• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/tile/mm/
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 *
14 * From i386 code copyright (C) 1995  Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
27#include <linux/smp_lock.h>
28#include <linux/interrupt.h>
29#include <linux/init.h>
30#include <linux/tty.h>
31#include <linux/vt_kern.h>		/* For unblank_screen() */
32#include <linux/highmem.h>
33#include <linux/module.h>
34#include <linux/kprobes.h>
35#include <linux/hugetlb.h>
36#include <linux/syscalls.h>
37#include <linux/uaccess.h>
38
39#include <asm/system.h>
40#include <asm/pgalloc.h>
41#include <asm/sections.h>
42#include <asm/traps.h>
43#include <asm/syscalls.h>
44
45#include <arch/interrupts.h>
46
47static noinline void force_sig_info_fault(int si_signo, int si_code,
48	unsigned long address, int fault_num, struct task_struct *tsk)
49{
50	siginfo_t info;
51
52	if (unlikely(tsk->pid < 2)) {
53		panic("Signal %d (code %d) at %#lx sent to %s!",
54		      si_signo, si_code & 0xffff, address,
55		      tsk->pid ? "init" : "the idle task");
56	}
57
58	info.si_signo = si_signo;
59	info.si_errno = 0;
60	info.si_code = si_code;
61	info.si_addr = (void __user *)address;
62	info.si_trapno = fault_num;
63	force_sig_info(si_signo, &info, tsk);
64}
65
66#ifndef __tilegx__
67/*
68 * Synthesize the fault a PL0 process would get by doing a word-load of
69 * an unaligned address or a high kernel address.  Called indirectly
70 * from sys_cmpxchg() in kernel/intvec.S.
71 */
72int _sys_cmpxchg_badaddr(unsigned long address, struct pt_regs *regs)
73{
74	if (address >= PAGE_OFFSET)
75		force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address,
76				     INT_DTLB_MISS, current);
77	else
78		force_sig_info_fault(SIGBUS, BUS_ADRALN, address,
79				     INT_UNALIGN_DATA, current);
80
81	/*
82	 * Adjust pc to point at the actual instruction, which is unusual
83	 * for syscalls normally, but is appropriate when we are claiming
84	 * that a syscall swint1 caused a page fault or bus error.
85	 */
86	regs->pc -= 8;
87
88	/*
89	 * Mark this as a caller-save interrupt, like a normal page fault,
90	 * so that when we go through the signal handler path we will
91	 * properly restore r0, r1, and r2 for the signal handler arguments.
92	 */
93	regs->flags |= PT_FLAGS_CALLER_SAVES;
94
95	return 0;
96}
97#endif
98
99static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
100{
101	unsigned index = pgd_index(address);
102	pgd_t *pgd_k;
103	pud_t *pud, *pud_k;
104	pmd_t *pmd, *pmd_k;
105
106	pgd += index;
107	pgd_k = init_mm.pgd + index;
108
109	if (!pgd_present(*pgd_k))
110		return NULL;
111
112	pud = pud_offset(pgd, address);
113	pud_k = pud_offset(pgd_k, address);
114	if (!pud_present(*pud_k))
115		return NULL;
116
117	pmd = pmd_offset(pud, address);
118	pmd_k = pmd_offset(pud_k, address);
119	if (!pmd_present(*pmd_k))
120		return NULL;
121	if (!pmd_present(*pmd)) {
122		set_pmd(pmd, *pmd_k);
123		arch_flush_lazy_mmu_mode();
124	} else
125		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
126	return pmd_k;
127}
128
129/*
130 * Handle a fault on the vmalloc or module mapping area
131 */
132static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
133{
134	pmd_t *pmd_k;
135	pte_t *pte_k;
136
137	/* Make sure we are in vmalloc area */
138	if (!(address >= VMALLOC_START && address < VMALLOC_END))
139		return -1;
140
141	/*
142	 * Synchronize this task's top level page-table
143	 * with the 'reference' page table.
