• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/x86/mm/
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/proc_fs.h>
25#include <linux/pci.h>
26#include <linux/pfn.h>
27#include <linux/poison.h>
28#include <linux/dma-mapping.h>
29#include <linux/module.h>
30#include <linux/memory_hotplug.h>
31#include <linux/nmi.h>
32#include <linux/gfp.h>
33
34#include <asm/processor.h>
35#include <asm/bios_ebda.h>
36#include <asm/system.h>
37#include <asm/uaccess.h>
38#include <asm/pgtable.h>
39#include <asm/pgalloc.h>
40#include <asm/dma.h>
41#include <asm/fixmap.h>
42#include <asm/e820.h>
43#include <asm/apic.h>
44#include <asm/tlb.h>
45#include <asm/mmu_context.h>
46#include <asm/proto.h>
47#include <asm/smp.h>
48#include <asm/sections.h>
49#include <asm/kdebug.h>
50#include <asm/numa.h>
51#include <asm/cacheflush.h>
52#include <asm/init.h>
53#include <linux/bootmem.h>
54
55static unsigned long dma_reserve __initdata;
56
57static int __init parse_direct_gbpages_off(char *arg)
58{
59	direct_gbpages = 0;
60	return 0;
61}
62early_param("nogbpages", parse_direct_gbpages_off);
63
64static int __init parse_direct_gbpages_on(char *arg)
65{
66	direct_gbpages = 1;
67	return 0;
68}
69early_param("gbpages", parse_direct_gbpages_on);
70
71/*
72 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73 * physical space so we can cache the place of the first one and move
74 * around without checking the pgd every time.
75 */
76
77pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78EXPORT_SYMBOL_GPL(__supported_pte_mask);
79
80int force_personality32;
81
82/*
83 * noexec32=on|off
84 * Control non executable heap for 32bit processes.
85 * To control the stack too use noexec=off
86 *
87 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88 * off	PROT_READ implies PROT_EXEC
89 */
90static int __init nonx32_setup(char *str)
91{
92	if (!strcmp(str, "on"))
93		force_personality32 &= ~READ_IMPLIES_EXEC;
94	else if (!strcmp(str, "off"))
95		force_personality32 |= READ_IMPLIES_EXEC;
96	return 1;
97}
98__setup("noexec32=", nonx32_setup);
99
100/*
101 * NOTE: This function is marked __ref because it calls __init function
102 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
103 */
104static __ref void *spp_getpage(void)
105{
106	void *ptr;
107
108	if (after_bootmem)
109		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
110	else
111		ptr = alloc_bootmem_pages(PAGE_SIZE);
112
113	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
114		panic("set_pte_phys: cannot allocate page data %s\n",
115			after_bootmem ? "after bootmem" : "");
116	}
117
118	pr_debug("spp_getpage %p\n", ptr);
119
120	return ptr;
121}
122
123static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
124{
125	if (pgd_none(*pgd)) {
126		pud_t *pud = (pud_t *)spp_getpage();
127		pgd_populate(&init_mm, pgd, pud);
128		if (pud != pud_offset(pgd, 0))
129			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
130			       pud, pud_offset(pgd, 0));
131	}
132	return pud_offset(pgd, vaddr);
133}
134
135static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
136{
137	if (pud_none(*pud)) {
138		pmd_t *pmd = (pmd_t *) spp_getpage();
139		pud_populate(&init_mm, pud, pmd);
140		if (pmd != pmd_offset(pud, 0))
141			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
142			       pmd, pmd_offset(pud, 0));
143	}
144	return pmd_offset(pud, vaddr);
145}
146
147static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
148{
149	if (pmd_none(*pmd)) {
150		pte_t *pte = (pte_t *) spp_getpage();
151		pmd_populate_kernel(&init_mm, pmd, pte);
152		if (pte != pte_offset_kernel(pmd, 0))
153			printk(KERN_ERR "PAGETABLE BUG #02!\n");
154	}
155	return pte_offset_kernel(pmd, vaddr);
156}
157
158void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
159{
160	pud_t *pud;
161	pmd_t *pmd;
162	pte_t *pte;
163
164	pud = pud_page + pud_index(vaddr);
165	pmd = fill_pmd(pud, vaddr);
166	pte = fill_pte(pmd, vaddr);
167
168	set_pte(pte, new_pte);
169
170	/*
171	 * It's enough to flush this one mapping.
