• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/sparc/include/asm/
1#ifndef _SPARC64_HYPERVISOR_H
2#define _SPARC64_HYPERVISOR_H
3
4/* Sun4v hypervisor interfaces and defines.
5 *
6 * Hypervisor calls are made via traps to software traps number 0x80
7 * and above.  Registers %o0 to %o5 serve as argument, status, and
8 * return value registers.
9 *
10 * There are two kinds of these traps.  First there are the normal
11 * "fast traps" which use software trap 0x80 and encode the function
12 * to invoke by number in register %o5.  Argument and return value
13 * handling is as follows:
14 *
15 * -----------------------------------------------
16 * |  %o5  | function number |     undefined     |
17 * |  %o0  |   argument 0    |   return status   |
18 * |  %o1  |   argument 1    |   return value 1  |
19 * |  %o2  |   argument 2    |   return value 2  |
20 * |  %o3  |   argument 3    |   return value 3  |
21 * |  %o4  |   argument 4    |   return value 4  |
22 * -----------------------------------------------
23 *
24 * The second type are "hyper-fast traps" which encode the function
25 * number in the software trap number itself.  So these use trap
26 * numbers > 0x80.  The register usage for hyper-fast traps is as
27 * follows:
28 *
29 * -----------------------------------------------
30 * |  %o0  |   argument 0    |   return status   |
31 * |  %o1  |   argument 1    |   return value 1  |
32 * |  %o2  |   argument 2    |   return value 2  |
33 * |  %o3  |   argument 3    |   return value 3  |
34 * |  %o4  |   argument 4    |   return value 4  |
35 * -----------------------------------------------
36 *
37 * Registers providing explicit arguments to the hypervisor calls
38 * are volatile across the call.  Upon return their values are
39 * undefined unless explicitly specified as containing a particular
40 * return value by the specific call.  The return status is always
41 * returned in register %o0, zero indicates a successful execution of
42 * the hypervisor call and other values indicate an error status as
43 * defined below.  So, for example, if a hyper-fast trap takes
44 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
45 * the call and %o3, %o4, and %o5 would be preserved.
46 *
47 * If the hypervisor trap is invalid, or the fast trap function number
48 * is invalid, HV_EBADTRAP will be returned in %o0.  Also, all 64-bits
49 * of the argument and return values are significant.
50 */
51
52/* Trap numbers.  */
53#define HV_FAST_TRAP		0x80
54#define HV_MMU_MAP_ADDR_TRAP	0x83
55#define HV_MMU_UNMAP_ADDR_TRAP	0x84
56#define HV_TTRACE_ADDENTRY_TRAP	0x85
57#define HV_CORE_TRAP		0xff
58
59/* Error codes.  */
60#define HV_EOK				0  /* Successful return            */
61#define HV_ENOCPU			1  /* Invalid CPU id               */
62#define HV_ENORADDR			2  /* Invalid real address         */
63#define HV_ENOINTR			3  /* Invalid interrupt id         */
64#define HV_EBADPGSZ			4  /* Invalid pagesize encoding    */
65#define HV_EBADTSB			5  /* Invalid TSB description      */
66#define HV_EINVAL			6  /* Invalid argument             */
67#define HV_EBADTRAP			7  /* Invalid function number      */
68#define HV_EBADALIGN			8  /* Invalid address alignment    */
69#define HV_EWOULDBLOCK			9  /* Cannot complete w/o blocking */
70#define HV_ENOACCESS			10 /* No access to resource        */
71#define HV_EIO				11 /* I/O error                    */
72#define HV_ECPUERROR			12 /* CPU in error state           */
73#define HV_ENOTSUPPORTED		13 /* Function not supported       */
74#define HV_ENOMAP			14 /* No mapping found             */
75#define HV_ETOOMANY			15 /* Too many items specified     */
76#define HV_ECHANNEL			16 /* Invalid LDC channel          */
77#define HV_EBUSY			17 /* Resource busy                */
78
79/* mach_exit()
80 * TRAP:	HV_FAST_TRAP
81 * FUNCTION:	HV_FAST_MACH_EXIT
82 * ARG0:	exit code
83 * ERRORS:	This service does not return.
84 *
85 * Stop all CPUs in the virtual domain and place them into the stopped
86 * state.  The 64-bit exit code may be passed to a service entity as
87 * the domain's exit status.  On systems without a service entity, the
88 * domain will undergo a reset, and the boot firmware will be
89 * reloaded.
90 *
91 * This function will never return to the guest that invokes it.