144	 */
145	pmd_k = vmalloc_sync_one(pgd, address);
146	if (!pmd_k)
147		return -1;
148	if (pmd_huge(*pmd_k))
149		return 0;   /* support TILE huge_vmap() API */
150	pte_k = pte_offset_kernel(pmd_k, address);
151	if (!pte_present(*pte_k))
152		return -1;
153	return 0;
154}
155
156/* Wait until this PTE has completed migration. */
157static void wait_for_migration(pte_t *pte)
158{
159	if (pte_migrating(*pte)) {
160		/*
161		 * Wait until the migrater fixes up this pte.
162		 * We scale the loop count by the clock rate so we'll wait for
163		 * a few seconds here.
164		 */
165		int retries = 0;
166		int bound = get_clock_rate();
167		while (pte_migrating(*pte)) {
168			barrier();
169			if (++retries > bound)
170				panic("Hit migrating PTE (%#llx) and"
171				      " page PFN %#lx still migrating",
172				      pte->val, pte_pfn(*pte));
173		}
174	}
175}
176
177/*
178 * It's not generally safe to use "current" to get the page table pointer,
179 * since we might be running an oprofile interrupt in the middle of a
180 * task switch.
181 */
182static pgd_t *get_current_pgd(void)
183{
184	HV_Context ctx = hv_inquire_context();
185	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
186	struct page *pgd_page = pfn_to_page(pgd_pfn);
187	BUG_ON(PageHighMem(pgd_page));   /* oops, HIGHPTE? */
188	return (pgd_t *) __va(ctx.page_table);
189}
190
191/*
192 * We can receive a page fault from a migrating PTE at any time.
193 * Handle it by just waiting until the fault resolves.
194 *
195 * It's also possible to get a migrating kernel PTE that resolves
196 * itself during the downcall from hypervisor to Linux.  We just check
197 * here to see if the PTE seems valid, and if so we retry it.
198 *
199 * NOTE! We MUST NOT take any locks for this case.  We may be in an
200 * interrupt or a critical region, and must do as little as possible.
201 * Similarly, we can't use atomic ops here, since we may be handling a
202 * fault caused by an atomic op access.
203 */
204static int handle_migrating_pte(pgd_t *pgd, int fault_num,
205				unsigned long address,
206				int is_kernel_mode, int write)
207{
208	pud_t *pud;
209	pmd_t *pmd;
210	pte_t *pte;
211	pte_t pteval;
212
213	if (pgd_addr_invalid(address))
214		return 0;
215
216	pgd += pgd_index(address);
217	pud = pud_offset(pgd, address);
218	if (!pud || !pud_present(*pud))
219		return 0;
220	pmd = pmd_offset(pud, address);
221	if (!pmd || !pmd_present(*pmd))
222		return 0;
223	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
224		pte_offset_kernel(pmd, address);
225	pteval = *pte;
226	if (pte_migrating(pteval)) {
227		wait_for_migration(pte);
228		return 1;
229	}
230
231	if (!is_kernel_mode || !pte_present(pteval))
232		return 0;
233	if (fault_num == INT_ITLB_MISS) {
234		if (pte_exec(pteval))
235			return 1;
236	} else if (write) {
237		if (pte_write(pteval))
238			return 1;
239	} else {
240		if (pte_read(pteval))
241			return 1;
242	}
243
244	return 0;
245}
246
247/*
248 * This routine is responsible for faulting in user pages.
249 * It passes the work off to one of the appropriate routines.
250 * It returns true if the fault was successfully handled.
251 */
252static int handle_page_fault(struct pt_regs *regs,
253			     int fault_num,
254			     int is_page_fault,
255			     unsigned long address,
256			     int write)
257{
258	struct task_struct *tsk;
259	struct mm_struct *mm;
260	struct vm_area_struct *vma;
261	unsigned long stack_offset;
262	int fault;
263	int si_code;
264	int is_kernel_mode;
265	pgd_t *pgd;
266
267	/* on TILE, protection faults are always writes */
268	if (!is_page_fault)
269		write = 1;
270
271	is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
272
273	tsk = validate_current();
274
275	/*
276	 * Check to see if we might be overwriting the stack, and bail
277	 * out if so.  The page fault code is a relatively likely
278	 * place to get trapped in an infinite regress, and once we
279	 * overwrite the whole stack, it becomes very hard to recover.
