• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/sparc/mm/
1/*
2 * srmmu.c:  SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/vmalloc.h>
14#include <linux/pagemap.h>
15#include <linux/init.h>
16#include <linux/spinlock.h>
17#include <linux/bootmem.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/kdebug.h>
21#include <linux/log2.h>
22#include <linux/gfp.h>
23
24#include <asm/bitext.h>
25#include <asm/page.h>
26#include <asm/pgalloc.h>
27#include <asm/pgtable.h>
28#include <asm/io.h>
29#include <asm/vaddrs.h>
30#include <asm/traps.h>
31#include <asm/smp.h>
32#include <asm/mbus.h>
33#include <asm/cache.h>
34#include <asm/oplib.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
37#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49#include <asm/leon.h>
50
51#include <asm/btfixup.h>
52
53enum mbus_module srmmu_modtype;
54static unsigned int hwbug_bitmask;
55int vac_cache_size;
56int vac_line_size;
57
58extern struct resource sparc_iomap;
59
60extern unsigned long last_valid_pfn;
61
62extern unsigned long page_kernel;
63
64static pgd_t *srmmu_swapper_pg_dir;
65
66#ifdef CONFIG_SMP
67#define FLUSH_BEGIN(mm)
68#define FLUSH_END
69#else
70#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
71#define FLUSH_END	}
72#endif
73
74BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
75#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
76
77int flush_page_for_dma_global = 1;
78
79#ifdef CONFIG_SMP
80BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
81#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
82#endif
83
84char *srmmu_name;
85
86ctxd_t *srmmu_ctx_table_phys;
87static ctxd_t *srmmu_context_table;
88
89int viking_mxcc_present;
90static DEFINE_SPINLOCK(srmmu_context_spinlock);
91
92static int is_hypersparc;
93
94/*
95 * In general all page table modifications should use the V8 atomic
96 * swap instruction.  This insures the mmu and the cpu are in sync
97 * with respect to ref/mod bits in the page tables.
98 */
99static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
100{
101	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
102	return value;
103}
104
105static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
106{
107	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
108}
109
110/* The very generic SRMMU page table operations. */
111static inline int srmmu_device_memory(unsigned long x)
112{
113	return ((x & 0xF0000000) != 0);
114}
115
116static int srmmu_cache_pagetables;
117
118/* these will be initialized in srmmu_nocache_calcsize() */
119static unsigned long srmmu_nocache_size;
120static unsigned long srmmu_nocache_end;
121
122/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
123#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
124
125/* The context table is a nocache user with the biggest alignment needs. */
126#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
127
128void *srmmu_nocache_pool;
129void *srmmu_nocache_bitmap;
130static struct bit_map srmmu_nocache_map;
131
132static unsigned long srmmu_pte_pfn(pte_t pte)
133{
134	if (srmmu_device_memory(pte_val(pte))) {
135		/* Just return something that will cause
136		 * pfn_valid() to return false.  This makes
137		 * copy_one_pte() to just directly copy to
138		 * PTE over.
139		 */
140		return ~0UL;
141	}
142	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
143}
144
145static struct page *srmmu_pmd_page(pmd_t pmd)
146{
147
148	if (srmmu_device_memory(pmd_val(pmd)))
149		BUG();
150	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
151}
152
153static inline unsigned long srmmu_pgd_page(pgd_t pgd)
154{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
155
156
157static inline int srmmu_pte_none(pte_t pte)
158{ return !(pte_val(pte) & 0xFFFFFFF); }
159
160static inline int srmmu_pte_present(pte_t pte)
161{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
162
163static inline void srmmu_pte_clear(pte_t *ptep)
164{ srmmu_set_pte(ptep, __pte(0)); }
165
166static inline int srmmu_pmd_none(pmd_t pmd)
167{ return !(pmd_val(pmd) & 0xFFFFFFF); }
168
169static inline int srmmu_pmd_bad(pmd_t pmd)
170{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
171
172static inline int srmmu_pmd_present(pmd_t pmd)
173{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
174
175static inline void srmmu_pmd_clear(pmd_t *pmdp) {
176	int i;
177	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
178		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
179}
180
181static inline int srmmu_pgd_none(pgd_t pgd)
182{ return !(pgd_val(pgd) & 0xFFFFFFF); }
183
184static inline int srmmu_pgd_bad(pgd_t pgd)
185{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
186
187static inline int srmmu_pgd_present(pgd_t pgd)
188{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
189
190static inline void srmmu_pgd_clear(pgd_t * pgdp)
191{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
192
193static inline pte_t srmmu_pte_wrprotect(pte_t pte)
194{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
195
196static inline pte_t srmmu_pte_mkclean(pte_t pte)
197{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
198
199static inline pte_t srmmu_pte_mkold(pte_t pte)
200{ return __pte(pte_val(pte) & ~SRMMU_REF);}
201
202static inline pte_t srmmu_pte_mkwrite(pte_t pte)
203{ return __pte(pte_val(pte) | SRMMU_WRITE);}
204
205static inline pte_t srmmu_pte_mkdirty(pte_t pte)
206{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
207
208static inline pte_t srmmu_pte_mkyoung(pte_t pte)
209{ return __pte(pte_val(pte) | SRMMU_REF);}
210
211/*
212 * Conversion functions: convert a page and protection to a page entry,
213 * and a page entry and page directory to the page they refer to.
214 */
215static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
216{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
217
218static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
219{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
220
221static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
222{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
223
224static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226
227static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229
230static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231{
232	unsigned long ptp;	/* Physical address, shifted right by 4 */
233	int i;
234
235	ptp = __nocache_pa((unsigned long) ptep) >> 4;
236	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
239	}
240}
241
242static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243{
244	unsigned long ptp;	/* Physical address, shifted right by 4 */
245	int i;
246
247	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
248	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
251	}
252}
253
254static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256
257/* to find an entry in a top-level page table... */
258static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
259{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260
261/* Find an entry in the second-level page table.. */
262static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263{
264	return (pmd_t *) srmmu_pgd_page(*dir) +
265	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
266}
267
268/* Find an entry in the third-level page table.. */
269static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
270{
271	void *pte;
272
273	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274	return (pte_t *) pte +
275	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
276}
277
278static unsigned long srmmu_swp_type(swp_entry_t entry)
279{
280	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
281}
282
283static unsigned long srmmu_swp_offset(swp_entry_t entry)
284{
285	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
286}
287
288static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289{
290	return (swp_entry_t) {
291		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
293}
294
295/*
296 * size: bytes to allocate in the nocache area.
297 * align: bytes, number to align at.
298 * Returns the virtual address of the allocated area.
