• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/xtensa/include/asm/
1/*
2 * include/asm-xtensa/uaccess.h
3 *
4 * User space memory access functions
5 *
6 * These routines provide basic accessing functions to the user memory
7 * space for the kernel. This header file provides fuctions such as:
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License.  See the file "COPYING" in the main directory of this archive
11 * for more details.
12 *
13 * Copyright (C) 2001 - 2005 Tensilica Inc.
14 */
15
16#ifndef _XTENSA_UACCESS_H
17#define _XTENSA_UACCESS_H
18
19#include <linux/errno.h>
20
21#define VERIFY_READ    0
22#define VERIFY_WRITE   1
23
24#ifdef __ASSEMBLY__
25
26#include <asm/current.h>
27#include <asm/asm-offsets.h>
28#include <asm/processor.h>
29#include <asm/types.h>
30
31/*
32 * These assembly macros mirror the C macros that follow below.  They
33 * should always have identical functionality.  See
34 * arch/xtensa/kernel/sys.S for usage.
35 */
36
37#define KERNEL_DS	0
38#define USER_DS		1
39
40#define get_ds		(KERNEL_DS)
41
42/*
43 * get_fs reads current->thread.current_ds into a register.
44 * On Entry:
45 * 	<ad>	anything
46 * 	<sp>	stack
47 * On Exit:
48 * 	<ad>	contains current->thread.current_ds
49 */
50	.macro	get_fs	ad, sp
51	GET_CURRENT(\ad,\sp)
52	l32i	\ad, \ad, THREAD_CURRENT_DS
53	.endm
54
55/*
56 * set_fs sets current->thread.current_ds to some value.
57 * On Entry:
58 *	<at>	anything (temp register)
59 *	<av>	value to write
60 *	<sp>	stack
61 * On Exit:
62 *	<at>	destroyed (actually, current)
63 *	<av>	preserved, value to write
64 */
65	.macro	set_fs	at, av, sp
66	GET_CURRENT(\at,\sp)
67	s32i	\av, \at, THREAD_CURRENT_DS
68	.endm
69
70/*
71 * kernel_ok determines whether we should bypass addr/size checking.
72 * See the equivalent C-macro version below for clarity.
73 * On success, kernel_ok branches to a label indicated by parameter
74 * <success>.  This implies that the macro falls through to the next
75 * insruction on an error.
76 *
77 * Note that while this macro can be used independently, we designed
78 * in for optimal use in the access_ok macro below (i.e., we fall
79 * through on error).
80 *
81 * On Entry:
82 * 	<at>		anything (temp register)
83 * 	<success>	label to branch to on success; implies
84 * 			fall-through macro on error
85 * 	<sp>		stack pointer
86 * On Exit:
87 * 	<at>		destroyed (actually, current->thread.current_ds)
88 */
89
90#if ((KERNEL_DS != 0) || (USER_DS == 0))
91# error Assembly macro kernel_ok fails
92#endif
93	.macro	kernel_ok  at, sp, success
94	get_fs	\at, \sp
95	beqz	\at, \success
96	.endm
97
98/*
99 * user_ok determines whether the access to user-space memory is allowed.
100 * See the equivalent C-macro version below for clarity.
101 *
102 * On error, user_ok branches to a label indicated by parameter
103 * <error>.  This implies that the macro falls through to the next
104 * instruction on success.
105 *
106 * Note that while this macro can be used independently, we designed
107 * in for optimal use in the access_ok macro below (i.e., we fall
108 * through on success).
109 *
110 * On Entry:
111 * 	<aa>	register containing memory address
112 * 	<as>	register containing memory size
113 * 	<at>	temp register
114 * 	<error>	label to branch to on error; implies fall-through
115 * 		macro on success
116 * On Exit:
117 * 	<aa>	preserved
118 * 	<as>	preserved
119 * 	<at>	destroyed (actually, (TASK_SIZE + 1 - size))
120 */
121	.macro	user_ok	aa, as, at, error
122	movi	\at, __XTENSA_UL_CONST(TASK_SIZE)
123	bgeu	\as, \at, \error
124	sub	\at, \at, \as
125	bgeu	\aa, \at, \error
126	.endm
127
128/*
129 * access_ok determines whether a memory access is allowed.  See the
130 * equivalent C-macro version below for clarity.