280	 */
281	stack_offset = stack_pointer & (THREAD_SIZE-1);
282	if (stack_offset < THREAD_SIZE / 8) {
283		pr_alert("Potential stack overrun: sp %#lx\n",
284		       stack_pointer);
285		show_regs(regs);
286		pr_alert("Killing current process %d/%s\n",
287		       tsk->pid, tsk->comm);
288		do_group_exit(SIGKILL);
289	}
290
291	/*
292	 * Early on, we need to check for migrating PTE entries;
293	 * see homecache.c.  If we find a migrating PTE, we wait until
294	 * the backing page claims to be done migrating, then we procede.
295	 * For kernel PTEs, we rewrite the PTE and return and retry.
296	 * Otherwise, we treat the fault like a normal "no PTE" fault,
297	 * rather than trying to patch up the existing PTE.
298	 */
299	pgd = get_current_pgd();
300	if (handle_migrating_pte(pgd, fault_num, address,
301				 is_kernel_mode, write))
302		return 1;
303
304	si_code = SEGV_MAPERR;
305
306	/*
307	 * We fault-in kernel-space virtual memory on-demand. The
308	 * 'reference' page table is init_mm.pgd.
309	 *
310	 * NOTE! We MUST NOT take any locks for this case. We may
311	 * be in an interrupt or a critical region, and should
312	 * only copy the information from the master page table,
313	 * nothing more.
314	 *
315	 * This verifies that the fault happens in kernel space
316	 * and that the fault was not a protection fault.
317	 */
318	if (unlikely(address >= TASK_SIZE &&
319		     !is_arch_mappable_range(address, 0))) {
320		if (is_kernel_mode && is_page_fault &&
321		    vmalloc_fault(pgd, address) >= 0)
322			return 1;
323		/*
324		 * Don't take the mm semaphore here. If we fixup a prefetch
325		 * fault we could otherwise deadlock.
326		 */
327		mm = NULL;  /* happy compiler */
328		vma = NULL;
329		goto bad_area_nosemaphore;
330	}
331
332	/*
333	 * If we're trying to touch user-space addresses, we must
334	 * be either at PL0, or else with interrupts enabled in the
335	 * kernel, so either way we can re-enable interrupts here.
336	 */
337	local_irq_enable();
338
339	mm = tsk->mm;
340
341	/*
342	 * If we're in an interrupt, have no user context or are running in an
343	 * atomic region then we must not take the fault.
344	 */
345	if (in_atomic() || !mm) {
346		vma = NULL;  /* happy compiler */
347		goto bad_area_nosemaphore;
348	}
349
350	/*
351	 * When running in the kernel we expect faults to occur only to
352	 * addresses in user space.  All other faults represent errors in the
353	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
354	 * erroneous fault occurring in a code path which already holds mmap_sem
355	 * we will deadlock attempting to validate the fault against the
356	 * address space.  Luckily the kernel only validly references user
357	 * space from well defined areas of code, which are listed in the
358	 * exceptions table.
359	 *
360	 * As the vast majority of faults will be valid we will only perform
361	 * the source reference check when there is a possibility of a deadlock.
362	 * Attempt to lock the address space, if we cannot we then validate the
363	 * source.  If this is invalid we can skip the address space check,
364	 * thus avoiding the deadlock.
365	 */
366	if (!down_read_trylock(&mm->mmap_sem)) {
367		if (is_kernel_mode &&
368		    !search_exception_tables(regs->pc)) {
369			vma = NULL;  /* happy compiler */
370			goto bad_area_nosemaphore;
371		}
372		down_read(&mm->mmap_sem);
373	}
374
375	vma = find_vma(mm, address);
376	if (!vma)
377		goto bad_area;
378	if (vma->vm_start <= address)
379		goto good_area;
380	if (!(vma->vm_flags & VM_GROWSDOWN))
381		goto bad_area;
382	if (regs->sp < PAGE_OFFSET) {
383		/*
384		 * accessing the stack below sp is always a bug.
