• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/drivers/block/
1/*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 *  GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20 *                       - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
22 *			 - incorporate into main kernel
23 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24 *			 - use spin_lock_bh instead of _irq
25 *			 - Never block on make_request.  queue
26 *			   bh's instead.
27 *			 - unregister umem from devfs at mod unload
28 *			 - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown   - convert to bio for 2.5
32 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33 *			 - a sequence of writes that cover the card, and
34 *			 - set initialised bit then.
35 */
36
37#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
38#include <linux/fs.h>
39#include <linux/bio.h>
40#include <linux/kernel.h>
41#include <linux/mm.h>
42#include <linux/mman.h>
43#include <linux/gfp.h>
44#include <linux/ioctl.h>
45#include <linux/module.h>
46#include <linux/init.h>
47#include <linux/interrupt.h>
48#include <linux/timer.h>
49#include <linux/pci.h>
50#include <linux/dma-mapping.h>
51
52#include <linux/fcntl.h>        /* O_ACCMODE */
53#include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55#include "umem.h"
56
57#include <asm/uaccess.h>
58#include <asm/io.h>
59
60#define MM_MAXCARDS 4
61#define MM_RAHEAD 2      /* two sectors */
62#define MM_BLKSIZE 1024  /* 1k blocks */
63#define MM_HARDSECT 512  /* 512-byte hardware sectors */
64#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66/*
67 * Version Information
68 */
69
70#define DRIVER_NAME	"umem"
71#define DRIVER_VERSION	"v2.3"
72#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
73#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
74
75static int debug;
76/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77#define HW_TRACE(x)
78
79#define DEBUG_LED_ON_TRANSFER	0x01
80#define DEBUG_BATTERY_POLLING	0x02
81
82module_param(debug, int, 0644);
83MODULE_PARM_DESC(debug, "Debug bitmask");
84
85static int pci_read_cmd = 0x0C;		/* Read Multiple */
86module_param(pci_read_cmd, int, 0);
87MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
90module_param(pci_write_cmd, int, 0);
91MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93static int pci_cmds;
94
95static int major_nr;
96
97#include <linux/blkdev.h>
98#include <linux/blkpg.h>
99
100struct cardinfo {
101	struct pci_dev	*dev;
102
103	unsigned char	__iomem *csr_remap;
104	unsigned int	mm_size;  /* size in kbytes */
105
106	unsigned int	init_size; /* initial segment, in sectors,
107				    * that we know to
108				    * have been written
109				    */
110	struct bio	*bio, *currentbio, **biotail;
111	int		current_idx;
112	sector_t	current_sector;
113
114	struct request_queue *queue;
115
116	struct mm_page {
117		dma_addr_t		page_dma;
118		struct mm_dma_desc	*desc;
119		int	 		cnt, headcnt;
120		struct bio		*bio, **biotail;
121		int			idx;
122	} mm_pages[2];
123#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125	int  Active, Ready;
126
127	struct tasklet_struct	tasklet;
128	unsigned int dma_status;
129
130	struct {
131		int		good;
132		int		warned;
133		unsigned long	last_change;
134	} battery[2];
135
136	spinlock_t 	lock;
137	int		check_batteries;
138
139	int		flags;
140};
141
142static struct cardinfo cards[MM_MAXCARDS];
143static struct timer_list battery_timer;
144
145static int num_cards;
146
147static struct gendisk *mm_gendisk[MM_MAXCARDS];
148
149static void check_batteries(struct cardinfo *card);
150
151static int get_userbit(struct cardinfo *card, int bit)
152{
153	unsigned char led;
154
155	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156	return led & bit;
157}
158
159static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160{
161	unsigned char led;
162
163	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164	if (state)
165		led |= bit;
166	else
167		led &= ~bit;
168	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169
170	return 0;
171}
172
173/*
174 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175 */
176static void set_led(struct cardinfo *card, int shift, unsigned char state)
177{
178	unsigned char led;
179