172	 * (PGE mappings get flushed as well)
173	 */
174	__flush_tlb_one(vaddr);
175}
176
177void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
178{
179	pgd_t *pgd;
180	pud_t *pud_page;
181
182	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
183
184	pgd = pgd_offset_k(vaddr);
185	if (pgd_none(*pgd)) {
186		printk(KERN_ERR
187			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
188		return;
189	}
190	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
191	set_pte_vaddr_pud(pud_page, vaddr, pteval);
192}
193
194pmd_t * __init populate_extra_pmd(unsigned long vaddr)
195{
196	pgd_t *pgd;
197	pud_t *pud;
198
199	pgd = pgd_offset_k(vaddr);
200	pud = fill_pud(pgd, vaddr);
201	return fill_pmd(pud, vaddr);
202}
203
204pte_t * __init populate_extra_pte(unsigned long vaddr)
205{
206	pmd_t *pmd;
207
208	pmd = populate_extra_pmd(vaddr);
209	return fill_pte(pmd, vaddr);
210}
211
212/*
213 * Create large page table mappings for a range of physical addresses.
214 */
215static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
216						pgprot_t prot)
217{
218	pgd_t *pgd;
219	pud_t *pud;
220	pmd_t *pmd;
221
222	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
223	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
224		pgd = pgd_offset_k((unsigned long)__va(phys));
225		if (pgd_none(*pgd)) {
226			pud = (pud_t *) spp_getpage();
227			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
228						_PAGE_USER));
229		}
230		pud = pud_offset(pgd, (unsigned long)__va(phys));
231		if (pud_none(*pud)) {
232			pmd = (pmd_t *) spp_getpage();
233			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
234						_PAGE_USER));
235		}
236		pmd = pmd_offset(pud, phys);
237		BUG_ON(!pmd_none(*pmd));
238		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
239	}
240}
241
242void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
243{
244	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
245}
246
247void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
248{
249	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
250}
251
252/*
253 * The head.S code sets up the kernel high mapping:
254 *
255 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
256 *
257 * phys_addr holds the negative offset to the kernel, which is added
258 * to the compile time generated pmds. This results in invalid pmds up
259 * to the point where we hit the physaddr 0 mapping.
260 *
261 * We limit the mappings to the region from _text to _end.  _end is
262 * rounded up to the 2MB boundary. This catches the invalid pmds as
263 * well, as they are located before _text:
264 */
265void __init cleanup_highmap(void)
266{
267	unsigned long vaddr = __START_KERNEL_map;
268	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
269	pmd_t *pmd = level2_kernel_pgt;
270	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
271
272	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
273		if (pmd_none(*pmd))
274			continue;
275		if (vaddr < (unsigned long) _text || vaddr > end)
276			set_pmd(pmd, __pmd(0));
277	}
278}
279
280static __ref void *alloc_low_page(unsigned long *phys)
281{
282	unsigned long pfn = e820_table_end++;
283	void *adr;
284
285	if (after_bootmem) {
286		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
287		*phys = __pa(adr);
288
289		return adr;
290	}
291
292	if (pfn >= e820_table_top)
293		panic("alloc_low_page: ran out of memory");
294
295	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
296	memset(adr, 0, PAGE_SIZE);
297	*phys  = pfn * PAGE_SIZE;
298	return adr;
299}
300
301static __ref void unmap_low_page(void *adr)
302{
303	if (after_bootmem)
304		return;
305
306	early_iounmap(adr, PAGE_SIZE);
307}
308
309static unsigned long __meminit
310phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
311	      pgprot_t prot)
312{
313	unsigned pages = 0;
314	unsigned long last_map_addr = end;
315	int i;
316
317	pte_t *pte = pte_page + pte_index(addr);
318
319	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
320
321		if (addr >= end) {
322			if (!after_bootmem) {
323				for(; i < PTRS_PER_PTE; i++, pte++)
324					set_pte(pte, __pte(0));
325			}
326			break;
327		}
328
329		/*
330		 * We will re-use the existing mapping.