385		 */
386		if (address < regs->sp)
387			goto bad_area;
388	}
389	if (expand_stack(vma, address))
390		goto bad_area;
391
392/*
393 * Ok, we have a good vm_area for this memory access, so
394 * we can handle it..
395 */
396good_area:
397	si_code = SEGV_ACCERR;
398	if (fault_num == INT_ITLB_MISS) {
399		if (!(vma->vm_flags & VM_EXEC))
400			goto bad_area;
401	} else if (write) {
402#ifdef TEST_VERIFY_AREA
403		if (!is_page_fault && regs->cs == KERNEL_CS)
404			pr_err("WP fault at "REGFMT"\n", regs->eip);
405#endif
406		if (!(vma->vm_flags & VM_WRITE))
407			goto bad_area;
408	} else {
409		if (!is_page_fault || !(vma->vm_flags & VM_READ))
410			goto bad_area;
411	}
412
413 survive:
414	/*
415	 * If for any reason at all we couldn't handle the fault,
416	 * make sure we exit gracefully rather than endlessly redo
417	 * the fault.
418	 */
419	fault = handle_mm_fault(mm, vma, address, write);
420	if (unlikely(fault & VM_FAULT_ERROR)) {
421		if (fault & VM_FAULT_OOM)
422			goto out_of_memory;
423		else if (fault & VM_FAULT_SIGBUS)
424			goto do_sigbus;
425		BUG();
426	}
427	if (fault & VM_FAULT_MAJOR)
428		tsk->maj_flt++;
429	else
430		tsk->min_flt++;
431
432#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
433	/*
434	 * If this was an asynchronous fault,
435	 * restart the appropriate engine.
436	 */
437	switch (fault_num) {
438#if CHIP_HAS_TILE_DMA()
439	case INT_DMATLB_MISS:
440	case INT_DMATLB_MISS_DWNCL:
441	case INT_DMATLB_ACCESS:
442	case INT_DMATLB_ACCESS_DWNCL:
443		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
444		break;
445#endif
446#if CHIP_HAS_SN_PROC()
447	case INT_SNITLB_MISS:
448	case INT_SNITLB_MISS_DWNCL:
449		__insn_mtspr(SPR_SNCTL,
450			     __insn_mfspr(SPR_SNCTL) &
451			     ~SPR_SNCTL__FRZPROC_MASK);
452		break;
453#endif
454	}
455#endif
456
457	up_read(&mm->mmap_sem);
458	return 1;
459
460/*
461 * Something tried to access memory that isn't in our memory map..
462 * Fix it, but check if it's kernel or user first..
463 */
464bad_area:
465	up_read(&mm->mmap_sem);
466
467bad_area_nosemaphore:
468	/* User mode accesses just cause a SIGSEGV */
469	if (!is_kernel_mode) {
470		/*
471		 * It's possible to have interrupts off here.
472		 */
473		local_irq_enable();
474
475		force_sig_info_fault(SIGSEGV, si_code, address,
476				     fault_num, tsk);
477		return 0;
478	}
479
480no_context:
481	/* Are we prepared to handle this kernel fault?  */
482	if (fixup_exception(regs))
483		return 0;
484
485/*
486 * Oops. The kernel tried to access some bad page. We'll have to
487 * terminate things with extreme prejudice.
488 */
489
490	bust_spinlocks(1);
491
492#ifdef SUPPORT_LOOKUP_ADDRESS
493	if (fault_num == INT_ITLB_MISS) {
494		pte_t *pte = lookup_address(address);
495
496		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
497			pr_crit("kernel tried to execute"
498			       " non-executable page - exploit attempt?"
499			       " (uid: %d)\n", current->uid);
500	}
501#endif
502	if (address < PAGE_SIZE)
503		pr_alert("Unable to handle kernel NULL pointer dereference\n");
504	else
505		pr_alert("Unable to handle kernel paging request\n");
506	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
507		 address, regs->pc);
508
509	show_regs(regs);
510
511	if (unlikely(tsk->pid < 2)) {
512		panic("Kernel page fault running %s!",
513		      tsk->pid ? "init" : "the idle task");
514	}
515
516#ifdef SUPPORT_DIE
517	die("Oops", regs);
518#endif
519	bust_spinlocks(1);
520
521	do_group_exit(SIGKILL);
522
523/*
524 * We ran out of memory, or some other thing happened to us that made
525 * us unable to handle the page fault gracefully.