180	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181	if (state == LED_FLIP)
182		led ^= (1<<shift);
183	else {
184		led &= ~(0x03 << shift);
185		led |= (state << shift);
186	}
187	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188
189}
190
191#ifdef MM_DIAG
192static void dump_regs(struct cardinfo *card)
193{
194	unsigned char *p;
195	int i, i1;
196
197	p = card->csr_remap;
198	for (i = 0; i < 8; i++) {
199		printk(KERN_DEBUG "%p   ", p);
200
201		for (i1 = 0; i1 < 16; i1++)
202			printk("%02x ", *p++);
203
204		printk("\n");
205	}
206}
207#endif
208
209static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210{
211	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212	if (dmastat & DMASCR_ANY_ERR)
213		printk(KERN_CONT "ANY_ERR ");
214	if (dmastat & DMASCR_MBE_ERR)
215		printk(KERN_CONT "MBE_ERR ");
216	if (dmastat & DMASCR_PARITY_ERR_REP)
217		printk(KERN_CONT "PARITY_ERR_REP ");
218	if (dmastat & DMASCR_PARITY_ERR_DET)
219		printk(KERN_CONT "PARITY_ERR_DET ");
220	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221		printk(KERN_CONT "SYSTEM_ERR_SIG ");
222	if (dmastat & DMASCR_TARGET_ABT)
223		printk(KERN_CONT "TARGET_ABT ");
224	if (dmastat & DMASCR_MASTER_ABT)
225		printk(KERN_CONT "MASTER_ABT ");
226	if (dmastat & DMASCR_CHAIN_COMPLETE)
227		printk(KERN_CONT "CHAIN_COMPLETE ");
228	if (dmastat & DMASCR_DMA_COMPLETE)
229		printk(KERN_CONT "DMA_COMPLETE ");
230	printk("\n");
231}
232
233
234static void mm_start_io(struct cardinfo *card)
235{
236	/* we have the lock, we know there is
237	 * no IO active, and we know that card->Active
238	 * is set
239	 */
240	struct mm_dma_desc *desc;
241	struct mm_page *page;
242	int offset;
243
244	/* make the last descriptor end the chain */
245	page = &card->mm_pages[card->Active];
246	pr_debug("start_io: %d %d->%d\n",
247		card->Active, page->headcnt, page->cnt - 1);
248	desc = &page->desc[page->cnt-1];
249
250	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
251	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
252	desc->sem_control_bits = desc->control_bits;
253
254
255	if (debug & DEBUG_LED_ON_TRANSFER)
256		set_led(card, LED_REMOVE, LED_ON);
257
258	desc = &page->desc[page->headcnt];
259	writel(0, card->csr_remap + DMA_PCI_ADDR);
260	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
261
262	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
263	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
264
265	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
266	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
267
268	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
269	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
270
271	offset = ((char *)desc) - ((char *)page->desc);
272	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
273	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
274	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
275	 * and on some ports will do nothing ! */
276	writel(cpu_to_le32(((u64)page->page_dma)>>32),
277	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
278
279	/* Go, go, go */
280	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
281	       card->csr_remap + DMA_STATUS_CTRL);
282}
283
284static int add_bio(struct cardinfo *card);
285
286static void activate(struct cardinfo *card)
287{
288	/* if No page is Active, and Ready is
289	 * not empty, then switch Ready page
290	 * to active and start IO.
291	 * Then add any bh's that are available to Ready
292	 */
293
294	do {
295		while (add_bio(card))
296			;
297
298		if (card->Active == -1 &&
299		    card->mm_pages[card->Ready].cnt > 0) {
300			card->Active = card->Ready;
301			card->Ready = 1-card->Ready;
302			mm_start_io(card);
303		}
304
305	} while (card->Active == -1 && add_bio(card));
306}
307
308static inline void reset_page(struct mm_page *page)
309{
310	page->cnt = 0;
311	page->headcnt = 0;
312	page->bio = NULL;
313	page->biotail = &page->bio;
314}
315
316static void mm_unplug_device(struct request_queue *q)
317{
318	struct cardinfo *card = q->queuedata;
319	unsigned long flags;
320
321	spin_lock_irqsave(&card->lock, flags);
322	if (blk_remove_plug(q))
323		activate(card);
324	spin_unlock_irqrestore(&card->lock, flags);
325}
326
327/*
328 * If there is room on Ready page, take
329 * one bh off list and add it.