299 */
300static unsigned long __srmmu_get_nocache(int size, int align)
301{
302	int offset;
303
304	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305		printk("Size 0x%x too small for nocache request\n", size);
306		size = SRMMU_NOCACHE_BITMAP_SHIFT;
307	}
308	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309		printk("Size 0x%x unaligned int nocache request\n", size);
310		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311	}
312	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313
314	offset = bit_map_string_get(&srmmu_nocache_map,
315		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317	if (offset == -1) {
318		printk("srmmu: out of nocache %d: %d/%d\n",
319		    size, (int) srmmu_nocache_size,
320		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321		return 0;
322	}
323
324	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
325}
326
327static unsigned long srmmu_get_nocache(int size, int align)
328{
329	unsigned long tmp;
330
331	tmp = __srmmu_get_nocache(size, align);
332
333	if (tmp)
334		memset((void *)tmp, 0, size);
335
336	return tmp;
337}
338
339static void srmmu_free_nocache(unsigned long vaddr, int size)
340{
341	int offset;
342
343	if (vaddr < SRMMU_NOCACHE_VADDR) {
344		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346		BUG();
347	}
348	if (vaddr+size > srmmu_nocache_end) {
349		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350		    vaddr, srmmu_nocache_end);
351		BUG();
352	}
353	if (!is_power_of_2(size)) {
354		printk("Size 0x%x is not a power of 2\n", size);
355		BUG();
356	}
357	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358		printk("Size 0x%x is too small\n", size);
359		BUG();
360	}
361	if (vaddr & (size-1)) {
362		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363		BUG();
364	}
365
366	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368
369	bit_map_clear(&srmmu_nocache_map, offset, size);
370}
371
372static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
373						 unsigned long end);
374
375extern unsigned long probe_memory(void);	/* in fault.c */
376
377/*
378 * Reserve nocache dynamically proportionally to the amount of
379 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380 */
381static void srmmu_nocache_calcsize(void)
382{
383	unsigned long sysmemavail = probe_memory() / 1024;
384	int srmmu_nocache_npages;
385
386	srmmu_nocache_npages =
387		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388
389	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
390	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
391		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
392
393	/* anything above 1280 blows up */
394	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
395		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
396
397	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
398	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
399}
400
401static void __init srmmu_nocache_init(void)
402{
403	unsigned int bitmap_bits;
404	pgd_t *pgd;
405	pmd_t *pmd;
406	pte_t *pte;
407	unsigned long paddr, vaddr;
408	unsigned long pteval;
409
410	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
411
412	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
413		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
414	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
415
416	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
417	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
418
419	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
420	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
421	init_mm.pgd = srmmu_swapper_pg_dir;
422
423	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
424
425	paddr = __pa((unsigned long)srmmu_nocache_pool);
426	vaddr = SRMMU_NOCACHE_VADDR;
427
428	while (vaddr < srmmu_nocache_end) {
429		pgd = pgd_offset_k(vaddr);
430		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
431		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
432
433		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
434
435		if (srmmu_cache_pagetables)
436			pteval |= SRMMU_CACHE;
437
438		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
439
440		vaddr += PAGE_SIZE;
441		paddr += PAGE_SIZE;
442	}
443
444	flush_cache_all();
445	flush_tlb_all();
446}
447
448static inline pgd_t *srmmu_get_pgd_fast(void)
449{
450	pgd_t *pgd = NULL;
451
452	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
453	if (pgd) {
454		pgd_t *init = pgd_offset_k(0);
455		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
456		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
457						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
458	}
459
460	return pgd;
461}
462
463static void srmmu_free_pgd_fast(pgd_t *pgd)
464{
465	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
466}
467
468static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
469{
470	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
471}
472
473static void srmmu_pmd_free(pmd_t * pmd)
474{
475	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
476}
477
478static pte_t *
479srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
480{
481	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
482}
483
484static pgtable_t
485srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
486{
487	unsigned long pte;
488	struct page *page;
489
490	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
491		return NULL;
492	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
493	pgtable_page_ctor(page);
494	return page;
495}
496
497static void srmmu_free_pte_fast(pte_t *pte)
498{
499	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
500}
501
502static void srmmu_pte_free(pgtable_t pte)
503{
504	unsigned long p;
505
506	pgtable_page_dtor(pte);
507	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
508	if (p == 0)
509		BUG();
510	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
511	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
512	srmmu_free_nocache(p, PTE_SIZE);
513}
514
515/*
516 */
517static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
518{
519	struct ctx_list *ctxp;
520
521	ctxp = ctx_free.next;
522	if(ctxp != &ctx_free) {
523		remove_from_ctx_list(ctxp);
524		add_to_used_ctxlist(ctxp);
525		mm->context = ctxp->ctx_number;
526		ctxp->ctx_mm = mm;
527		return;
528	}
529	ctxp = ctx_used.next;
530	if(ctxp->ctx_mm == old_mm)
531		ctxp = ctxp->next;
532	if(ctxp == &ctx_used)
533		panic("out of mmu contexts");
534	flush_cache_mm(ctxp->ctx_mm);
535	flush_tlb_mm(ctxp->ctx_mm);
536	remove_from_ctx_list(ctxp);
537	add_to_used_ctxlist(ctxp);
538	ctxp->ctx_mm->context = NO_CONTEXT;
539	ctxp->ctx_mm = mm;
540	mm->context = ctxp->ctx_number;
541}
542
543static inline void free_context(int context)
544{
545	struct ctx_list *ctx_old;
546
547	ctx_old = ctx_list_pool + context;
548	remove_from_ctx_list(ctx_old);
549	add_to_free_ctxlist(ctx_old);
550}
551
552
553static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
554    struct task_struct *tsk, int cpu)
555{
556	if(mm->context == NO_CONTEXT) {
557		spin_lock(&srmmu_context_spinlock);
558		alloc_context(old_mm, mm);
559		spin_unlock(&srmmu_context_spinlock);
560		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
561	}
562
563	if (sparc_cpu_model == sparc_leon)
564		leon_switch_mm();
565
566	if (is_hypersparc)
567		hyper_flush_whole_icache();
568
569	srmmu_set_context(mm->context);
570}
571
572/* Low level IO area allocation on the SRMMU. */
573static inline void srmmu_mapioaddr(unsigned long physaddr,
574    unsigned long virt_addr, int bus_type)
575{
576	pgd_t *pgdp;
577	pmd_t *pmdp;
578	pte_t *ptep;
579	unsigned long tmp;
580
581	physaddr &= PAGE_MASK;
582	pgdp = pgd_offset_k(virt_addr);
583	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
584	ptep = srmmu_pte_offset(pmdp, virt_addr);
585	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
586
587	/*
588	 * I need to test whether this is consistent over all
589	 * sun4m's.  The bus_type represents the upper 4 bits of
590	 * 36-bit physical address on the I/O space lines...
591	 */
592	tmp |= (bus_type << 28);
593	tmp |= SRMMU_PRIV;
594	__flush_page_to_ram(virt_addr);
595	srmmu_set_pte(ptep, __pte(tmp));
596}
597
598static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
599    unsigned long xva, unsigned int len)
600{
601	while (len != 0) {
602		len -= PAGE_SIZE;
603		srmmu_mapioaddr(xpa, xva, bus);
604		xva += PAGE_SIZE;
605		xpa += PAGE_SIZE;
606	}
607	flush_tlb_all();
608}
609
610static inline void srmmu_unmapioaddr(unsigned long virt_addr)
611{
612	pgd_t *pgdp;
613	pmd_t *pmdp;
614	pte_t *ptep;
615
616	pgdp = pgd_offset_k(virt_addr);
617	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
618	ptep = srmmu_pte_offset(pmdp, virt_addr);
619
620	/* No need to flush uncacheable page. */
621	srmmu_pte_clear(ptep);
622}
623
624static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
625{
626	while (len != 0) {
627		len -= PAGE_SIZE;
628		srmmu_unmapioaddr(virt_addr);
629		virt_addr += PAGE_SIZE;
630	}
631	flush_tlb_all();
632}
633
634/*
635 * On the SRMMU we do not have the problems with limited tlb entries
636 * for mapping kernel pages, so we just take things from the free page
637 * pool.  As a side effect we are putting a little too much pressure
638 * on the gfp() subsystem.  This setup also makes the logic of the
639 * iommu mapping code a lot easier as we can transparently handle
640 * mappings on the kernel stack without any special code as we did
641 * need on the sun4c.