92 *
93 * Note: By convention an exit code of zero denotes a successful exit by
94 *       the guest code.  A non-zero exit code denotes a guest specific
95 *       error indication.
96 *
97 */
98#define HV_FAST_MACH_EXIT		0x00
99
100#ifndef __ASSEMBLY__
101extern void sun4v_mach_exit(unsigned long exit_code);
102#endif
103
104/* Domain services.  */
105
106/* mach_desc()
107 * TRAP:	HV_FAST_TRAP
108 * FUNCTION:	HV_FAST_MACH_DESC
109 * ARG0:	buffer
110 * ARG1:	length
111 * RET0:	status
112 * RET1:	length
113 * ERRORS:	HV_EBADALIGN	Buffer is badly aligned
114 *		HV_ENORADDR	Buffer is to an illegal real address.
115 *		HV_EINVAL	Buffer length is too small for complete
116 *				machine description.
117 *
118 * Copy the most current machine description into the buffer indicated
119 * by the real address in ARG0.  The buffer provided must be 16 byte
120 * aligned.  Upon success or HV_EINVAL, this service returns the
121 * actual size of the machine description in the RET1 return value.
122 *
123 * Note: A method of determining the appropriate buffer size for the
124 *       machine description is to first call this service with a buffer
125 *       length of 0 bytes.
126 */
127#define HV_FAST_MACH_DESC		0x01
128
129#ifndef __ASSEMBLY__
130extern unsigned long sun4v_mach_desc(unsigned long buffer_pa,
131				     unsigned long buf_len,
132				     unsigned long *real_buf_len);
133#endif
134
135/* mach_sir()
136 * TRAP:	HV_FAST_TRAP
137 * FUNCTION:	HV_FAST_MACH_SIR
138 * ERRORS:	This service does not return.
139 *
140 * Perform a software initiated reset of the virtual machine domain.
141 * All CPUs are captured as soon as possible, all hardware devices are
142 * returned to the entry default state, and the domain is restarted at
143 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
144 * of the CPUs.  The single CPU restarted is selected as determined by
145 * platform specific policy.  Memory is preserved across this
146 * operation.
147 */
148#define HV_FAST_MACH_SIR		0x02
149
150#ifndef __ASSEMBLY__
151extern void sun4v_mach_sir(void);
152#endif
153
154/* mach_set_watchdog()
155 * TRAP:	HV_FAST_TRAP
156 * FUNCTION:	HV_FAST_MACH_SET_WATCHDOG
157 * ARG0:	timeout in milliseconds
158 * RET0:	status
159 * RET1:	time remaining in milliseconds
160 *
161 * A guest uses this API to set a watchdog timer.  Once the gues has set
162 * the timer, it must call the timer service again either to disable or
163 * postpone the expiration.  If the timer expires before being reset or
164 * disabled, then the hypervisor take a platform specific action leading
165 * to guest termination within a bounded time period.  The platform action
166 * may include recovery actions such as reporting the expiration to a
167 * Service Processor, and/or automatically restarting the gues.
168 *
169 * The 'timeout' parameter is specified in milliseconds, however the
170 * implementated granularity is given by the 'watchdog-resolution'
171 * property in the 'platform' node of the guest's machine description.
172 * The largest allowed timeout value is specified by the
173 * 'watchdog-max-timeout' property of the 'platform' node.
174 *
175 * If the 'timeout' argument is not zero, the watchdog timer is set to
176 * expire after a minimum of 'timeout' milliseconds.
177 *
178 * If the 'timeout' argument is zero, the watchdog timer is disabled.
179 *
180 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
181 * property, the hypervisor leaves the watchdog timer state unchanged,
182 * and returns a status of EINVAL.
183 *
184 * The 'time remaining' return value is valid regardless of whether the
185 * return status is EOK or EINVAL.  A non-zero return value indicates the
186 * number of milliseconds that were remaining until the timer was to expire.
187 * If less than one millisecond remains, the return value is '1'.  If the
188 * watchdog timer was disabled at the time of the call, the return value is
189 * zero.
190 *
191 * If the hypervisor cannot support the exact timeout value requested, but
192 * can support a larger timeout value, the hypervisor may round the actual
193 * timeout to a value larger than the requested timeout, consequently the
194 * 'time remaining' return value may be larger than the previously requested
195 * timeout value.