330 * return 1 if there was room, else 0.
331 */
332static int add_bio(struct cardinfo *card)
333{
334	struct mm_page *p;
335	struct mm_dma_desc *desc;
336	dma_addr_t dma_handle;
337	int offset;
338	struct bio *bio;
339	struct bio_vec *vec;
340	int idx;
341	int rw;
342	int len;
343
344	bio = card->currentbio;
345	if (!bio && card->bio) {
346		card->currentbio = card->bio;
347		card->current_idx = card->bio->bi_idx;
348		card->current_sector = card->bio->bi_sector;
349		card->bio = card->bio->bi_next;
350		if (card->bio == NULL)
351			card->biotail = &card->bio;
352		card->currentbio->bi_next = NULL;
353		return 1;
354	}
355	if (!bio)
356		return 0;
357	idx = card->current_idx;
358
359	rw = bio_rw(bio);
360	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
361		return 0;
362
363	vec = bio_iovec_idx(bio, idx);
364	len = vec->bv_len;
365	dma_handle = pci_map_page(card->dev,
366				  vec->bv_page,
367				  vec->bv_offset,
368				  len,
369				  (rw == READ) ?
370				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
371
372	p = &card->mm_pages[card->Ready];
373	desc = &p->desc[p->cnt];
374	p->cnt++;
375	if (p->bio == NULL)
376		p->idx = idx;
377	if ((p->biotail) != &bio->bi_next) {
378		*(p->biotail) = bio;
379		p->biotail = &(bio->bi_next);
380		bio->bi_next = NULL;
381	}
382
383	desc->data_dma_handle = dma_handle;
384
385	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
386	desc->local_addr = cpu_to_le64(card->current_sector << 9);
387	desc->transfer_size = cpu_to_le32(len);
388	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
389	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
390	desc->zero1 = desc->zero2 = 0;
391	offset = (((char *)(desc+1)) - ((char *)p->desc));
392	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
393	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
394					 DMASCR_PARITY_INT_EN|
395					 DMASCR_CHAIN_EN |
396					 DMASCR_SEM_EN |
397					 pci_cmds);
398	if (rw == WRITE)
399		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
400	desc->sem_control_bits = desc->control_bits;
401
402	card->current_sector += (len >> 9);
403	idx++;
404	card->current_idx = idx;
405	if (idx >= bio->bi_vcnt)
406		card->currentbio = NULL;
407
408	return 1;
409}
410
411static void process_page(unsigned long data)
412{
413	/* check if any of the requests in the page are DMA_COMPLETE,
414	 * and deal with them appropriately.
415	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
416	 * dma must have hit an error on that descriptor, so use dma_status
417	 * instead and assume that all following descriptors must be re-tried.
418	 */
419	struct mm_page *page;
420	struct bio *return_bio = NULL;
421	struct cardinfo *card = (struct cardinfo *)data;
422	unsigned int dma_status = card->dma_status;
423
424	spin_lock_bh(&card->lock);
425	if (card->Active < 0)
426		goto out_unlock;
427	page = &card->mm_pages[card->Active];
428
429	while (page->headcnt < page->cnt) {
430		struct bio *bio = page->bio;
431		struct mm_dma_desc *desc = &page->desc[page->headcnt];
432		int control = le32_to_cpu(desc->sem_control_bits);
433		int last = 0;
434		int idx;
435
436		if (!(control & DMASCR_DMA_COMPLETE)) {
437			control = dma_status;
438			last = 1;
439		}
440		page->headcnt++;
441		idx = page->idx;
442		page->idx++;
443		if (page->idx >= bio->bi_vcnt) {
444			page->bio = bio->bi_next;
445			if (page->bio)
446				page->idx = page->bio->bi_idx;
447		}
448
449		pci_unmap_page(card->dev, desc->data_dma_handle,
450			       bio_iovec_idx(bio, idx)->bv_len,
451				 (control & DMASCR_TRANSFER_READ) ?