331		 * Xen for example has some special requirements, like mapping
332		 * pagetable pages as RO. So assume someone who pre-setup
333		 * these mappings are more intelligent.
334		 */
335		if (pte_val(*pte)) {
336			pages++;
337			continue;
338		}
339
340		if (0)
341			printk("   pte=%p addr=%lx pte=%016lx\n",
342			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
343		pages++;
344		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
345		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
346	}
347
348	update_page_count(PG_LEVEL_4K, pages);
349
350	return last_map_addr;
351}
352
353static unsigned long __meminit
354phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
355		pgprot_t prot)
356{
357	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
358
359	return phys_pte_init(pte, address, end, prot);
360}
361
362static unsigned long __meminit
363phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
364	      unsigned long page_size_mask, pgprot_t prot)
365{
366	unsigned long pages = 0;
367	unsigned long last_map_addr = end;
368
369	int i = pmd_index(address);
370
371	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
372		unsigned long pte_phys;
373		pmd_t *pmd = pmd_page + pmd_index(address);
374		pte_t *pte;
375		pgprot_t new_prot = prot;
376
377		if (address >= end) {
378			if (!after_bootmem) {
379				for (; i < PTRS_PER_PMD; i++, pmd++)
380					set_pmd(pmd, __pmd(0));
381			}
382			break;
383		}
384
385		if (pmd_val(*pmd)) {
386			if (!pmd_large(*pmd)) {
387				spin_lock(&init_mm.page_table_lock);
388				last_map_addr = phys_pte_update(pmd, address,
389								end, prot);
390				spin_unlock(&init_mm.page_table_lock);
391				continue;
392			}
393			/*
394			 * If we are ok with PG_LEVEL_2M mapping, then we will
395			 * use the existing mapping,
396			 *
397			 * Otherwise, we will split the large page mapping but
398			 * use the same existing protection bits except for
399			 * large page, so that we don't violate Intel's TLB
400			 * Application note (317080) which says, while changing
401			 * the page sizes, new and old translations should
402			 * not differ with respect to page frame and
403			 * attributes.
404			 */
405			if (page_size_mask & (1 << PG_LEVEL_2M)) {
406				pages++;
407				continue;
408			}
409			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
410		}
411
412		if (page_size_mask & (1<<PG_LEVEL_2M)) {
413			pages++;
414			spin_lock(&init_mm.page_table_lock);
415			set_pte((pte_t *)pmd,
416				pfn_pte(address >> PAGE_SHIFT,
417					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
418			spin_unlock(&init_mm.page_table_lock);
419			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
420			continue;
421		}
422
423		pte = alloc_low_page(&pte_phys);
424		last_map_addr = phys_pte_init(pte, address, end, new_prot);
425		unmap_low_page(pte);
426
427		spin_lock(&init_mm.page_table_lock);
428		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
429		spin_unlock(&init_mm.page_table_lock);
430	}
431	update_page_count(PG_LEVEL_2M, pages);
432	return last_map_addr;
433}
434
435static unsigned long __meminit
436phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
437		unsigned long page_size_mask, pgprot_t prot)
438{
439	pmd_t *pmd = pmd_offset(pud, 0);
440	unsigned long last_map_addr;
441
442	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
443	__flush_tlb_all();
444	return last_map_addr;
445}
446
447static unsigned long __meminit
448phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
449			 unsigned long page_size_mask)
450{
451	unsigned long pages = 0;
452	unsigned long last_map_addr = end;
453	int i = pud_index(addr);
454
455	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
456		unsigned long pmd_phys;
457		pud_t *pud = pud_page + pud_index(addr);
458		pmd_t *pmd;
459		pgprot_t prot = PAGE_KERNEL;
460
461		if (addr >= end)
462			break;
463
464		if (!after_bootmem &&
465				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
466			set_pud(pud, __pud(0));
467			continue;
468		}
469
470		if (pud_val(*pud)) {
471			if (!pud_large(*pud)) {
472				last_map_addr = phys_pmd_update(pud, addr, end,
473							 page_size_mask, prot);
474				continue;
475			}
476			/*
477			 * If we are ok with PG_LEVEL_1G mapping, then we will
478			 * use the existing mapping.