196 *
197 * Any guest OS debugger should be aware that the watchdog service may be in
198 * use.  Consequently, it is recommended that the watchdog service is
199 * disabled upon debugger entry (e.g. reaching a breakpoint), and then
200 * re-enabled upon returning to normal execution.  The API has been designed
201 * with this in mind, and the 'time remaining' result of the disable call may
202 * be used directly as the timeout argument of the re-enable call.
203 */
204#define HV_FAST_MACH_SET_WATCHDOG	0x05
205
206#ifndef __ASSEMBLY__
207extern unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
208					     unsigned long *orig_timeout);
209#endif
210
211/* CPU services.
212 *
213 * CPUs represent devices that can execute software threads.  A single
214 * chip that contains multiple cores or strands is represented as
215 * multiple CPUs with unique CPU identifiers.  CPUs are exported to
216 * OBP via the machine description (and to the OS via the OBP device
217 * tree).  CPUs are always in one of three states: stopped, running,
218 * or error.
219 *
220 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
221 * CPU within a logical domain.  Operations that are to be performed
222 * on multiple CPUs specify them via a CPU list.  A CPU list is an
223 * array in real memory, of which each 16-bit word is a CPU ID.  CPU
224 * lists are passed through the API as two arguments.  The first is
225 * the number of entries (16-bit words) in the CPU list, and the
226 * second is the (real address) pointer to the CPU ID list.
227 */
228
229/* cpu_start()
230 * TRAP:	HV_FAST_TRAP
231 * FUNCTION:	HV_FAST_CPU_START
232 * ARG0:	CPU ID
233 * ARG1:	PC
234 * ARG2:	RTBA
235 * ARG3:	target ARG0
236 * RET0:	status
237 * ERRORS:	ENOCPU		Invalid CPU ID
238 *		EINVAL		Target CPU ID is not in the stopped state
239 *		ENORADDR	Invalid PC or RTBA real address
240 *		EBADALIGN	Unaligned PC or unaligned RTBA
241 *		EWOULDBLOCK	Starting resources are not available
242 *
243 * Start CPU with given CPU ID with PC in %pc and with a real trap
244 * base address value of RTBA.  The indicated CPU must be in the
245 * stopped state.  The supplied RTBA must be aligned on a 256 byte
246 * boundary.  On successful completion, the specified CPU will be in
247 * the running state and will be supplied with "target ARG0" in %o0
248 * and RTBA in %tba.
249 */
250#define HV_FAST_CPU_START		0x10
251
252#ifndef __ASSEMBLY__
253extern unsigned long sun4v_cpu_start(unsigned long cpuid,
254				     unsigned long pc,
255				     unsigned long rtba,
256				     unsigned long arg0);
257#endif
258
259/* cpu_stop()
260 * TRAP:	HV_FAST_TRAP
261 * FUNCTION:	HV_FAST_CPU_STOP
262 * ARG0:	CPU ID
263 * RET0:	status
264 * ERRORS:	ENOCPU		Invalid CPU ID
265 *		EINVAL		Target CPU ID is the current cpu
266 *		EINVAL		Target CPU ID is not in the running state
267 *		EWOULDBLOCK	Stopping resources are not available
268 *		ENOTSUPPORTED	Not supported on this platform
269 *
270 * The specified CPU is stopped.  The indicated CPU must be in the
271 * running state.  On completion, it will be in the stopped state.  It
272 * is not legal to stop the current CPU.
273 *
274 * Note: As this service cannot be used to stop the current cpu, this service
275 *       may not be used to stop the last running CPU in a domain.  To stop
276 *       and exit a running domain, a guest must use the mach_exit() service.
277 */
278#define HV_FAST_CPU_STOP		0x11
279
280#ifndef __ASSEMBLY__
281extern unsigned long sun4v_cpu_stop(unsigned long cpuid);
282#endif
283
284/* cpu_yield()
285 * TRAP:	HV_FAST_TRAP
286 * FUNCTION:	HV_FAST_CPU_YIELD
287 * RET0:	status
288 * ERRORS:	No possible error.
289 *
290 * Suspend execution on the current CPU.  Execution will resume when
291 * an interrupt (device, %stick_compare, or cross-call) is targeted to
292 * the CPU.  On some CPUs, this API may be used by the hypervisor to
293 * save power by disabling hardware strands.
294 */
295#define HV_FAST_CPU_YIELD		0x12
296
297#ifndef __ASSEMBLY__
298extern unsigned long sun4v_cpu_yield(void);
299#endif
300
301/* cpu_qconf()
302 * TRAP:	HV_FAST_TRAP
303 * FUNCTION:	HV_FAST_CPU_QCONF
304 * ARG0:	queue
305 * ARG1:	base real address
306 * ARG2:	number of entries
307 * RET0:	status
308 * ERRORS:	ENORADDR	Invalid base real address
309 *		EINVAL		Invalid queue or number of entries is less
310 *				than 2 or too large.