452				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
453		if (control & DMASCR_HARD_ERROR) {
454			/* error */
455			clear_bit(BIO_UPTODATE, &bio->bi_flags);
456			dev_printk(KERN_WARNING, &card->dev->dev,
457				"I/O error on sector %d/%d\n",
458				le32_to_cpu(desc->local_addr)>>9,
459				le32_to_cpu(desc->transfer_size));
460			dump_dmastat(card, control);
461		} else if ((bio->bi_rw & REQ_WRITE) &&
462			   le32_to_cpu(desc->local_addr) >> 9 ==
463				card->init_size) {
464			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
465			if (card->init_size >> 1 >= card->mm_size) {
466				dev_printk(KERN_INFO, &card->dev->dev,
467					"memory now initialised\n");
468				set_userbit(card, MEMORY_INITIALIZED, 1);
469			}
470		}
471		if (bio != page->bio) {
472			bio->bi_next = return_bio;
473			return_bio = bio;
474		}
475
476		if (last)
477			break;
478	}
479
480	if (debug & DEBUG_LED_ON_TRANSFER)
481		set_led(card, LED_REMOVE, LED_OFF);
482
483	if (card->check_batteries) {
484		card->check_batteries = 0;
485		check_batteries(card);
486	}
487	if (page->headcnt >= page->cnt) {
488		reset_page(page);
489		card->Active = -1;
490		activate(card);
491	} else {
492		/* haven't finished with this one yet */
493		pr_debug("do some more\n");
494		mm_start_io(card);
495	}
496 out_unlock:
497	spin_unlock_bh(&card->lock);
498
499	while (return_bio) {
500		struct bio *bio = return_bio;
501
502		return_bio = bio->bi_next;
503		bio->bi_next = NULL;
504		bio_endio(bio, 0);
505	}
506}
507
508static int mm_make_request(struct request_queue *q, struct bio *bio)
509{
510	struct cardinfo *card = q->queuedata;
511	pr_debug("mm_make_request %llu %u\n",
512		 (unsigned long long)bio->bi_sector, bio->bi_size);
513
514	spin_lock_irq(&card->lock);
515	*card->biotail = bio;
516	bio->bi_next = NULL;
517	card->biotail = &bio->bi_next;
518	blk_plug_device(q);
519	spin_unlock_irq(&card->lock);
520
521	return 0;
522}
523
524static irqreturn_t mm_interrupt(int irq, void *__card)
525{
526	struct cardinfo *card = (struct cardinfo *) __card;
527	unsigned int dma_status;
528	unsigned short cfg_status;
529
530HW_TRACE(0x30);
531
532	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
533
534	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
535		/* interrupt wasn't for me ... */
536		return IRQ_NONE;
537	}
538
539	/* clear COMPLETION interrupts */
540	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
541		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
542		       card->csr_remap + DMA_STATUS_CTRL);
543	else
544		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
545		       card->csr_remap + DMA_STATUS_CTRL + 2);
546
547	/* log errors and clear interrupt status */
548	if (dma_status & DMASCR_ANY_ERR) {
549		unsigned int	data_log1, data_log2;
550		unsigned int	addr_log1, addr_log2;
551		unsigned char	stat, count, syndrome, check;
552
553		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
554
555		data_log1 = le32_to_cpu(readl(card->csr_remap +
556						ERROR_DATA_LOG));
557		data_log2 = le32_to_cpu(readl(card->csr_remap +
558						ERROR_DATA_LOG + 4));
559		addr_log1 = le32_to_cpu(readl(card->csr_remap +
560						ERROR_ADDR_LOG));
561		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
562
563		count = readb(card->csr_remap + ERROR_COUNT);
564		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
565		check = readb(card->csr_remap + ERROR_CHECK);
566
567		dump_dmastat(card, dma_status);
568
569		if (stat & 0x01)
570			dev_printk(KERN_ERR, &card->dev->dev,
571				"Memory access error detected (err count %d)\n",
572				count);
573		if (stat & 0x02)
574			dev_printk(KERN_ERR, &card->dev->dev,
575				"Multi-bit EDC error\n");
576
577		dev_printk(KERN_ERR, &card->dev->dev,
578			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
579			addr_log2, addr_log1, data_log2, data_log1);
580		dev_printk(KERN_ERR, &card->dev->dev,
581			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
582			check, syndrome);
583
584		writeb(0, card->csr_remap + ERROR_COUNT);
585	}
586
587	if (dma_status & DMASCR_PARITY_ERR_REP) {
588		dev_printk(KERN_ERR, &card->dev->dev,
589			"PARITY ERROR REPORTED\n");
590		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
591		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
592	}
593
594	if (dma_status & DMASCR_PARITY_ERR_DET) {
595		dev_printk(KERN_ERR, &card->dev->dev,