479			 *
480			 * Otherwise, we will split the gbpage mapping but use
481			 * the same existing protection  bits except for large
482			 * page, so that we don't violate Intel's TLB
483			 * Application note (317080) which says, while changing
484			 * the page sizes, new and old translations should
485			 * not differ with respect to page frame and
486			 * attributes.
487			 */
488			if (page_size_mask & (1 << PG_LEVEL_1G)) {
489				pages++;
490				continue;
491			}
492			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
493		}
494
495		if (page_size_mask & (1<<PG_LEVEL_1G)) {
496			pages++;
497			spin_lock(&init_mm.page_table_lock);
498			set_pte((pte_t *)pud,
499				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
500			spin_unlock(&init_mm.page_table_lock);
501			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
502			continue;
503		}
504
505		pmd = alloc_low_page(&pmd_phys);
506		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
507					      prot);
508		unmap_low_page(pmd);
509
510		spin_lock(&init_mm.page_table_lock);
511		pud_populate(&init_mm, pud, __va(pmd_phys));
512		spin_unlock(&init_mm.page_table_lock);
513	}
514	__flush_tlb_all();
515
516	update_page_count(PG_LEVEL_1G, pages);
517
518	return last_map_addr;
519}
520
521static unsigned long __meminit
522phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
523		 unsigned long page_size_mask)
524{
525	pud_t *pud;
526
527	pud = (pud_t *)pgd_page_vaddr(*pgd);
528
529	return phys_pud_init(pud, addr, end, page_size_mask);
530}
531
532unsigned long __meminit
533kernel_physical_mapping_init(unsigned long start,
534			     unsigned long end,
535			     unsigned long page_size_mask)
536{
537
538	unsigned long next, last_map_addr = end;
539
540	start = (unsigned long)__va(start);
541	end = (unsigned long)__va(end);
542
543	for (; start < end; start = next) {
544		pgd_t *pgd = pgd_offset_k(start);
545		unsigned long pud_phys;
546		pud_t *pud;
547
548		next = (start + PGDIR_SIZE) & PGDIR_MASK;
549		if (next > end)
550			next = end;
551
552		if (pgd_val(*pgd)) {
553			last_map_addr = phys_pud_update(pgd, __pa(start),
554						 __pa(end), page_size_mask);
555			continue;
556		}
557
558		pud = alloc_low_page(&pud_phys);
559		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
560						 page_size_mask);
561		unmap_low_page(pud);
562
563		spin_lock(&init_mm.page_table_lock);
564		pgd_populate(&init_mm, pgd, __va(pud_phys));
565		spin_unlock(&init_mm.page_table_lock);
566	}
567	__flush_tlb_all();
568
569	return last_map_addr;
570}
571
572#ifndef CONFIG_NUMA
573void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
574				int acpi, int k8)
575{
576#ifndef CONFIG_NO_BOOTMEM
577	unsigned long bootmap_size, bootmap;
578
579	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
580	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
581				 PAGE_SIZE);
582	if (bootmap == -1L)
583		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
584	reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
585	/* don't touch min_low_pfn */
586	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
587					 0, end_pfn);
588	e820_register_active_regions(0, start_pfn, end_pfn);
589	free_bootmem_with_active_regions(0, end_pfn);
590#else
591	e820_register_active_regions(0, start_pfn, end_pfn);
592#endif
593}
594#endif
595
596void __init paging_init(void)
597{
598	unsigned long max_zone_pfns[MAX_NR_ZONES];
599
600	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
601	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
602	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
603	max_zone_pfns[ZONE_NORMAL] = max_pfn;
604
605	sparse_memory_present_with_active_regions(MAX_NUMNODES);
606	sparse_init();
607
608	/*
609	 * clear the default setting with node 0
610	 * note: don't use nodes_clear here, that is really clearing when
611	 *	 numa support is not compiled in, and later node_set_state
612	 *	 will not set it back.