526 */
527out_of_memory:
528	up_read(&mm->mmap_sem);
529	if (is_global_init(tsk)) {
530		yield();
531		down_read(&mm->mmap_sem);
532		goto survive;
533	}
534	pr_alert("VM: killing process %s\n", tsk->comm);
535	if (!is_kernel_mode)
536		do_group_exit(SIGKILL);
537	goto no_context;
538
539do_sigbus:
540	up_read(&mm->mmap_sem);
541
542	/* Kernel mode? Handle exceptions or die */
543	if (is_kernel_mode)
544		goto no_context;
545
546	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk);
547	return 0;
548}
549
550#ifndef __tilegx__
551
552/* We must release ICS before panicking or we won't get anywhere. */
553#define ics_panic(fmt, ...) do { \
554	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
555	panic(fmt, __VA_ARGS__); \
556} while (0)
557
558/*
559 * When we take an ITLB or DTLB fault or access violation in the
560 * supervisor while the critical section bit is set, the hypervisor is
561 * reluctant to write new values into the EX_CONTEXT_1_x registers,
562 * since that might indicate we have not yet squirreled the SPR
563 * contents away and can thus safely take a recursive interrupt.
564 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_1_2.
565 *
566 * Note that this routine is called before homecache_tlb_defer_enter(),
567 * which means that we can properly unlock any atomics that might
568 * be used there (good), but also means we must be very sensitive
569 * to not touch any data structures that might be located in memory
570 * that could migrate, as we could be entering the kernel on a dataplane
571 * cpu that has been deferring kernel TLB updates.  This means, for
572 * example, that we can't migrate init_mm or its pgd.
573 */
574struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
575				      unsigned long address,
576				      unsigned long info)
577{
578	unsigned long pc = info & ~1;
579	int write = info & 1;
580	pgd_t *pgd = get_current_pgd();
581
582	/* Retval is 1 at first since we will handle the fault fully. */
583	struct intvec_state state = {
584		do_page_fault, fault_num, address, write, 1
585	};
586
587	/* Validate that we are plausibly in the right routine. */
588	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
589	    (fault_num != INT_DTLB_MISS &&
590	     fault_num != INT_DTLB_ACCESS)) {
591		unsigned long old_pc = regs->pc;
592		regs->pc = pc;
593		ics_panic("Bad ICS page fault args:"
594			  " old PC %#lx, fault %d/%d at %#lx\n",
595			  old_pc, fault_num, write, address);
596	}
597
598	/* We might be faulting on a vmalloc page, so check that first. */
599	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
600		return state;
601
602	/*
603	 * If we faulted with ICS set in sys_cmpxchg, we are providing
604	 * a user syscall service that should generate a signal on
605	 * fault.  We didn't set up a kernel stack on initial entry to
606	 * sys_cmpxchg, but instead had one set up by the fault, which
607	 * (because sys_cmpxchg never releases ICS) came to us via the
608	 * SYSTEM_SAVE_1_2 mechanism, and thus EX_CONTEXT_1_[01] are
609	 * still referencing the original user code.  We release the
610	 * atomic lock and rewrite pt_regs so that it appears that we
611	 * came from user-space directly, and after we finish the
612	 * fault we'll go back to user space and re-issue the swint.
613	 * This way the backtrace information is correct if we need to
614	 * emit a stack dump at any point while handling this.
615	 *
616	 * Must match register use in sys_cmpxchg().
617	 */
618	if (pc >= (unsigned long) sys_cmpxchg &&
619	    pc < (unsigned long) __sys_cmpxchg_end) {
620#ifdef CONFIG_SMP
621		/* Don't unlock before we could have locked. */
622		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
623			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
624			__atomic_fault_unlock(lock_ptr);
625		}
626#endif
627		regs->sp = regs->regs[27];
628	}
629
630	/*
631	 * We can also fault in the atomic assembly, in which
632	 * case we use the exception table to do the first-level fixup.