596			"PARITY ERROR DETECTED\n");
597		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
598		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
599	}
600
601	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
602		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
603		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
604		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
605	}
606
607	if (dma_status & DMASCR_TARGET_ABT) {
608		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
609		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
610		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
611	}
612
613	if (dma_status & DMASCR_MASTER_ABT) {
614		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
615		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
616		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
617	}
618
619	/* and process the DMA descriptors */
620	card->dma_status = dma_status;
621	tasklet_schedule(&card->tasklet);
622
623HW_TRACE(0x36);
624
625	return IRQ_HANDLED;
626}
627
628/*
629 * If both batteries are good, no LED
630 * If either battery has been warned, solid LED
631 * If both batteries are bad, flash the LED quickly
632 * If either battery is bad, flash the LED semi quickly
633 */
634static void set_fault_to_battery_status(struct cardinfo *card)
635{
636	if (card->battery[0].good && card->battery[1].good)
637		set_led(card, LED_FAULT, LED_OFF);
638	else if (card->battery[0].warned || card->battery[1].warned)
639		set_led(card, LED_FAULT, LED_ON);
640	else if (!card->battery[0].good && !card->battery[1].good)
641		set_led(card, LED_FAULT, LED_FLASH_7_0);
642	else
643		set_led(card, LED_FAULT, LED_FLASH_3_5);
644}
645
646static void init_battery_timer(void);
647
648static int check_battery(struct cardinfo *card, int battery, int status)
649{
650	if (status != card->battery[battery].good) {
651		card->battery[battery].good = !card->battery[battery].good;
652		card->battery[battery].last_change = jiffies;
653
654		if (card->battery[battery].good) {
655			dev_printk(KERN_ERR, &card->dev->dev,
656				"Battery %d now good\n", battery + 1);
657			card->battery[battery].warned = 0;
658		} else
659			dev_printk(KERN_ERR, &card->dev->dev,
660				"Battery %d now FAILED\n", battery + 1);
661
662		return 1;
663	} else if (!card->battery[battery].good &&
664		   !card->battery[battery].warned &&
665		   time_after_eq(jiffies, card->battery[battery].last_change +
666				 (HZ * 60 * 60 * 5))) {
667		dev_printk(KERN_ERR, &card->dev->dev,
668			"Battery %d still FAILED after 5 hours\n", battery + 1);
669		card->battery[battery].warned = 1;
670
671		return 1;
672	}
673
674	return 0;
675}
676
677static void check_batteries(struct cardinfo *card)
678{
679	/* NOTE: this must *never* be called while the card
680	 * is doing (bus-to-card) DMA, or you will need the
681	 * reset switch
682	 */
683	unsigned char status;
684	int ret1, ret2;
685
686	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
687	if (debug & DEBUG_BATTERY_POLLING)
688		dev_printk(KERN_DEBUG, &card->dev->dev,
689			"checking battery status, 1 = %s, 2 = %s\n",
690		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
691		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
692
693	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
694	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
695
696	if (ret1 || ret2)
697		set_fault_to_battery_status(card);
698}
699
700static void check_all_batteries(unsigned long ptr)
701{
702	int i;
703
704	for (i = 0; i < num_cards; i++)
705		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
706			struct cardinfo *card = &cards[i];
707			spin_lock_bh(&card->lock);
708			if (card->Active >= 0)
709				card->check_batteries = 1;
710			else
711				check_batteries(card);
712			spin_unlock_bh(&card->lock);
713		}
714
715	init_battery_timer();
716}
717
718static void init_battery_timer(void)
719{
720	init_timer(&battery_timer);
721	battery_timer.function = check_all_batteries;
722	battery_timer.expires = jiffies + (HZ * 60);
723	add_timer(&battery_timer);
724}
725
726static void del_battery_timer(void)
727{
728	del_timer(&battery_timer);
729}
730
731/*
732 * Note no locks taken out here.  In a worst case scenario, we could drop
733 * a chunk of system memory.  But that should never happen, since validation
734 * happens at open or mount time, when locks are held.