613	 */
614	node_clear_state(0, N_NORMAL_MEMORY);
615
616	free_area_init_nodes(max_zone_pfns);
617}
618
619/*
620 * Memory hotplug specific functions
621 */
622#ifdef CONFIG_MEMORY_HOTPLUG
623/*
624 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
625 * updating.
626 */
627static void  update_end_of_memory_vars(u64 start, u64 size)
628{
629	unsigned long end_pfn = PFN_UP(start + size);
630
631	if (end_pfn > max_pfn) {
632		max_pfn = end_pfn;
633		max_low_pfn = end_pfn;
634		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
635	}
636}
637
638/*
639 * Memory is added always to NORMAL zone. This means you will never get
640 * additional DMA/DMA32 memory.
641 */
642int arch_add_memory(int nid, u64 start, u64 size)
643{
644	struct pglist_data *pgdat = NODE_DATA(nid);
645	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
646	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
647	unsigned long nr_pages = size >> PAGE_SHIFT;
648	int ret;
649
650	last_mapped_pfn = init_memory_mapping(start, start + size);
651	if (last_mapped_pfn > max_pfn_mapped)
652		max_pfn_mapped = last_mapped_pfn;
653
654	ret = __add_pages(nid, zone, start_pfn, nr_pages);
655	WARN_ON_ONCE(ret);
656
657	/* update max_pfn, max_low_pfn and high_memory */
658	update_end_of_memory_vars(start, size);
659
660	return ret;
661}
662EXPORT_SYMBOL_GPL(arch_add_memory);
663
664#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
665int memory_add_physaddr_to_nid(u64 start)
666{
667	return 0;
668}
669EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
670#endif
671
672#endif /* CONFIG_MEMORY_HOTPLUG */
673
674static struct kcore_list kcore_vsyscall;
675
676void __init mem_init(void)
677{
678	long codesize, reservedpages, datasize, initsize;
679	unsigned long absent_pages;
680
681	pci_iommu_alloc();
682
683	/* clear_bss() already clear the empty_zero_page */
684
685	reservedpages = 0;
686
687	/* this will put all low memory onto the freelists */
688#ifdef CONFIG_NUMA
689	totalram_pages = numa_free_all_bootmem();
690#else
691	totalram_pages = free_all_bootmem();
692#endif
693
694	absent_pages = absent_pages_in_range(0, max_pfn);
695	reservedpages = max_pfn - totalram_pages - absent_pages;
696	after_bootmem = 1;
697
698	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
699	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
700	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
701
702	/* Register memory areas for /proc/kcore */
703	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
704			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
705
706	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
707			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
708		nr_free_pages() << (PAGE_SHIFT-10),
709		max_pfn << (PAGE_SHIFT-10),
710		codesize >> 10,
711		absent_pages << (PAGE_SHIFT-10),
712		reservedpages << (PAGE_SHIFT-10),
713		datasize >> 10,
714		initsize >> 10);
715}
716
717#ifdef CONFIG_DEBUG_RODATA
718const int rodata_test_data = 0xC3;
719EXPORT_SYMBOL_GPL(rodata_test_data);
720
721int kernel_set_to_readonly;
722
723void set_kernel_text_rw(void)
724{
725	unsigned long start = PFN_ALIGN(_text);
726	unsigned long end = PFN_ALIGN(__stop___ex_table);
727
728	if (!kernel_set_to_readonly)
729		return;
730
731	pr_debug("Set kernel text: %lx - %lx for read write\n",
732		 start, end);
733
734	/*
735	 * Make the kernel identity mapping for text RW. Kernel text
736	 * mapping will always be RO. Refer to the comment in
737	 * static_protections() in pageattr.c
738	 */
739	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
740}
741
742void set_kernel_text_ro(void)
743{
744	unsigned long start = PFN_ALIGN(_text);
745	unsigned long end = PFN_ALIGN(__stop___ex_table);
746
747	if (!kernel_set_to_readonly)
748		return;
749
750	pr_debug("Set kernel text: %lx - %lx for read only\n",
751		 start, end);
752
753	/*
754	 * Set the kernel identity mapping for text RO.