642 */
643static struct thread_info *srmmu_alloc_thread_info(void)
644{
645	struct thread_info *ret;
646
647	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
648						     THREAD_INFO_ORDER);
649#ifdef CONFIG_DEBUG_STACK_USAGE
650	if (ret)
651		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
652#endif /* DEBUG_STACK_USAGE */
653
654	return ret;
655}
656
657static void srmmu_free_thread_info(struct thread_info *ti)
658{
659	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
660}
661
662/* tsunami.S */
663extern void tsunami_flush_cache_all(void);
664extern void tsunami_flush_cache_mm(struct mm_struct *mm);
665extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
666extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
667extern void tsunami_flush_page_to_ram(unsigned long page);
668extern void tsunami_flush_page_for_dma(unsigned long page);
669extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
670extern void tsunami_flush_tlb_all(void);
671extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
672extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
673extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
674extern void tsunami_setup_blockops(void);
675
676static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
677{
678}
679
680/* swift.S */
681extern void swift_flush_cache_all(void);
682extern void swift_flush_cache_mm(struct mm_struct *mm);
683extern void swift_flush_cache_range(struct vm_area_struct *vma,
684				    unsigned long start, unsigned long end);
685extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
686extern void swift_flush_page_to_ram(unsigned long page);
687extern void swift_flush_page_for_dma(unsigned long page);
688extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
689extern void swift_flush_tlb_all(void);
690extern void swift_flush_tlb_mm(struct mm_struct *mm);
691extern void swift_flush_tlb_range(struct vm_area_struct *vma,
692				  unsigned long start, unsigned long end);
693extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
694
695
696/*
697 * The following are all MBUS based SRMMU modules, and therefore could
698 * be found in a multiprocessor configuration.  On the whole, these
699 * chips seems to be much more touchy about DVMA and page tables
700 * with respect to cache coherency.
701 */
702
703/* Cypress flushes. */
704static void cypress_flush_cache_all(void)
705{
706	volatile unsigned long cypress_sucks;
707	unsigned long faddr, tagval;
708
709	flush_user_windows();
710	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
711		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
712				     "=r" (tagval) :
713				     "r" (faddr), "r" (0x40000),
714				     "i" (ASI_M_DATAC_TAG));
715
716		/* If modified and valid, kick it. */
717		if((tagval & 0x60) == 0x60)
718			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
719	}
720}
721
722static void cypress_flush_cache_mm(struct mm_struct *mm)
723{
724	register unsigned long a, b, c, d, e, f, g;
725	unsigned long flags, faddr;
726	int octx;
727
728	FLUSH_BEGIN(mm)
729	flush_user_windows();
730	local_irq_save(flags);
731	octx = srmmu_get_context();
732	srmmu_set_context(mm->context);
733	a = 0x20; b = 0x40; c = 0x60;
734	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
735
736	faddr = (0x10000 - 0x100);
737	goto inside;
738	do {
739		faddr -= 0x100;
740	inside:
741		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
742				     "sta %%g0, [%0 + %2] %1\n\t"
743				     "sta %%g0, [%0 + %3] %1\n\t"
744				     "sta %%g0, [%0 + %4] %1\n\t"
745				     "sta %%g0, [%0 + %5] %1\n\t"
746				     "sta %%g0, [%0 + %6] %1\n\t"
747				     "sta %%g0, [%0 + %7] %1\n\t"
748				     "sta %%g0, [%0 + %8] %1\n\t" : :
749				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
750				     "r" (a), "r" (b), "r" (c), "r" (d),
751				     "r" (e), "r" (f), "r" (g));
752	} while(faddr);
753	srmmu_set_context(octx);
754	local_irq_restore(flags);
755	FLUSH_END
756}
757
758static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
759{
760	struct mm_struct *mm = vma->vm_mm;
761	register unsigned long a, b, c, d, e, f, g;
762	unsigned long flags, faddr;
763	int octx;
764
765	FLUSH_BEGIN(mm)
766	flush_user_windows();
767	local_irq_save(flags);
768	octx = srmmu_get_context();
769	srmmu_set_context(mm->context);
770	a = 0x20; b = 0x40; c = 0x60;
771	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
772
773	start &= SRMMU_REAL_PMD_MASK;
774	while(start < end) {
775		faddr = (start + (0x10000 - 0x100));
776		goto inside;
777		do {
778			faddr -= 0x100;
779		inside:
780			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
781					     "sta %%g0, [%0 + %2] %1\n\t"
782					     "sta %%g0, [%0 + %3] %1\n\t"
783					     "sta %%g0, [%0 + %4] %1\n\t"
784					     "sta %%g0, [%0 + %5] %1\n\t"
785					     "sta %%g0, [%0 + %6] %1\n\t"
786					     "sta %%g0, [%0 + %7] %1\n\t"
787					     "sta %%g0, [%0 + %8] %1\n\t" : :
788					     "r" (faddr),
789					     "i" (ASI_M_FLUSH_SEG),
790					     "r" (a), "r" (b), "r" (c), "r" (d),
791					     "r" (e), "r" (f), "r" (g));
792		} while (faddr != start);
793		start += SRMMU_REAL_PMD_SIZE;
794	}
795	srmmu_set_context(octx);
796	local_irq_restore(flags);
797	FLUSH_END
798}
799
800static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
801{
802	register unsigned long a, b, c, d, e, f, g;
803	struct mm_struct *mm = vma->vm_mm;
804	unsigned long flags, line;
805	int octx;
806
807	FLUSH_BEGIN(mm)
808	flush_user_windows();
809	local_irq_save(flags);
810	octx = srmmu_get_context();
811	srmmu_set_context(mm->context);
812	a = 0x20; b = 0x40; c = 0x60;
813	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
814
815	page &= PAGE_MASK;
816	line = (page + PAGE_SIZE) - 0x100;
817	goto inside;
818	do {
819		line -= 0x100;
820	inside:
821			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
822					     "sta %%g0, [%0 + %2] %1\n\t"
823					     "sta %%g0, [%0 + %3] %1\n\t"
824					     "sta %%g0, [%0 + %4] %1\n\t"
825					     "sta %%g0, [%0 + %5] %1\n\t"
826					     "sta %%g0, [%0 + %6] %1\n\t"
827					     "sta %%g0, [%0 + %7] %1\n\t"
828					     "sta %%g0, [%0 + %8] %1\n\t" : :
829					     "r" (line),
830					     "i" (ASI_M_FLUSH_PAGE),
831					     "r" (a), "r" (b), "r" (c), "r" (d),
832					     "r" (e), "r" (f), "r" (g));
833	} while(line != page);
834	srmmu_set_context(octx);
835	local_irq_restore(flags);
836	FLUSH_END
837}
838
839/* Cypress is copy-back, at least that is how we configure it. */
840static void cypress_flush_page_to_ram(unsigned long page)
841{
842	register unsigned long a, b, c, d, e, f, g;
843	unsigned long line;
844
845	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
846	page &= PAGE_MASK;
847	line = (page + PAGE_SIZE) - 0x100;
848	goto inside;
849	do {
850		line -= 0x100;
851	inside:
852		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
853				     "sta %%g0, [%0 + %2] %1\n\t"
854				     "sta %%g0, [%0 + %3] %1\n\t"
855				     "sta %%g0, [%0 + %4] %1\n\t"
856				     "sta %%g0, [%0 + %5] %1\n\t"
857				     "sta %%g0, [%0 + %6] %1\n\t"
858				     "sta %%g0, [%0 + %7] %1\n\t"
859				     "sta %%g0, [%0 + %8] %1\n\t" : :
860				     "r" (line),
861				     "i" (ASI_M_FLUSH_PAGE),
862				     "r" (a), "r" (b), "r" (c), "r" (d),
863				     "r" (e), "r" (f), "r" (g));
864	} while(line != page);
865}
866
867/* Cypress is also IO cache coherent. */
868static void cypress_flush_page_for_dma(unsigned long page)
869{
870}
871
872/* Cypress has unified L2 VIPT, from which both instructions and data
873 * are stored.  It does not have an onboard icache of any sort, therefore
874 * no flush is necessary.