735 *
736 *	That's crap, since doing that while some partitions are opened
737 * or mounted will give you really nasty results.
738 */
739static int mm_revalidate(struct gendisk *disk)
740{
741	struct cardinfo *card = disk->private_data;
742	set_capacity(disk, card->mm_size << 1);
743	return 0;
744}
745
746static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
747{
748	struct cardinfo *card = bdev->bd_disk->private_data;
749	int size = card->mm_size * (1024 / MM_HARDSECT);
750
751	/*
752	 * get geometry: we have to fake one...  trim the size to a
753	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
754	 * whatever cylinders.
755	 */
756	geo->heads     = 64;
757	geo->sectors   = 32;
758	geo->cylinders = size / (geo->heads * geo->sectors);
759	return 0;
760}
761
762/*
763 * Future support for removable devices
764 */
765static int mm_check_change(struct gendisk *disk)
766{
767/*  struct cardinfo *dev = disk->private_data; */
768	return 0;
769}
770
771static const struct block_device_operations mm_fops = {
772	.owner		= THIS_MODULE,
773	.getgeo		= mm_getgeo,
774	.revalidate_disk = mm_revalidate,
775	.media_changed	= mm_check_change,
776};
777
778static int __devinit mm_pci_probe(struct pci_dev *dev,
779				const struct pci_device_id *id)
780{
781	int ret = -ENODEV;
782	struct cardinfo *card = &cards[num_cards];
783	unsigned char	mem_present;
784	unsigned char	batt_status;
785	unsigned int	saved_bar, data;
786	unsigned long	csr_base;
787	unsigned long	csr_len;
788	int		magic_number;
789	static int	printed_version;
790
791	if (!printed_version++)
792		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
793
794	ret = pci_enable_device(dev);
795	if (ret)
796		return ret;
797
798	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
799	pci_set_master(dev);
800
801	card->dev         = dev;
802
803	csr_base = pci_resource_start(dev, 0);
804	csr_len  = pci_resource_len(dev, 0);
805	if (!csr_base || !csr_len)
806		return -ENODEV;
807
808	dev_printk(KERN_INFO, &dev->dev,
809	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
810
811	if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
812	    pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
813		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
814		return  -ENOMEM;
815	}
816
817	ret = pci_request_regions(dev, DRIVER_NAME);
818	if (ret) {
819		dev_printk(KERN_ERR, &card->dev->dev,
820			"Unable to request memory region\n");
821		goto failed_req_csr;
822	}
823
824	card->csr_remap = ioremap_nocache(csr_base, csr_len);
825	if (!card->csr_remap) {
826		dev_printk(KERN_ERR, &card->dev->dev,
827			"Unable to remap memory region\n");
828		ret = -ENOMEM;
829
830		goto failed_remap_csr;
831	}
832
833	dev_printk(KERN_INFO, &card->dev->dev,
834		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
835	       csr_base, card->csr_remap, csr_len);
836
837	switch (card->dev->device) {
838	case 0x5415:
839		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
840		magic_number = 0x59;
841		break;
842
843	case 0x5425:
844		card->flags |= UM_FLAG_NO_BYTE_STATUS;
845		magic_number = 0x5C;
846		break;
847
848	case 0x6155:
849		card->flags |= UM_FLAG_NO_BYTE_STATUS |
850				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
851		magic_number = 0x99;
852		break;
853
854	default:
855		magic_number = 0x100;
856		break;
857	}
858
859	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
860		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
861		ret = -ENOMEM;
862		goto failed_magic;
863	}
864
865	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
866						PAGE_SIZE * 2,
867						&card->mm_pages[0].page_dma);
868	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
869						PAGE_SIZE * 2,