755	 */
756	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
757}
758
759void mark_rodata_ro(void)
760{
761	unsigned long start = PFN_ALIGN(_text);
762	unsigned long rodata_start =
763		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
764	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
765	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
766	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
767	unsigned long data_start = (unsigned long) &_sdata;
768
769	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
770	       (end - start) >> 10);
771	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
772
773	kernel_set_to_readonly = 1;
774
775	/*
776	 * The rodata section (but not the kernel text!) should also be
777	 * not-executable.
778	 */
779	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
780
781	rodata_test();
782
783#ifdef CONFIG_CPA_DEBUG
784	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
785	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
786
787	printk(KERN_INFO "Testing CPA: again\n");
788	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
789#endif
790
791	free_init_pages("unused kernel memory",
792			(unsigned long) page_address(virt_to_page(text_end)),
793			(unsigned long)
794				 page_address(virt_to_page(rodata_start)));
795	free_init_pages("unused kernel memory",
796			(unsigned long) page_address(virt_to_page(rodata_end)),
797			(unsigned long) page_address(virt_to_page(data_start)));
798}
799
800#endif
801
802int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
803				   int flags)
804{
805#ifdef CONFIG_NUMA
806	int nid, next_nid;
807	int ret;
808#endif
809	unsigned long pfn = phys >> PAGE_SHIFT;
810
811	if (pfn >= max_pfn) {
812		/*
813		 * This can happen with kdump kernels when accessing
814		 * firmware tables:
815		 */
816		if (pfn < max_pfn_mapped)
817			return -EFAULT;
818
819		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
820				phys, len);
821		return -EFAULT;
822	}
823
824	/* Should check here against the e820 map to avoid double free */
825#ifdef CONFIG_NUMA
826	nid = phys_to_nid(phys);
827	next_nid = phys_to_nid(phys + len - 1);
828	if (nid == next_nid)
829		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
830	else
831		ret = reserve_bootmem(phys, len, flags);
832
833	if (ret != 0)
834		return ret;
835
836#else
837	reserve_bootmem(phys, len, flags);
838#endif
839
840	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
841		dma_reserve += len / PAGE_SIZE;
842		set_dma_reserve(dma_reserve);
843	}
844
845	return 0;
846}
847
848int kern_addr_valid(unsigned long addr)
849{
850	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
851	pgd_t *pgd;
852	pud_t *pud;
853	pmd_t *pmd;
854	pte_t *pte;
855
856	if (above != 0 && above != -1UL)
857		return 0;
858
859	pgd = pgd_offset_k(addr);
860	if (pgd_none(*pgd))
861		return 0;
862
863	pud = pud_offset(pgd, addr);
864	if (pud_none(*pud))
865		return 0;
866
867	pmd = pmd_offset(pud, addr);
868	if (pmd_none(*pmd))
869		return 0;
870
871	if (pmd_large(*pmd))
872		return pfn_valid(pmd_pfn(*pmd));
873
874	pte = pte_offset_kernel(pmd, addr);
875	if (pte_none(*pte))
876		return 0;
877
878	return pfn_valid(pte_pfn(*pte));
879}
880
881/*
882 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
883 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
884 * not need special handling anymore:
885 */
886static struct vm_area_struct gate_vma = {