311 *		EBADALIGN	Base real address is not correctly aligned
312 *				for size.
313 *
314 * Configure the given queue to be placed at the given base real
315 * address, with the given number of entries.  The number of entries
316 * must be a power of 2.  The base real address must be aligned
317 * exactly to match the queue size.  Each queue entry is 64 bytes
318 * long, so for example a 32 entry queue must be aligned on a 2048
319 * byte real address boundary.
320 *
321 * The specified queue is unconfigured if the number of entries is given
322 * as zero.
323 *
324 * For the current version of this API service, the argument queue is defined
325 * as follows:
326 *
327 *	queue		description
328 *	-----		-------------------------
329 *	0x3c		cpu mondo queue
330 *	0x3d		device mondo queue
331 *	0x3e		resumable error queue
332 *	0x3f		non-resumable error queue
333 *
334 * Note: The maximum number of entries for each queue for a specific cpu may
335 *       be determined from the machine description.
336 */
337#define HV_FAST_CPU_QCONF		0x14
338#define  HV_CPU_QUEUE_CPU_MONDO		 0x3c
339#define  HV_CPU_QUEUE_DEVICE_MONDO	 0x3d
340#define  HV_CPU_QUEUE_RES_ERROR		 0x3e
341#define  HV_CPU_QUEUE_NONRES_ERROR	 0x3f
342
343#ifndef __ASSEMBLY__
344extern unsigned long sun4v_cpu_qconf(unsigned long type,
345				     unsigned long queue_paddr,
346				     unsigned long num_queue_entries);
347#endif
348
349/* cpu_qinfo()
350 * TRAP:	HV_FAST_TRAP
351 * FUNCTION:	HV_FAST_CPU_QINFO
352 * ARG0:	queue
353 * RET0:	status
354 * RET1:	base real address
355 * RET1:	number of entries
356 * ERRORS:	EINVAL		Invalid queue
357 *
358 * Return the configuration info for the given queue.  The base real
359 * address and number of entries of the defined queue are returned.
360 * The queue argument values are the same as for cpu_qconf() above.
361 *
362 * If the specified queue is a valid queue number, but no queue has
363 * been defined, the number of entries will be set to zero and the
364 * base real address returned is undefined.
365 */
366#define HV_FAST_CPU_QINFO		0x15
367
368/* cpu_mondo_send()
369 * TRAP:	HV_FAST_TRAP
370 * FUNCTION:	HV_FAST_CPU_MONDO_SEND
371 * ARG0-1:	CPU list
372 * ARG2:	data real address
373 * RET0:	status
374 * ERRORS:	EBADALIGN	Mondo data is not 64-byte aligned or CPU list
375 *				is not 2-byte aligned.
376 *		ENORADDR	Invalid data mondo address, or invalid cpu list
377 *				address.
378 *		ENOCPU		Invalid cpu in CPU list
379 *		EWOULDBLOCK	Some or all of the listed CPUs did not receive
380 *				the mondo
381 *		ECPUERROR	One or more of the listed CPUs are in error
382 *				state, use HV_FAST_CPU_STATE to see which ones
383 *		EINVAL		CPU list includes caller's CPU ID
384 *
385 * Send a mondo interrupt to the CPUs in the given CPU list with the
386 * 64-bytes at the given data real address.  The data must be 64-byte
387 * aligned.  The mondo data will be delivered to the cpu_mondo queues
388 * of the recipient CPUs.
389 *
390 * In all cases, error or not, the CPUs in the CPU list to which the
391 * mondo has been successfully delivered will be indicated by having
392 * their entry in CPU list updated with the value 0xffff.
393 */
394#define HV_FAST_CPU_MONDO_SEND		0x42
395
396#ifndef __ASSEMBLY__
397extern unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, unsigned long cpu_list_pa, unsigned long mondo_block_pa);
398#endif
399
400/* cpu_myid()
401 * TRAP:	HV_FAST_TRAP
402 * FUNCTION:	HV_FAST_CPU_MYID
403 * RET0:	status
404 * RET1:	CPU ID
405 * ERRORS:	No errors defined.
406 *
407 * Return the hypervisor ID handle for the current CPU.  Use by a
408 * virtual CPU to discover it's own identity.