633	 * We may re-fixup again in the real fault handler if it
634	 * turns out the faulting address is just bad, and not,
635	 * for example, migrating.
636	 */
637	else if (pc >= (unsigned long) __start_atomic_asm_code &&
638		   pc < (unsigned long) __end_atomic_asm_code) {
639		const struct exception_table_entry *fixup;
640#ifdef CONFIG_SMP
641		/* Unlock the atomic lock. */
642		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
643		__atomic_fault_unlock(lock_ptr);
644#endif
645		fixup = search_exception_tables(pc);
646		if (!fixup)
647			ics_panic("ICS atomic fault not in table:"
648				  " PC %#lx, fault %d", pc, fault_num);
649		regs->pc = fixup->fixup;
650		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
651	}
652
653	/*
654	 * NOTE: the one other type of access that might bring us here
655	 * are the memory ops in __tns_atomic_acquire/__tns_atomic_release,
656	 * but we don't have to check specially for them since we can
657	 * always safely return to the address of the fault and retry,
658	 * since no separate atomic locks are involved.
659	 */
660
661	/*
662	 * Now that we have released the atomic lock (if necessary),
663	 * it's safe to spin if the PTE that caused the fault was migrating.
664	 */
665	if (fault_num == INT_DTLB_ACCESS)
666		write = 1;
667	if (handle_migrating_pte(pgd, fault_num, address, 1, write))
668		return state;
669
670	/* Return zero so that we continue on with normal fault handling. */
671	state.retval = 0;
672	return state;
673}
674
675#endif /* !__tilegx__ */
676
677/*
678 * This routine handles page faults.  It determines the address, and the
679 * problem, and then passes it handle_page_fault() for normal DTLB and
680 * ITLB issues, and for DMA or SN processor faults when we are in user
681 * space.  For the latter, if we're in kernel mode, we just save the
682 * interrupt away appropriately and return immediately.  We can't do
683 * page faults for user code while in kernel mode.
684 */
685void do_page_fault(struct pt_regs *regs, int fault_num,
686		   unsigned long address, unsigned long write)
687{
688	int is_page_fault;
689
690	/* This case should have been handled by do_page_fault_ics(). */
691	BUG_ON(write & ~1);
692
693#if CHIP_HAS_TILE_DMA()
694	/*
695	 * If it's a DMA fault, suspend the transfer while we're
696	 * handling the miss; we'll restart after it's handled.  If we
697	 * don't suspend, it's possible that this process could swap
698	 * out and back in, and restart the engine since the DMA is
699	 * still 'running'.
700	 */
701	if (fault_num == INT_DMATLB_MISS ||
702	    fault_num == INT_DMATLB_ACCESS ||
703	    fault_num == INT_DMATLB_MISS_DWNCL ||
704	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
705		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
706		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
707		       SPR_DMA_STATUS__BUSY_MASK)
708			;
709	}
710#endif
711
712	/* Validate fault num and decide if this is a first-time page fault. */
713	switch (fault_num) {
714	case INT_ITLB_MISS:
715	case INT_DTLB_MISS:
716#if CHIP_HAS_TILE_DMA()
717	case INT_DMATLB_MISS:
718	case INT_DMATLB_MISS_DWNCL:
719#endif
720#if CHIP_HAS_SN_PROC()
721	case INT_SNITLB_MISS:
722	case INT_SNITLB_MISS_DWNCL:
723#endif
724		is_page_fault = 1;
725		break;
726
727	case INT_DTLB_ACCESS:
728#if CHIP_HAS_TILE_DMA()
729	case INT_DMATLB_ACCESS:
730	case INT_DMATLB_ACCESS_DWNCL:
731#endif
732		is_page_fault = 0;
733		break;
734
735	default:
736		panic("Bad fault number %d in do_page_fault", fault_num);
737	}
738
739	if (EX1_PL(regs->ex1) != USER_PL) {
740		struct async_tlb *async;
741		switch (fault_num) {
742#if CHIP_HAS_TILE_DMA()
743		case INT_DMATLB_MISS:
744		case INT_DMATLB_ACCESS:
745		case INT_DMATLB_MISS_DWNCL:
746		case INT_DMATLB_ACCESS_DWNCL:
747			async = &current->thread.dma_async_tlb;
748			break;
749#endif
750#if CHIP_HAS_SN_PROC()
751		case INT_SNITLB_MISS:
752		case INT_SNITLB_MISS_DWNCL:
753			async = &current->thread.sn_async_tlb;
754			break;
755#endif
756		default:
757			async = NULL;
758		}
759		if (async) {
760
761			/*
762			 * No vmalloc check required, so we can allow
763			 * interrupts immediately at this point.