875 */
876static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
877{
878}
879
880static void cypress_flush_tlb_all(void)
881{
882	srmmu_flush_whole_tlb();
883}
884
885static void cypress_flush_tlb_mm(struct mm_struct *mm)
886{
887	FLUSH_BEGIN(mm)
888	__asm__ __volatile__(
889	"lda	[%0] %3, %%g5\n\t"
890	"sta	%2, [%0] %3\n\t"
891	"sta	%%g0, [%1] %4\n\t"
892	"sta	%%g5, [%0] %3\n"
893	: /* no outputs */
894	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
895	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
896	: "g5");
897	FLUSH_END
898}
899
900static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
901{
902	struct mm_struct *mm = vma->vm_mm;
903	unsigned long size;
904
905	FLUSH_BEGIN(mm)
906	start &= SRMMU_PGDIR_MASK;
907	size = SRMMU_PGDIR_ALIGN(end) - start;
908	__asm__ __volatile__(
909		"lda	[%0] %5, %%g5\n\t"
910		"sta	%1, [%0] %5\n"
911		"1:\n\t"
912		"subcc	%3, %4, %3\n\t"
913		"bne	1b\n\t"
914		" sta	%%g0, [%2 + %3] %6\n\t"
915		"sta	%%g5, [%0] %5\n"
916	: /* no outputs */
917	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
918	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
919	  "i" (ASI_M_FLUSH_PROBE)
920	: "g5", "cc");
921	FLUSH_END
922}
923
924static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
925{
926	struct mm_struct *mm = vma->vm_mm;
927
928	FLUSH_BEGIN(mm)
929	__asm__ __volatile__(
930	"lda	[%0] %3, %%g5\n\t"
931	"sta	%1, [%0] %3\n\t"
932	"sta	%%g0, [%2] %4\n\t"
933	"sta	%%g5, [%0] %3\n"
934	: /* no outputs */
935	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
936	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
937	: "g5");
938	FLUSH_END
939}
940
941/* viking.S */
942extern void viking_flush_cache_all(void);
943extern void viking_flush_cache_mm(struct mm_struct *mm);
944extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
945				     unsigned long end);
946extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
947extern void viking_flush_page_to_ram(unsigned long page);
948extern void viking_flush_page_for_dma(unsigned long page);
949extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
950extern void viking_flush_page(unsigned long page);
951extern void viking_mxcc_flush_page(unsigned long page);
952extern void viking_flush_tlb_all(void);
953extern void viking_flush_tlb_mm(struct mm_struct *mm);
954extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
955				   unsigned long end);
956extern void viking_flush_tlb_page(struct vm_area_struct *vma,
957				  unsigned long page);
958extern void sun4dsmp_flush_tlb_all(void);
959extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
960extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
961				   unsigned long end);
962extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
963				  unsigned long page);
964
965/* hypersparc.S */
966extern void hypersparc_flush_cache_all(void);
967extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
968extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
969extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
970extern void hypersparc_flush_page_to_ram(unsigned long page);
971extern void hypersparc_flush_page_for_dma(unsigned long page);
972extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
973extern void hypersparc_flush_tlb_all(void);
974extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
975extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
976extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
977extern void hypersparc_setup_blockops(void);
978
979/*
980 * NOTE: All of this startup code assumes the low 16mb (approx.) of
981 *       kernel mappings are done with one single contiguous chunk of
982 *       ram.  On small ram machines (classics mainly) we only get
983 *       around 8mb mapped for us.
984 */
985
986static void __init early_pgtable_allocfail(char *type)
987{
988	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
989	prom_halt();
990}
991
992static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
993							unsigned long end)
994{
995	pgd_t *pgdp;
996	pmd_t *pmdp;
997	pte_t *ptep;
998
999	while(start < end) {
1000		pgdp = pgd_offset_k(start);
1001		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1002			pmdp = (pmd_t *) __srmmu_get_nocache(
1003			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1004			if (pmdp == NULL)
1005				early_pgtable_allocfail("pmd");
1006			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1007			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1008		}
1009		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1010		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1011			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1012			if (ptep == NULL)
1013				early_pgtable_allocfail("pte");
1014			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1015			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1016		}
1017		if (start > (0xffffffffUL - PMD_SIZE))
1018			break;
1019		start = (start + PMD_SIZE) & PMD_MASK;
1020	}
1021}
1022
1023static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1024						  unsigned long end)
1025{
1026	pgd_t *pgdp;
1027	pmd_t *pmdp;
1028	pte_t *ptep;
1029
1030	while(start < end) {
1031		pgdp = pgd_offset_k(start);
1032		if(srmmu_pgd_none(*pgdp)) {
1033			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1034			if (pmdp == NULL)
1035				early_pgtable_allocfail("pmd");
1036			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1037			srmmu_pgd_set(pgdp, pmdp);
1038		}
1039		pmdp = srmmu_pmd_offset(pgdp, start);
1040		if(srmmu_pmd_none(*pmdp)) {
1041			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1042							     PTE_SIZE);
1043			if (ptep == NULL)
1044				early_pgtable_allocfail("pte");
1045			memset(ptep, 0, PTE_SIZE);
1046			srmmu_pmd_set(pmdp, ptep);
1047		}
1048		if (start > (0xffffffffUL - PMD_SIZE))
1049			break;
1050		start = (start + PMD_SIZE) & PMD_MASK;
1051	}
1052}
1053
1054/*
1055 * This is much cleaner than poking around physical address space
1056 * looking at the prom's page table directly which is what most
1057 * other OS's do.  Yuck... this is much better.