887	.vm_start	= VSYSCALL_START,
888	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
889	.vm_page_prot	= PAGE_READONLY_EXEC,
890	.vm_flags	= VM_READ | VM_EXEC
891};
892
893struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
894{
895#ifdef CONFIG_IA32_EMULATION
896	if (test_tsk_thread_flag(tsk, TIF_IA32))
897		return NULL;
898#endif
899	return &gate_vma;
900}
901
902int in_gate_area(struct task_struct *task, unsigned long addr)
903{
904	struct vm_area_struct *vma = get_gate_vma(task);
905
906	if (!vma)
907		return 0;
908
909	return (addr >= vma->vm_start) && (addr < vma->vm_end);
910}
911
912/*
913 * Use this when you have no reliable task/vma, typically from interrupt
914 * context. It is less reliable than using the task's vma and may give
915 * false positives:
916 */
917int in_gate_area_no_task(unsigned long addr)
918{
919	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
920}
921
922const char *arch_vma_name(struct vm_area_struct *vma)
923{
924	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
925		return "[vdso]";
926	if (vma == &gate_vma)
927		return "[vsyscall]";
928	return NULL;
929}
930
931#ifdef CONFIG_SPARSEMEM_VMEMMAP
932/*
933 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
934 */
935static long __meminitdata addr_start, addr_end;
936static void __meminitdata *p_start, *p_end;
937static int __meminitdata node_start;
938
939int __meminit
940vmemmap_populate(struct page *start_page, unsigned long size, int node)
941{
942	unsigned long addr = (unsigned long)start_page;
943	unsigned long end = (unsigned long)(start_page + size);
944	unsigned long next;
945	pgd_t *pgd;
946	pud_t *pud;
947	pmd_t *pmd;
948
949	for (; addr < end; addr = next) {
950		void *p = NULL;
951
952		pgd = vmemmap_pgd_populate(addr, node);
953		if (!pgd)
954			return -ENOMEM;
955
956		pud = vmemmap_pud_populate(pgd, addr, node);
957		if (!pud)
958			return -ENOMEM;
959
960		if (!cpu_has_pse) {
961			next = (addr + PAGE_SIZE) & PAGE_MASK;
962			pmd = vmemmap_pmd_populate(pud, addr, node);
963
964			if (!pmd)
965				return -ENOMEM;
966
967			p = vmemmap_pte_populate(pmd, addr, node);
968
969			if (!p)
970				return -ENOMEM;
971
972			addr_end = addr + PAGE_SIZE;
973			p_end = p + PAGE_SIZE;
974		} else {
975			next = pmd_addr_end(addr, end);
976
977			pmd = pmd_offset(pud, addr);
978			if (pmd_none(*pmd)) {
979				pte_t entry;
980
981				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
982				if (!p)
983					return -ENOMEM;
984
985				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
986						PAGE_KERNEL_LARGE);
987				set_pmd(pmd, __pmd(pte_val(entry)));
988
989				/* check to see if we have contiguous blocks */
990				if (p_end != p || node_start != node) {
991					if (p_start)
992						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
993						       addr_start, addr_end-1, p_start, p_end-1, node_start);
994					addr_start = addr;
995					node_start = node;
996					p_start = p;
997				}
998
999				addr_end = addr + PMD_SIZE;
1000				p_end = p + PMD_SIZE;
1001			} else
1002				vmemmap_verify((pte_t *)pmd, node, addr, next);
1003		}
1004
1005	}
1006	return 0;
1007}
1008
1009void __meminit vmemmap_populate_print_last(void)
1010{
1011	if (p_start) {
1012		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1013			addr_start, addr_end-1, p_start, p_end-1, node_start);
1014		p_start = NULL;
1015		p_end = NULL;
1016		node_start = 0;
1017	}
1018}
1019#endif
1020