131 *
132 * On error, access_ok branches to a label indicated by parameter
133 * <error>.  This implies that the macro falls through to the next
134 * instruction on success.
135 *
136 * Note that we assume success is the common case, and we optimize the
137 * branch fall-through case on success.
138 *
139 * On Entry:
140 * 	<aa>	register containing memory address
141 * 	<as>	register containing memory size
142 * 	<at>	temp register
143 * 	<sp>
144 * 	<error>	label to branch to on error; implies fall-through
145 * 		macro on success
146 * On Exit:
147 * 	<aa>	preserved
148 * 	<as>	preserved
149 * 	<at>	destroyed
150 */
151	.macro	access_ok  aa, as, at, sp, error
152	kernel_ok  \at, \sp, .Laccess_ok_\@
153	user_ok    \aa, \as, \at, \error
154.Laccess_ok_\@:
155	.endm
156
157#else /* __ASSEMBLY__ not defined */
158
159#include <linux/sched.h>
160#include <asm/types.h>
161
162/*
163 * The fs value determines whether argument validity checking should
164 * be performed or not.  If get_fs() == USER_DS, checking is
165 * performed, with get_fs() == KERNEL_DS, checking is bypassed.
166 *
167 * For historical reasons (Data Segment Register?), these macros are
168 * grossly misnamed.
169 */
170
171#define KERNEL_DS	((mm_segment_t) { 0 })
172#define USER_DS		((mm_segment_t) { 1 })
173
174#define get_ds()	(KERNEL_DS)
175#define get_fs()	(current->thread.current_ds)
176#define set_fs(val)	(current->thread.current_ds = (val))
177
178#define segment_eq(a,b)	((a).seg == (b).seg)
179
180#define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
181#define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
182#define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
183#define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
184
185/*
186 * These are the main single-value transfer routines.  They
187 * automatically use the right size if we just have the right pointer
188 * type.
189 *
190 * This gets kind of ugly. We want to return _two_ values in
191 * "get_user()" and yet we don't want to do any pointers, because that
192 * is too much of a performance impact. Thus we have a few rather ugly
193 * macros here, and hide all the uglyness from the user.
194 *
195 * Careful to not
196 * (a) re-use the arguments for side effects (sizeof is ok)
197 * (b) require any knowledge of processes at this stage
198 */
199#define put_user(x,ptr)	__put_user_check((x),(ptr),sizeof(*(ptr)))
200#define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
201
202/*
203 * The "__xxx" versions of the user access functions are versions that
204 * do not verify the address space, that must have been done previously
205 * with a separate "access_ok()" call (this is used when we do multiple
206 * accesses to the same area of user memory).
207 */
208#define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
209#define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
210
211
212extern long __put_user_bad(void);
213
214#define __put_user_nocheck(x,ptr,size)			\
215({							\
216	long __pu_err;					\
217	__put_user_size((x),(ptr),(size),__pu_err);	\
218	__pu_err;					\
219})
220
221#define __put_user_check(x,ptr,size)				\
222({								\
223	long __pu_err = -EFAULT;				\
224	__typeof__(*(ptr)) *__pu_addr = (ptr);			\
225	if (access_ok(VERIFY_WRITE,__pu_addr,size))		\
226		__put_user_size((x),__pu_addr,(size),__pu_err);	\
227	__pu_err;						\
228})
229
230#define __put_user_size(x,ptr,size,retval)				\
231do {									\
232	int __cb;							\
233	retval = 0;							\
234	switch (size) {							\
235        case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb);  break;	\
236        case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break;	\
237        case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break;	\
238        case 8: {							\
239		     __typeof__(*ptr) __v64 = x;			\
240		     retval = __copy_to_user(ptr,&__v64,8);		\
241		     break;						\
242	        }							\
243	default: __put_user_bad();					\
244	}								\
245} while (0)
246
247
248/*
249 * Consider a case of a user single load/store would cause both an
250 * unaligned exception and an MMU-related exception (unaligned
251 * exceptions happen first):
252 *
253 * User code passes a bad variable ptr to a system call.