1058 */
1059static void __init srmmu_inherit_prom_mappings(unsigned long start,
1060					       unsigned long end)
1061{
1062	pgd_t *pgdp;
1063	pmd_t *pmdp;
1064	pte_t *ptep;
1065	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1066	unsigned long prompte;
1067
1068	while(start <= end) {
1069		if (start == 0)
1070			break; /* probably wrap around */
1071		if(start == 0xfef00000)
1072			start = KADB_DEBUGGER_BEGVM;
1073		if(!(prompte = srmmu_hwprobe(start))) {
1074			start += PAGE_SIZE;
1075			continue;
1076		}
1077
1078		/* A red snapper, see what it really is. */
1079		what = 0;
1080
1081		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1082			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1083				what = 1;
1084		}
1085
1086		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1087			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1088			   prompte)
1089				what = 2;
1090		}
1091
1092		pgdp = pgd_offset_k(start);
1093		if(what == 2) {
1094			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1095			start += SRMMU_PGDIR_SIZE;
1096			continue;
1097		}
1098		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1099			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1100			if (pmdp == NULL)
1101				early_pgtable_allocfail("pmd");
1102			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1103			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1104		}
1105		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1106		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1107			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1108							     PTE_SIZE);
1109			if (ptep == NULL)
1110				early_pgtable_allocfail("pte");
1111			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1112			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1113		}
1114		if(what == 1) {
1115			/*
1116			 * We bend the rule where all 16 PTPs in a pmd_t point
1117			 * inside the same PTE page, and we leak a perfectly
1118			 * good hardware PTE piece. Alternatives seem worse.
1119			 */
1120			unsigned int x;	/* Index of HW PMD in soft cluster */
1121			x = (start >> PMD_SHIFT) & 15;
1122			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1123			start += SRMMU_REAL_PMD_SIZE;
1124			continue;
1125		}
1126		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1127		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1128		start += PAGE_SIZE;
1129	}
1130}
1131
1132#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1133
1134/* Create a third-level SRMMU 16MB page mapping. */
1135static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1136{
1137	pgd_t *pgdp = pgd_offset_k(vaddr);
1138	unsigned long big_pte;
1139
1140	big_pte = KERNEL_PTE(phys_base >> 4);
1141	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1142}
1143
1144/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1145static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1146{
1147	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1148	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1149	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1150	/* Map "low" memory only */
1151	const unsigned long min_vaddr = PAGE_OFFSET;
1152	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1153
1154	if (vstart < min_vaddr || vstart >= max_vaddr)
1155		return vstart;
1156
1157	if (vend > max_vaddr || vend < min_vaddr)
1158		vend = max_vaddr;
1159
1160	while(vstart < vend) {
1161		do_large_mapping(vstart, pstart);
1162		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1163	}
1164	return vstart;
1165}
1166
1167static inline void memprobe_error(char *msg)
1168{
1169	prom_printf(msg);
1170	prom_printf("Halting now...\n");
1171	prom_halt();
1172}
1173
1174static inline void map_kernel(void)
1175{
1176	int i;
1177
1178	if (phys_base > 0) {
1179		do_large_mapping(PAGE_OFFSET, phys_base);
1180	}
1181
1182	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1183		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1184	}
1185
1186	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1187}
1188
1189/* Paging initialization on the Sparc Reference MMU. */
1190extern void sparc_context_init(int);
1191
1192void (*poke_srmmu)(void) __cpuinitdata = NULL;
1193
1194extern unsigned long bootmem_init(unsigned long *pages_avail);
1195
1196void __init srmmu_paging_init(void)
1197{
1198	int i, cpunode;
1199	char node_str[128];
1200	pgd_t *pgd;
1201	pmd_t *pmd;
1202	pte_t *pte;
1203	unsigned long pages_avail;
1204
1205	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1206
1207	if (sparc_cpu_model == sun4d)
1208		num_contexts = 65536; /* We know it is Viking */
1209	else {
1210		/* Find the number of contexts on the srmmu. */
1211		cpunode = prom_getchild(prom_root_node);
1212		num_contexts = 0;
1213		while(cpunode != 0) {
1214			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1215			if(!strcmp(node_str, "cpu")) {
1216				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1217				break;
1218			}
1219			cpunode = prom_getsibling(cpunode);
1220		}
1221	}
1222
1223	if(!num_contexts) {
1224		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1225		prom_halt();
1226	}
1227
1228	pages_avail = 0;
1229	last_valid_pfn = bootmem_init(&pages_avail);
1230
1231	srmmu_nocache_calcsize();
1232	srmmu_nocache_init();
1233        srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1234	map_kernel();
1235
1236	/* ctx table has to be physically aligned to its size */
1237	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1238	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1239
1240	for(i = 0; i < num_contexts; i++)
1241		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1242
1243	flush_cache_all();
1244	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1245#ifdef CONFIG_SMP
1246	/* Stop from hanging here... */
1247	local_flush_tlb_all();
1248#else
1249	flush_tlb_all();
1250#endif
1251	poke_srmmu();
1252
1253	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1254	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1255
1256	srmmu_allocate_ptable_skeleton(
1257		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1258	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1259
1260	pgd = pgd_offset_k(PKMAP_BASE);
1261	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1262	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1263	pkmap_page_table = pte;
1264
1265	flush_cache_all();
1266	flush_tlb_all();
1267
1268	sparc_context_init(num_contexts);
1269
1270	kmap_init();
1271
1272	{
1273		unsigned long zones_size[MAX_NR_ZONES];
1274		unsigned long zholes_size[MAX_NR_ZONES];
1275		unsigned long npages;
1276		int znum;
1277
1278		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1279			zones_size[znum] = zholes_size[znum] = 0;
1280
1281		npages = max_low_pfn - pfn_base;
1282
1283		zones_size[ZONE_DMA] = npages;
1284		zholes_size[ZONE_DMA] = npages - pages_avail;
1285
1286		npages = highend_pfn - max_low_pfn;
1287		zones_size[ZONE_HIGHMEM] = npages;
1288		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1289
1290		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1291	}
1292}
1293
1294static void srmmu_mmu_info(struct seq_file *m)
1295{
1296	seq_printf(m,
1297		   "MMU type\t: %s\n"
1298		   "contexts\t: %d\n"
1299		   "nocache total\t: %ld\n"
1300		   "nocache used\t: %d\n",
1301		   srmmu_name,
1302		   num_contexts,
1303		   srmmu_nocache_size,
1304		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1305}
1306
1307static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1308{
1309}
1310
1311static void srmmu_destroy_context(struct mm_struct *mm)
1312{
1313
1314	if(mm->context != NO_CONTEXT) {
1315		flush_cache_mm(mm);
1316		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1317		flush_tlb_mm(mm);
1318		spin_lock(&srmmu_context_spinlock);
1319		free_context(mm->context);