409 */
410#define HV_FAST_CPU_MYID		0x16
411
412/* cpu_state()
413 * TRAP:	HV_FAST_TRAP
414 * FUNCTION:	HV_FAST_CPU_STATE
415 * ARG0:	CPU ID
416 * RET0:	status
417 * RET1:	state
418 * ERRORS:	ENOCPU		Invalid CPU ID
419 *
420 * Retrieve the current state of the CPU with the given CPU ID.
421 */
422#define HV_FAST_CPU_STATE		0x17
423#define  HV_CPU_STATE_STOPPED		 0x01
424#define  HV_CPU_STATE_RUNNING		 0x02
425#define  HV_CPU_STATE_ERROR		 0x03
426
427#ifndef __ASSEMBLY__
428extern long sun4v_cpu_state(unsigned long cpuid);
429#endif
430
431/* cpu_set_rtba()
432 * TRAP:	HV_FAST_TRAP
433 * FUNCTION:	HV_FAST_CPU_SET_RTBA
434 * ARG0:	RTBA
435 * RET0:	status
436 * RET1:	previous RTBA
437 * ERRORS:	ENORADDR	Invalid RTBA real address
438 *		EBADALIGN	RTBA is incorrectly aligned for a trap table
439 *
440 * Set the real trap base address of the local cpu to the given RTBA.
441 * The supplied RTBA must be aligned on a 256 byte boundary.  Upon
442 * success the previous value of the RTBA is returned in RET1.
443 *
444 * Note: This service does not affect %tba
445 */
446#define HV_FAST_CPU_SET_RTBA		0x18
447
448/* cpu_set_rtba()
449 * TRAP:	HV_FAST_TRAP
450 * FUNCTION:	HV_FAST_CPU_GET_RTBA
451 * RET0:	status
452 * RET1:	previous RTBA
453 * ERRORS:	No possible error.
454 *
455 * Returns the current value of RTBA in RET1.
456 */
457#define HV_FAST_CPU_GET_RTBA		0x19
458
459/* MMU services.
460 *
461 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
462 */
463#ifndef __ASSEMBLY__
464struct hv_tsb_descr {
465	unsigned short		pgsz_idx;
466	unsigned short		assoc;
467	unsigned int		num_ttes;	/* in TTEs */
468	unsigned int		ctx_idx;
469	unsigned int		pgsz_mask;
470	unsigned long		tsb_base;
471	unsigned long		resv;
472};
473#endif
474#define HV_TSB_DESCR_PGSZ_IDX_OFFSET	0x00
475#define HV_TSB_DESCR_ASSOC_OFFSET	0x02
476#define HV_TSB_DESCR_NUM_TTES_OFFSET	0x04
477#define HV_TSB_DESCR_CTX_IDX_OFFSET	0x08
478#define HV_TSB_DESCR_PGSZ_MASK_OFFSET	0x0c
479#define HV_TSB_DESCR_TSB_BASE_OFFSET	0x10
480#define HV_TSB_DESCR_RESV_OFFSET	0x18
481
482/* Page size bitmask.  */
483#define HV_PGSZ_MASK_8K			(1 << 0)
484#define HV_PGSZ_MASK_64K		(1 << 1)
485#define HV_PGSZ_MASK_512K		(1 << 2)
486#define HV_PGSZ_MASK_4MB		(1 << 3)
487#define HV_PGSZ_MASK_32MB		(1 << 4)
488#define HV_PGSZ_MASK_256MB		(1 << 5)
489#define HV_PGSZ_MASK_2GB		(1 << 6)
490#define HV_PGSZ_MASK_16GB		(1 << 7)
491
492/* Page size index.  The value given in the TSB descriptor must correspond
493 * to the smallest page size specified in the pgsz_mask page size bitmask.
494 */
495#define HV_PGSZ_IDX_8K			0
496#define HV_PGSZ_IDX_64K			1
497#define HV_PGSZ_IDX_512K		2
498#define HV_PGSZ_IDX_4MB			3
499#define HV_PGSZ_IDX_32MB		4
500#define HV_PGSZ_IDX_256MB		5
501#define HV_PGSZ_IDX_2GB			6
502#define HV_PGSZ_IDX_16GB		7
503
504/* MMU fault status area.
505 *
506 * MMU related faults have their status and fault address information
507 * placed into a memory region made available by privileged code.  Each
508 * virtual processor must make a mmu_fault_area_conf() call to tell the
509 * hypervisor where that processor's fault status should be stored.