254 * Kernel tries to access the variable.
255 * Unaligned exception occurs.
256 * Unaligned exception handler tries to make aligned accesses.
257 * Double exception occurs for MMU-related cause (e.g., page not mapped).
258 * do_page_fault() thinks the fault address belongs to the kernel, not the
259 * user, and panics.
260 *
261 * The kernel currently prohibits user unaligned accesses.  We use the
262 * __check_align_* macros to check for unaligned addresses before
263 * accessing user space so we don't crash the kernel.  Both
264 * __put_user_asm and __get_user_asm use these alignment macros, so
265 * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
266 * sync.
267 */
268
269#define __check_align_1  ""
270
271#define __check_align_2				\
272	"   _bbci.l %3,  0, 1f		\n"	\
273	"   movi    %0, %4		\n"	\
274	"   _j      2f			\n"
275
276#define __check_align_4				\
277	"   _bbsi.l %3,  0, 0f		\n"	\
278	"   _bbci.l %3,  1, 1f		\n"	\
279	"0: movi    %0, %4		\n"	\
280	"   _j      2f			\n"
281
282
283/*
284 * We don't tell gcc that we are accessing memory, but this is OK
285 * because we do not write to any memory gcc knows about, so there
286 * are no aliasing issues.
287 *
288 * WARNING: If you modify this macro at all, verify that the
289 * __check_align_* macros still work.
290 */
291#define __put_user_asm(x, addr, err, align, insn, cb)	\
292   __asm__ __volatile__(				\
293	__check_align_##align				\
294	"1: "insn"  %2, %3, 0		\n"		\
295	"2:				\n"		\
296	"   .section  .fixup,\"ax\"	\n"		\
297	"   .align 4			\n"		\
298	"4:				\n"		\
299	"   .long  2b			\n"		\
300	"5:				\n"		\
301	"   l32r   %1, 4b		\n"		\
302        "   movi   %0, %4		\n"		\
303        "   jx     %1			\n"		\
304	"   .previous			\n"		\
305	"   .section  __ex_table,\"a\"	\n"		\
306	"   .long	1b, 5b		\n"		\
307	"   .previous"					\
308	:"=r" (err), "=r" (cb)				\
309	:"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
310
311#define __get_user_nocheck(x,ptr,size)				\
312({								\
313	long __gu_err, __gu_val;				\
314	__get_user_size(__gu_val,(ptr),(size),__gu_err);	\
315	(x) = (__typeof__(*(ptr)))__gu_val;			\
316	__gu_err;						\
317})
318
319#define __get_user_check(x,ptr,size)					\
320({									\
321	long __gu_err = -EFAULT, __gu_val = 0;				\
322	const __typeof__(*(ptr)) *__gu_addr = (ptr);			\
323	if (access_ok(VERIFY_READ,__gu_addr,size))			\
324		__get_user_size(__gu_val,__gu_addr,(size),__gu_err);	\
325	(x) = (__typeof__(*(ptr)))__gu_val;				\
326	__gu_err;							\
327})
328
329extern long __get_user_bad(void);
330
331#define __get_user_size(x,ptr,size,retval)				\
332do {									\
333	int __cb;							\
334	retval = 0;							\
335        switch (size) {							\
336          case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb);  break;	\
337          case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break;	\
338          case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb);  break;	\
339          case 8: retval = __copy_from_user(&x,ptr,8);    break;	\
340          default: (x) = __get_user_bad();				\
341        }								\
342} while (0)
343
344
345/*
346 * WARNING: If you modify this macro at all, verify that the
347 * __check_align_* macros still work.