1320		spin_unlock(&srmmu_context_spinlock);
1321		mm->context = NO_CONTEXT;
1322	}
1323}
1324
1325/* Init various srmmu chip types. */
1326static void __init srmmu_is_bad(void)
1327{
1328	prom_printf("Could not determine SRMMU chip type.\n");
1329	prom_halt();
1330}
1331
1332static void __init init_vac_layout(void)
1333{
1334	int nd, cache_lines;
1335	char node_str[128];
1336#ifdef CONFIG_SMP
1337	int cpu = 0;
1338	unsigned long max_size = 0;
1339	unsigned long min_line_size = 0x10000000;
1340#endif
1341
1342	nd = prom_getchild(prom_root_node);
1343	while((nd = prom_getsibling(nd)) != 0) {
1344		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1345		if(!strcmp(node_str, "cpu")) {
1346			vac_line_size = prom_getint(nd, "cache-line-size");
1347			if (vac_line_size == -1) {
1348				prom_printf("can't determine cache-line-size, "
1349					    "halting.\n");
1350				prom_halt();
1351			}
1352			cache_lines = prom_getint(nd, "cache-nlines");
1353			if (cache_lines == -1) {
1354				prom_printf("can't determine cache-nlines, halting.\n");
1355				prom_halt();
1356			}
1357
1358			vac_cache_size = cache_lines * vac_line_size;
1359#ifdef CONFIG_SMP
1360			if(vac_cache_size > max_size)
1361				max_size = vac_cache_size;
1362			if(vac_line_size < min_line_size)
1363				min_line_size = vac_line_size;
1364			cpu++;
1365			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1366				break;
1367#else
1368			break;
1369#endif
1370		}
1371	}
1372	if(nd == 0) {
1373		prom_printf("No CPU nodes found, halting.\n");
1374		prom_halt();
1375	}
1376#ifdef CONFIG_SMP
1377	vac_cache_size = max_size;
1378	vac_line_size = min_line_size;
1379#endif
1380	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1381	       (int)vac_cache_size, (int)vac_line_size);
1382}
1383
1384static void __cpuinit poke_hypersparc(void)
1385{
1386	volatile unsigned long clear;
1387	unsigned long mreg = srmmu_get_mmureg();
1388
1389	hyper_flush_unconditional_combined();
1390
1391	mreg &= ~(HYPERSPARC_CWENABLE);
1392	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1393	mreg |= (HYPERSPARC_CMODE);
1394
1395	srmmu_set_mmureg(mreg);
1396
1397
1398	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1399	hyper_flush_whole_icache();
1400	clear = srmmu_get_faddr();
1401	clear = srmmu_get_fstatus();
1402}
1403
1404static void __init init_hypersparc(void)
1405{
1406	srmmu_name = "ROSS HyperSparc";
1407	srmmu_modtype = HyperSparc;
1408
1409	init_vac_layout();
1410
1411	is_hypersparc = 1;
1412
1413	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1414	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1415	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1416	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1417	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1418	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1419	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1420
1421	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1422	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1423	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1424	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1425
1426	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1427	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1428	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1429
1430
1431	poke_srmmu = poke_hypersparc;
1432
1433	hypersparc_setup_blockops();
1434}
1435
1436static void __cpuinit poke_cypress(void)
1437{
1438	unsigned long mreg = srmmu_get_mmureg();
1439	unsigned long faddr, tagval;
1440	volatile unsigned long cypress_sucks;
1441	volatile unsigned long clear;
1442
1443	clear = srmmu_get_faddr();
1444	clear = srmmu_get_fstatus();
1445
1446	if (!(mreg & CYPRESS_CENABLE)) {
1447		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1448			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1449					     "sta %%g0, [%0] %2\n\t" : :
1450					     "r" (faddr), "r" (0x40000),
1451					     "i" (ASI_M_DATAC_TAG));
1452		}
1453	} else {
1454		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1455			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1456					     "=r" (tagval) :
1457					     "r" (faddr), "r" (0x40000),
1458					     "i" (ASI_M_DATAC_TAG));
1459
1460			/* If modified and valid, kick it. */
1461			if((tagval & 0x60) == 0x60)
1462				cypress_sucks = *(unsigned long *)
1463							(0xf0020000 + faddr);
1464		}
1465	}
1466
1467	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1468	clear = srmmu_get_faddr();
1469	clear = srmmu_get_fstatus();
1470
1471	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1472	srmmu_set_mmureg(mreg);
1473}
1474
1475static void __init init_cypress_common(void)
1476{
1477	init_vac_layout();
1478
1479	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1480	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1481	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1482	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1483	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1484	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1485	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1486
1487	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1488	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1489	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1490	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1491
1492
1493	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1494	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1495	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1496
1497	poke_srmmu = poke_cypress;
1498}
1499
1500static void __init init_cypress_604(void)
1501{
1502	srmmu_name = "ROSS Cypress-604(UP)";
1503	srmmu_modtype = Cypress;
1504	init_cypress_common();
1505}
1506
1507static void __init init_cypress_605(unsigned long mrev)
1508{
1509	srmmu_name = "ROSS Cypress-605(MP)";
1510	if(mrev == 0xe) {
1511		srmmu_modtype = Cypress_vE;
1512		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1513	} else {
1514		if(mrev == 0xd) {
1515			srmmu_modtype = Cypress_vD;
1516			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1517		} else {
1518			srmmu_modtype = Cypress;
1519		}
1520	}
1521	init_cypress_common();
1522}
1523
1524static void __cpuinit poke_swift(void)
1525{
1526	unsigned long mreg;
1527
1528	/* Clear any crap from the cache or else... */
1529	swift_flush_cache_all();
1530
1531	/* Enable I & D caches */
1532	mreg = srmmu_get_mmureg();
1533	mreg |= (SWIFT_IE | SWIFT_DE);
1534	/*
1535	 * The Swift branch folding logic is completely broken.  At
1536	 * trap time, if things are just right, if can mistakenly
1537	 * think that a trap is coming from kernel mode when in fact
1538	 * it is coming from user mode (it mis-executes the branch in
1539	 * the trap code).  So you see things like crashme completely
1540	 * hosing your machine which is completely unacceptable.  Turn
1541	 * this shit off... nice job Fujitsu.
1542	 */
1543	mreg &= ~(SWIFT_BF);
1544	srmmu_set_mmureg(mreg);
1545}
1546
1547#define SWIFT_MASKID_ADDR  0x10003018
1548static void __init init_swift(void)
1549{
1550	unsigned long swift_rev;
1551
1552	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1553			     "srl %0, 0x18, %0\n\t" :
1554			     "=r" (swift_rev) :
1555			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1556	srmmu_name = "Fujitsu Swift";
1557	switch(swift_rev) {
1558	case 0x11:
1559	case 0x20:
1560	case 0x23:
1561	case 0x30:
1562		srmmu_modtype = Swift_lots_o_bugs;
1563		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1564		break;
1565	case 0x25:
1566	case 0x31:
1567		srmmu_modtype = Swift_bad_c;
1568		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1569		/*
1570		 * You see Sun allude to this hardware bug but never
1571		 * admit things directly, they'll say things like,
1572		 * "the Swift chip cache problems" or similar.