870						&card->mm_pages[1].page_dma);
871	if (card->mm_pages[0].desc == NULL ||
872	    card->mm_pages[1].desc == NULL) {
873		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
874		goto failed_alloc;
875	}
876	reset_page(&card->mm_pages[0]);
877	reset_page(&card->mm_pages[1]);
878	card->Ready = 0;	/* page 0 is ready */
879	card->Active = -1;	/* no page is active */
880	card->bio = NULL;
881	card->biotail = &card->bio;
882
883	card->queue = blk_alloc_queue(GFP_KERNEL);
884	if (!card->queue)
885		goto failed_alloc;
886
887	blk_queue_make_request(card->queue, mm_make_request);
888	card->queue->queue_lock = &card->lock;
889	card->queue->queuedata = card;
890	card->queue->unplug_fn = mm_unplug_device;
891
892	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
893
894	card->check_batteries = 0;
895
896	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
897	switch (mem_present) {
898	case MEM_128_MB:
899		card->mm_size = 1024 * 128;
900		break;
901	case MEM_256_MB:
902		card->mm_size = 1024 * 256;
903		break;
904	case MEM_512_MB:
905		card->mm_size = 1024 * 512;
906		break;
907	case MEM_1_GB:
908		card->mm_size = 1024 * 1024;
909		break;
910	case MEM_2_GB:
911		card->mm_size = 1024 * 2048;
912		break;
913	default:
914		card->mm_size = 0;
915		break;
916	}
917
918	/* Clear the LED's we control */
919	set_led(card, LED_REMOVE, LED_OFF);
920	set_led(card, LED_FAULT, LED_OFF);
921
922	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
923
924	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
925	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
926	card->battery[0].last_change = card->battery[1].last_change = jiffies;
927
928	if (card->flags & UM_FLAG_NO_BATT)
929		dev_printk(KERN_INFO, &card->dev->dev,
930			"Size %d KB\n", card->mm_size);
931	else {
932		dev_printk(KERN_INFO, &card->dev->dev,
933			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
934		       card->mm_size,
935		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
936		       card->battery[0].good ? "OK" : "FAILURE",
937		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
938		       card->battery[1].good ? "OK" : "FAILURE");
939
940		set_fault_to_battery_status(card);
941	}
942
943	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
944	data = 0xffffffff;
945	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
946	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
947	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
948	data &= 0xfffffff0;
949	data = ~data;
950	data += 1;
951
952	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
953			card)) {
954		dev_printk(KERN_ERR, &card->dev->dev,
955			"Unable to allocate IRQ\n");
956		ret = -ENODEV;
957		goto failed_req_irq;
958	}
959
960	dev_printk(KERN_INFO, &card->dev->dev,
961		"Window size %d bytes, IRQ %d\n", data, dev->irq);
962
963	spin_lock_init(&card->lock);
964
965	pci_set_drvdata(dev, card);
966
967	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
968		pci_write_cmd = 0x07;	/* then Memory Write command */
969
970	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
971		unsigned short cfg_command;
972		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
973		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
974		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
975	}
976	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
977
978	num_cards++;
979
980	if (!get_userbit(card, MEMORY_INITIALIZED)) {
981		dev_printk(KERN_INFO, &card->dev->dev,
982		  "memory NOT initialized. Consider over-writing whole device.\n");
983		card->init_size = 0;
984	} else {
985		dev_printk(KERN_INFO, &card->dev->dev,
986			"memory already initialized\n");
987		card->init_size = card->mm_size;
