma_host_set		= pmac_ide_dma_host_set,
1678	.dma_setup		= pmac_ide_dma_setup,
1679	.dma_start		= pmac_ide_dma_start,
1680	.dma_end		= pmac_ide_dma_end,
1681	.dma_test_irq		= pmac_ide_dma_test_irq,
1682	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1683};
1684
1685/*
1686 * Allocate the data structures needed for using DMA with an interface
1687 * and fill the proper list of functions pointers
1688 */
1689static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1690				       const struct ide_port_info *d)
1691{
1692	pmac_ide_hwif_t *pmif =
1693		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1694	struct pci_dev *dev = to_pci_dev(hwif->dev);
1695
1696	/* We won't need pci_dev if we switch to generic consistent
1697	 * DMA routines ...
1698	 */
1699	if (dev == NULL || pmif->dma_regs == 0)
1700		return -ENODEV;
1701	/*
1702	 * Allocate space for the DBDMA commands.
1703	 * The +2 is +1 for the stop command and +1 to allow for
1704	 * aligning the start address to a multiple of 16 bytes.
1705	 */
1706	pmif->dma_table_cpu = pci_alloc_consistent(
1707		dev,
1708		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1709		&hwif->dmatable_dma);
1710	if (pmif->dma_table_cpu == NULL) {
1711		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1712		       hwif->name);
1713		return -ENOMEM;
1714	}
1715
1716	hwif->sg_max_nents = MAX_DCMDS;
1717
1718	return 0;
1719}
1720
1721module_init(pmac_ide_probe);
1722
1723MODULE_LICENSE("GPL");
1724