1573		 */
1574		break;
1575	default:
1576		srmmu_modtype = Swift_ok;
1577		break;
1578	};
1579
1580	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1581	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1582	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1583	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1584
1585
1586	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1587	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1588	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1589	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1590
1591	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1592	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1593	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1594
1595	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1596
1597	flush_page_for_dma_global = 0;
1598
1599	poke_srmmu = poke_swift;
1600}
1601
1602static void turbosparc_flush_cache_all(void)
1603{
1604	flush_user_windows();
1605	turbosparc_idflash_clear();
1606}
1607
1608static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1609{
1610	FLUSH_BEGIN(mm)
1611	flush_user_windows();
1612	turbosparc_idflash_clear();
1613	FLUSH_END
1614}
1615
1616static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1617{
1618	FLUSH_BEGIN(vma->vm_mm)
1619	flush_user_windows();
1620	turbosparc_idflash_clear();
1621	FLUSH_END
1622}
1623
1624static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1625{
1626	FLUSH_BEGIN(vma->vm_mm)
1627	flush_user_windows();
1628	if (vma->vm_flags & VM_EXEC)
1629		turbosparc_flush_icache();
1630	turbosparc_flush_dcache();
1631	FLUSH_END
1632}
1633
1634/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1635static void turbosparc_flush_page_to_ram(unsigned long page)
1636{
1637#ifdef TURBOSPARC_WRITEBACK
1638	volatile unsigned long clear;
1639
1640	if (srmmu_hwprobe(page))
1641		turbosparc_flush_page_cache(page);
1642	clear = srmmu_get_fstatus();
1643#endif
1644}
1645
1646static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1647{
1648}
1649
1650static void turbosparc_flush_page_for_dma(unsigned long page)
1651{
1652	turbosparc_flush_dcache();
1653}
1654
1655static void turbosparc_flush_tlb_all(void)
1656{
1657	srmmu_flush_whole_tlb();
1658}
1659
1660static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1661{
1662	FLUSH_BEGIN(mm)
1663	srmmu_flush_whole_tlb();
1664	FLUSH_END
1665}
1666
1667static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1668{
1669	FLUSH_BEGIN(vma->vm_mm)
1670	srmmu_flush_whole_tlb();
1671	FLUSH_END
1672}
1673
1674static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1675{
1676	FLUSH_BEGIN(vma->vm_mm)
1677	srmmu_flush_whole_tlb();
1678	FLUSH_END
1679}
1680
1681
1682static void __cpuinit poke_turbosparc(void)
1683{
1684	unsigned long mreg = srmmu_get_mmureg();
1685	unsigned long ccreg;
1686
1687	/* Clear any crap from the cache or else... */
1688	turbosparc_flush_cache_all();
1689	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1690	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1691	srmmu_set_mmureg(mreg);
1692
1693	ccreg = turbosparc_get_ccreg();
1694
1695#ifdef TURBOSPARC_WRITEBACK
1696	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1697	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1698			/* Write-back D-cache, emulate VLSI
1699			 * abortion number three, not number one */
1700#else
1701	/* For now let's play safe, optimize later */
1702	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1703			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1704	ccreg &= ~(TURBOSPARC_uS2);
1705			/* Emulate VLSI abortion number three, not number one */
1706#endif
1707
1708	switch (ccreg & 7) {
1709	case 0: /* No SE cache */
1710	case 7: /* Test mode */
1711		break;
1712	default:
1713		ccreg |= (TURBOSPARC_SCENABLE);
1714	}
1715	turbosparc_set_ccreg (ccreg);
1716
1717	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1718	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1719	srmmu_set_mmureg(mreg);
1720}
1721
1722static void __init init_turbosparc(void)
1723{
1724	srmmu_name = "Fujitsu TurboSparc";
1725	srmmu_modtype = TurboSparc;
1726
1727	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1728	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1729	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1730	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1731
1732	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1733	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1734	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1735	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1736
1737	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1738
1739	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1740	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1741
1742	poke_srmmu = poke_turbosparc;
1743}
1744
1745static void __cpuinit poke_tsunami(void)
1746{
1747	unsigned long mreg = srmmu_get_mmureg();
1748
1749	tsunami_flush_icache();
1750	tsunami_flush_dcache();
1751	mreg &= ~TSUNAMI_ITD;
1752	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1753	srmmu_set_mmureg(mreg);
1754}
1755
1756static void __init init_tsunami(void)
1757{
1758	/*
1759	 * Tsunami's pretty sane, Sun and TI actually got it
1760	 * somewhat right this time.  Fujitsu should have
1761	 * taken some lessons from them.
1762	 */
1763
1764	srmmu_name = "TI Tsunami";
1765	srmmu_modtype = Tsunami;
1766
1767	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1768	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1769	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1770	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1771
1772
1773	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1774	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1775	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1776	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1777
1778	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1779	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1780	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1781
1782	poke_srmmu = poke_tsunami;
1783
1784	tsunami_setup_blockops();
1785}
1786
1787static void __cpuinit poke_viking(void)
1788{
1789	unsigned long mreg = srmmu_get_mmureg();
1790	static int smp_catch;
1791
1792	if(viking_mxcc_present) {
1793		unsigned long mxcc_control = mxcc_get_creg();
1794
1795		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1796		mxcc_control &= ~(MXCC_CTL_RRC);
1797		mxcc_set_creg(mxcc_control);
1798
1799
1800		/* We do cache ptables on MXCC. */
1801		mreg |= VIKING_TCENABLE;
1802	} else {
1803		unsigned long bpreg;
1804
1805		mreg &= ~(VIKING_TCENABLE);
1806		if(smp_catch++) {
1807			/* Must disable mixed-cmd mode here for other cpu's. */
1808			bpreg = viking_get_bpreg();
1809			bpreg &= ~(VIKING_ACTION_MIX);
1810			viking_set_bpreg(bpreg);
1811
1812			/* Just in case PROM does something funny. */
1813			msi_set_sync();
1814		}
1815	}
1816
1817	mreg |= VIKING_SPENABLE;
1818	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1819	mreg |= VIKING_SBENABLE;
1820	mreg &= ~(VIKING_ACENABLE);
1821	srmmu_set_mmureg(mreg);
1822}
1823
1824static void __init init_viking(void)
1825{
1826	unsigned long mreg = srmmu_get_mmureg();
1827
1828	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1829	if(mreg & VIKING_MMODE) {
1830		srmmu_name = "TI Viking";
1831		viking_mxcc_present = 0;
1832		msi_set_sync();
1833
1834		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1835		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1836		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1837
1838		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1839
1840		flush_page_for_dma_global = 0;
1841	} else {
1842		srmmu_name = "TI Viking/MXCC";
1843		viking_mxcc_present = 1;
1844
1845		srmmu_cache_pagetables = 1;
1846
1847		/* MXCC vikings lack the DMA snooping bug. */
1848		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1849	}
1850
1851	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1852	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1853	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1854	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1855
1856#ifdef CONFIG_SMP
1857	if (sparc_cpu_model == sun4d) {
1858		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1859		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1860		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1861		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1862	} else
1863#endif
1864	{
1865		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1866		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1867		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1868		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1869	}
1870
1871	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1872	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1873
1874	poke_srmmu = poke_viking;
1875}
1876
1877#ifdef CONFIG_SPARC_LEON
1878
1879void __init poke_leonsparc(void)
1880{
1881}
1882
1883void __init init_leon(void)
1884{
1885
1886	srmmu_name = "LEON";
1887
1888	BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1889			BTFIXUPCALL_NORM);
1890	BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
1891			BTFIXUPCALL_NORM);
1892	BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
1893			BTFIXUPCALL_NORM);
1894	BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
1895			BTFIXUPCALL_NORM);
1896	BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
1897			BTFIXUPCALL_NORM);
1898
1899	BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1900	BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1901	BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1902	BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
1903
1904	BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
1905			BTFIXUPCALL_NOP);
1906	BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
1907
1908	poke_srmmu = poke_leonsparc;
1909
1910	srmmu_cache_pagetables = 0;
1911
1912	leon_flush_during_switch = leon_flush_needed();
1913}
1914#endif
1915
1916/* Probe for the srmmu chip version. */
1917static void __init get_srmmu_type(void)
1918{
1919	unsigned long mreg, psr;
1920	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1921
1922	srmmu_modtype = SRMMU_INVAL_MOD;
1923	hwbug_bitmask = 0;
1924
1925	mreg = srmmu_get_mmureg(); psr = get_psr();
1926	mod_typ = (mreg & 0xf0000000) >> 28;
1927	mod_rev = (mreg & 0x0f000000) >> 24;