348 */
349#define __get_user_asm(x, addr, err, align, insn, cb) \
350   __asm__ __volatile__(			\
351	__check_align_##align			\
352	"1: "insn"  %2, %3, 0		\n"	\
353	"2:				\n"	\
354	"   .section  .fixup,\"ax\"	\n"	\
355	"   .align 4			\n"	\
356	"4:				\n"	\
357	"   .long  2b			\n"	\
358	"5:				\n"	\
359	"   l32r   %1, 4b		\n"	\
360	"   movi   %2, 0		\n"	\
361        "   movi   %0, %4		\n"	\
362        "   jx     %1			\n"	\
363	"   .previous			\n"	\
364	"   .section  __ex_table,\"a\"	\n"	\
365	"   .long	1b, 5b		\n"	\
366	"   .previous"				\
367	:"=r" (err), "=r" (cb), "=r" (x)	\
368	:"r" (addr), "i" (-EFAULT), "0" (err))
369
370
371/*
372 * Copy to/from user space
373 */
374
375/*
376 * We use a generic, arbitrary-sized copy subroutine.  The Xtensa
377 * architecture would cause heavy code bloat if we tried to inline
378 * these functions and provide __constant_copy_* equivalents like the
379 * i386 versions.  __xtensa_copy_user is quite efficient.  See the
380 * .fixup section of __xtensa_copy_user for a discussion on the
381 * X_zeroing equivalents for Xtensa.
382 */
383
384extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
385#define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
386
387
388static inline unsigned long
389__generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
390{
391	return __copy_user(to,from,n);
392}
393
394static inline unsigned long
395__generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
396{
397	return __copy_user(to,from,n);
398}
399
400static inline unsigned long
401__generic_copy_to_user(void *to, const void *from, unsigned long n)
402{
403	prefetch(from);
404	if (access_ok(VERIFY_WRITE, to, n))
405		return __copy_user(to,from,n);
406	return n;
407}
408
409static inline unsigned long
410__generic_copy_from_user(void *to, const void *from, unsigned long n)
411{
412	prefetchw(to);
413	if (access_ok(VERIFY_READ, from, n))
414		return __copy_user(to,from,n);
415	else
416		memset(to, 0, n);
417	return n;
418}
419
420#define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
421#define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
422#define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
423#define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
424#define __copy_to_user_inatomic __copy_to_user
425#define __copy_from_user_inatomic __copy_from_user
426
427
428/*
429 * We need to return the number of bytes not cleared.  Our memset()
430 * returns zero if a problem occurs while accessing user-space memory.
431 * In that event, return no memory cleared.  Otherwise, zero for
432 * success.
433 */
434
435static inline unsigned long
436__xtensa_clear_user(void *addr, unsigned long size)
437{
438	if ( ! memset(addr, 0, size) )
439		return size;
440	return 0;
441}
442
443static inline unsigned long
444clear_user(void *addr, unsigned long size)
445{
446	if (access_ok(VERIFY_WRITE, addr, size))
447		return __xtensa_clear_user(addr, size);
448	return size ? -EFAULT : 0;
449}
450
451#define __clear_user  __xtensa_clear_user
452
453
454extern long __strncpy_user(char *, const char *, long);
455#define __strncpy_from_user __strncpy_user
456
457static inline long
458strncpy_from_user(char *dst, const char *src, long count)
459{
460	if (access_ok(VERIFY_READ, src, 1))
461		return __strncpy_from_user(dst, src, count);
462	return -EFAULT;
463}
464
465
466#define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
467
468/*
469 * Return the size of a string (including the ending 0!)
470 */
471extern long __strnlen_user(const char *, long);
472
473static inline long strnlen_user(const char *str, long len)
474{
475	unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
476
477	if ((unsigned long)str > top)
478		return 0;
479	return __strnlen_user(str, len);
480}
481
482
483struct exception_table_entry
484{
485	unsigned long insn, fixup;
486};
487
488/* Returns 0 if exception not found and fixup.unit otherwise.  */
489
490extern unsigned long search_exception_table(unsigned long addr);
491extern void sort_exception_table(void);
492
493/* Returns the new pc */
494#define fixup_exception(map_reg, fixup_unit, pc)                \
495({                                                              \
496	fixup_unit;                                             \
497})
498
499#endif	/* __ASSEMBLY__ */
500#endif	/* _XTENSA_UACCESS_H */
501