988	}
989
990	/* Enable ECC */
991	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
992
993	return 0;
994
995 failed_req_irq:
996 failed_alloc:
997	if (card->mm_pages[0].desc)
998		pci_free_consistent(card->dev, PAGE_SIZE*2,
999				    card->mm_pages[0].desc,
1000				    card->mm_pages[0].page_dma);
1001	if (card->mm_pages[1].desc)
1002		pci_free_consistent(card->dev, PAGE_SIZE*2,
1003				    card->mm_pages[1].desc,
1004				    card->mm_pages[1].page_dma);
1005 failed_magic:
1006	iounmap(card->csr_remap);
1007 failed_remap_csr:
1008	pci_release_regions(dev);
1009 failed_req_csr:
1010
1011	return ret;
1012}
1013
1014static void mm_pci_remove(struct pci_dev *dev)
1015{
1016	struct cardinfo *card = pci_get_drvdata(dev);
1017
1018	tasklet_kill(&card->tasklet);
1019	free_irq(dev->irq, card);
1020	iounmap(card->csr_remap);
1021
1022	if (card->mm_pages[0].desc)
1023		pci_free_consistent(card->dev, PAGE_SIZE*2,
1024				    card->mm_pages[0].desc,
1025				    card->mm_pages[0].page_dma);
1026	if (card->mm_pages[1].desc)
1027		pci_free_consistent(card->dev, PAGE_SIZE*2,
1028				    card->mm_pages[1].desc,
1029				    card->mm_pages[1].page_dma);
1030	blk_cleanup_queue(card->queue);
1031
1032	pci_release_regions(dev);
1033	pci_disable_device(dev);
1034}
1035
1036static const struct pci_device_id mm_pci_ids[] = {
1037    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1038    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1039    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1040    {
1041	.vendor	=	0x8086,
1042	.device	=	0xB555,
1043	.subvendor =	0x1332,
1044	.subdevice =	0x5460,
1045	.class =	0x050000,
1046	.class_mask =	0,
1047    }, { /* end: all zeroes */ }
1048};
1049
1050MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1051
1052static struct pci_driver mm_pci_driver = {
1053	.name		= DRIVER_NAME,
1054	.id_table	= mm_pci_ids,
1055	.probe		= mm_pci_probe,
1056	.remove		= mm_pci_remove,
1057};
1058
1059static int __init mm_init(void)
1060{
1061	int retval, i;
1062	int err;
1063
1064	retval = pci_register_driver(&mm_pci_driver);
1065	if (retval)
1066		return -ENOMEM;
1067
1068	err = major_nr = register_blkdev(0, DRIVER_NAME);
1069	if (err < 0) {
1070		pci_unregister_driver(&mm_pci_driver);
1071		return -EIO;
1072	}
1073
1074	for (i = 0; i < num_cards; i++) {
1075		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1076		if (!mm_gendisk[i])
1077			goto out;
1078	}
1079
1080	for (i = 0; i < num_cards; i++) {
1081		struct gendisk *disk = mm_gendisk[i];
1082		sprintf(disk->disk_name, "umem%c", 'a'+i);
1083		spin_lock_init(&cards[i].lock);
1084		disk->major = major_nr;
1085		disk->first_minor  = i << MM_SHIFT;
1086		disk->fops = &mm_fops;
1087		disk->private_data = &cards[i];
1088		disk->queue = cards[i].queue;
1089		set_capacity(disk, cards[i].mm_size << 1);
1090		add_disk(disk);
1091	}
1092
1093	init_battery_timer();
1094	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1095/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1096	return 0;
1097
1098out:
1099	pci_unregister_driver(&mm_pci_driver);
1100	unregister_blkdev(major_nr, DRIVER_NAME);
1101	while (i--)
1102		put_disk(mm_gendisk[i]);
1103	return -ENOMEM;
1104}
1105
1106static void __exit mm_cleanup(void)
1107{
1108	int i;
1109
1110	del_battery_timer();
1111
1112	for (i = 0; i < num_cards ; i++) {
1113		del_gendisk(mm_gendisk[i]);
1114		put_disk(mm_gendisk[i]);
1115	}
1116
1117	pci_unregister_driver(&mm_pci_driver);
1118
1119	unregister_blkdev(major_nr, DRIVER_NAME);
1120}
1121
1122module_init(mm_init);
1123module_exit(mm_cleanup);
1124
1125MODULE_AUTHOR(DRIVER_AUTHOR);
1126MODULE_DESCRIPTION(DRIVER_DESC);
1127MODULE_LICENSE("GPL");
1128