1928	psr_typ = (psr >> 28) & 0xf;
1929	psr_vers = (psr >> 24) & 0xf;
1930
1931	/* First, check for sparc-leon. */
1932	if (sparc_cpu_model == sparc_leon) {
1933		init_leon();
1934		return;
1935	}
1936
1937	/* Second, check for HyperSparc or Cypress. */
1938	if(mod_typ == 1) {
1939		switch(mod_rev) {
1940		case 7:
1941			/* UP or MP Hypersparc */
1942			init_hypersparc();
1943			break;
1944		case 0:
1945		case 2:
1946			/* Uniprocessor Cypress */
1947			init_cypress_604();
1948			break;
1949		case 10:
1950		case 11:
1951		case 12:
1952			/* _REALLY OLD_ Cypress MP chips... */
1953		case 13:
1954		case 14:
1955		case 15:
1956			/* MP Cypress mmu/cache-controller */
1957			init_cypress_605(mod_rev);
1958			break;
1959		default:
1960			/* Some other Cypress revision, assume a 605. */
1961			init_cypress_605(mod_rev);
1962			break;
1963		};
1964		return;
1965	}
1966
1967	/*
1968	 * Now Fujitsu TurboSparc. It might happen that it is
1969	 * in Swift emulation mode, so we will check later...
1970	 */
1971	if (psr_typ == 0 && psr_vers == 5) {
1972		init_turbosparc();
1973		return;
1974	}
1975
1976	/* Next check for Fujitsu Swift. */
1977	if(psr_typ == 0 && psr_vers == 4) {
1978		int cpunode;
1979		char node_str[128];
1980
1981		/* Look if it is not a TurboSparc emulating Swift... */
1982		cpunode = prom_getchild(prom_root_node);
1983		while((cpunode = prom_getsibling(cpunode)) != 0) {
1984			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1985			if(!strcmp(node_str, "cpu")) {
1986				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1987				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1988					init_turbosparc();
1989					return;
1990				}
1991				break;
1992			}
1993		}
1994
1995		init_swift();
1996		return;
1997	}
1998
1999	/* Now the Viking family of srmmu. */
2000	if(psr_typ == 4 &&
2001	   ((psr_vers == 0) ||
2002	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2003		init_viking();
2004		return;
2005	}
2006
2007	/* Finally the Tsunami. */
2008	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2009		init_tsunami();
2010		return;
2011	}
2012
2013	/* Oh well */
2014	srmmu_is_bad();
2015}
2016
2017/* don't laugh, static pagetables */
2018static void srmmu_check_pgt_cache(int low, int high)
2019{
2020}
2021
2022extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2023	tsetup_mmu_patchme, rtrap_mmu_patchme;
2024
2025extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2026	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2027
2028extern unsigned long srmmu_fault;
2029
2030#define PATCH_BRANCH(insn, dest) do { \
2031		iaddr = &(insn); \
2032		daddr = &(dest); \
2033		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2034	} while(0)
2035
2036static void __init patch_window_trap_handlers(void)
2037{
2038	unsigned long *iaddr, *daddr;
2039
2040	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2041	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2042	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2043	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2044	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2045	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2046	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2047}
2048
2049#ifdef CONFIG_SMP
2050/* Local cross-calls. */
2051static void smp_flush_page_for_dma(unsigned long page)
2052{
2053	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2054	local_flush_page_for_dma(page);
2055}
2056
2057#endif
2058
2059static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2060{
2061	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2062}
2063
2064static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2065{
2066	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2067}
2068
2069static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2070{
2071	prot &= ~__pgprot(SRMMU_CACHE);
2072
2073	return prot;
2074}
2075
2076/* Load up routines and constants for sun4m and sun4d mmu */
2077void __init ld_mmu_srmmu(void)
2078{
2079	extern void ld_mmu_iommu(void);
2080	extern void ld_mmu_iounit(void);
2081	extern void ___xchg32_sun4md(void);
2082
2083	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2084	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2085	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2086
2087	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2088	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2089
2090	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2091	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2092	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2093	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2094	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2095	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2096
2097	/* Functions */
2098	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2099#ifndef CONFIG_SMP
2100	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2101#endif
2102	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2103
2104	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2105	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2106
2107	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2108	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2109	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2110
2111	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2112	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2113
2114	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2115	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2116	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2117
2118	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2119	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2120	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2121	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2122
2123	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2124	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2125	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2126	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2127	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2128	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2129
2130	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2131	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2132	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2133
2134	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2135	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2136	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2137	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2138	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2139	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2140	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2141	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2142
2143	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2144	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2145	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2146	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2147	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2148	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2149	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2150	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2151	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2152	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2153	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2154	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2155
2156	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2157	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2158
2159	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2160	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2161	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2162
2163	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2164
2165	BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2166	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2167
2168	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2169	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2170
2171	get_srmmu_type();
2172	patch_window_trap_handlers();
2173
2174#ifdef CONFIG_SMP
2175	/* El switcheroo... */
2176
2177	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2178	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2179	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2180	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2181	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2182	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2183	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2184	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2185	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2186	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2187	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2188
2189	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2190	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2191	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2192	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2193	if (sparc_cpu_model != sun4d &&
2194	    sparc_cpu_model != sparc_leon) {
2195		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2196		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2197		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2198		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2199	}
2200	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2201	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2202	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2203
2204	if (poke_srmmu == poke_viking) {
2205		/* Avoid unnecessary cross calls. */
2206		BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2207		BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2208		BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2209		BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2210		BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2211		BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2212		BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
2213	}
2214#endif
2215
2216	if (sparc_cpu_model == sun4d)
2217		ld_mmu_iounit();
2218	else
2219		ld_mmu_iommu();
2220#ifdef CONFIG_SMP
2221	if (sparc_cpu_model == sun4d)
2222		sun4d_init_smp();
2223	else if (sparc_cpu_model == sparc_leon)
2224		leon_init_smp();
2225	else
2226		sun4m_init_smp();
2227#endif
2228}
2229