764			 */
765			local_irq_enable();
766
767			set_thread_flag(TIF_ASYNC_TLB);
768			if (async->fault_num != 0) {
769				panic("Second async fault %d;"
770				      " old fault was %d (%#lx/%ld)",
771				      fault_num, async->fault_num,
772				      address, write);
773			}
774			BUG_ON(fault_num == 0);
775			async->fault_num = fault_num;
776			async->is_fault = is_page_fault;
777			async->is_write = write;
778			async->address = address;
779			return;
780		}
781	}
782
783	handle_page_fault(regs, fault_num, is_page_fault, address, write);
784}
785
786
787#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
788/*
789 * Check an async_tlb structure to see if a deferred fault is waiting,
790 * and if so pass it to the page-fault code.
791 */
792static void handle_async_page_fault(struct pt_regs *regs,
793				    struct async_tlb *async)
794{
795	if (async->fault_num) {
796		/*
797		 * Clear async->fault_num before calling the page-fault
798		 * handler so that if we re-interrupt before returning
799		 * from the function we have somewhere to put the
800		 * information from the new interrupt.
801		 */
802		int fault_num = async->fault_num;
803		async->fault_num = 0;
804		handle_page_fault(regs, fault_num, async->is_fault,
805				  async->address, async->is_write);
806	}
807}
808#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
809
810
811/*
812 * This routine effectively re-issues asynchronous page faults
813 * when we are returning to user space.
814 */
815void do_async_page_fault(struct pt_regs *regs)
816{
817	/*
818	 * Clear thread flag early.  If we re-interrupt while processing
819	 * code here, we will reset it and recall this routine before
820	 * returning to user space.
821	 */
822	clear_thread_flag(TIF_ASYNC_TLB);
823
824#if CHIP_HAS_TILE_DMA()
825	handle_async_page_fault(regs, &current->thread.dma_async_tlb);
826#endif
827#if CHIP_HAS_SN_PROC()
828	handle_async_page_fault(regs, &current->thread.sn_async_tlb);
829#endif
830}
831
832void vmalloc_sync_all(void)
833{
834#ifdef __tilegx__
835	/* Currently all L1 kernel pmd's are static and shared. */
836	BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
837#else
838	/*
839	 * Note that races in the updates of insync and start aren't
840	 * problematic: insync can only get set bits added, and updates to
841	 * start are only improving performance (without affecting correctness
842	 * if undone).
843	 */
844	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
845	static unsigned long start = PAGE_OFFSET;
846	unsigned long address;
847
848	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
849	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
850		if (!test_bit(pgd_index(address), insync)) {
851			unsigned long flags;
852			struct list_head *pos;
853
854			spin_lock_irqsave(&pgd_lock, flags);
855			list_for_each(pos, &pgd_list)
856				if (!vmalloc_sync_one(list_to_pgd(pos),
857								address)) {
858					/* Must be at first entry in list. */
859					BUG_ON(pos != pgd_list.next);
860					break;
861				}
862			spin_unlock_irqrestore(&pgd_lock, flags);
863			if (pos != pgd_list.next)
864				set_bit(pgd_index(address), insync);
865		}
866		if (address == start && test_bit(pgd_index(address), insync))
867			start = address + PGDIR_SIZE;
868	}
869#endif
870}
871