510 *
511 * The fault status block is a multiple of 64-bytes and must be aligned
512 * on a 64-byte boundary.
513 */
514#ifndef __ASSEMBLY__
515struct hv_fault_status {
516	unsigned long		i_fault_type;
517	unsigned long		i_fault_addr;
518	unsigned long		i_fault_ctx;
519	unsigned long		i_reserved[5];
520	unsigned long		d_fault_type;
521	unsigned long		d_fault_addr;
522	unsigned long		d_fault_ctx;
523	unsigned long		d_reserved[5];
524};
525#endif
526#define HV_FAULT_I_TYPE_OFFSET	0x00
527#define HV_FAULT_I_ADDR_OFFSET	0x08
528#define HV_FAULT_I_CTX_OFFSET	0x10
529#define HV_FAULT_D_TYPE_OFFSET	0x40
530#define HV_FAULT_D_ADDR_OFFSET	0x48
531#define HV_FAULT_D_CTX_OFFSET	0x50
532
533#define HV_FAULT_TYPE_FAST_MISS	1
534#define HV_FAULT_TYPE_FAST_PROT	2
535#define HV_FAULT_TYPE_MMU_MISS	3
536#define HV_FAULT_TYPE_INV_RA	4
537#define HV_FAULT_TYPE_PRIV_VIOL	5
538#define HV_FAULT_TYPE_PROT_VIOL	6
539#define HV_FAULT_TYPE_NFO	7
540#define HV_FAULT_TYPE_NFO_SEFF	8
541#define HV_FAULT_TYPE_INV_VA	9
542#define HV_FAULT_TYPE_INV_ASI	10
543#define HV_FAULT_TYPE_NC_ATOMIC	11
544#define HV_FAULT_TYPE_PRIV_ACT	12
545#define HV_FAULT_TYPE_RESV1	13
546#define HV_FAULT_TYPE_UNALIGNED	14
547#define HV_FAULT_TYPE_INV_PGSZ	15
548/* Values 16 --> -2 are reserved.  */
549#define HV_FAULT_TYPE_MULTIPLE	-1
550
551/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
552 * and mmu_{map,unmap}_perm_addr().
553 */
554#define HV_MMU_DMMU			0x01
555#define HV_MMU_IMMU			0x02
556#define HV_MMU_ALL			(HV_MMU_DMMU | HV_MMU_IMMU)
557
558/* mmu_map_addr()
559 * TRAP:	HV_MMU_MAP_ADDR_TRAP
560 * ARG0:	virtual address
561 * ARG1:	mmu context
562 * ARG2:	TTE
563 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
564 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
565 *		EBADPGSZ	Invalid page size value
566 *		ENORADDR	Invalid real address in TTE
567 *
568 * Create a non-permanent mapping using the given TTE, virtual
569 * address, and mmu context.  The flags argument determines which
570 * (data, or instruction, or both) TLB the mapping gets loaded into.
571 *
572 * The behavior is undefined if the valid bit is clear in the TTE.
573 *
574 * Note: This API call is for privileged code to specify temporary translation
575 *       mappings without the need to create and manage a TSB.
576 */
577
578/* mmu_unmap_addr()
579 * TRAP:	HV_MMU_UNMAP_ADDR_TRAP
580 * ARG0:	virtual address
581 * ARG1:	mmu context
582 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
583 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
584 *
585 * Demaps the given virtual address in the given mmu context on this
586 * CPU.  This function is intended to be used to demap pages mapped
587 * with mmu_map_addr.  This service is equivalent to invoking
588 * mmu_demap_page() with only the current CPU in the CPU list. The
589 * flags argument determines which (data, or instruction, or both) TLB
590 * the mapping gets unmapped from.
591 *
592 * Attempting to perform an unmap operation for a previously defined
593 * permanent mapping will have undefined results.
594 */
595
596/* mmu_tsb_ctx0()
597 * TRAP:	HV_FAST_TRAP
598 * FUNCTION:	HV_FAST_MMU_TSB_CTX0
599 * ARG0:	number of TSB descriptions
600 * ARG1:	TSB descriptions pointer
601 * RET0:	status
602 * ERRORS:	ENORADDR		Invalid TSB descriptions pointer or
603 *					TSB base within a descriptor
604 *		EBADALIGN		TSB descriptions pointer is not aligned
605 *					to an 8-byte boundary, or TSB base
606 *					within a descriptor is not aligned for
607 *					the given TSB size
608 *		EBADPGSZ		Invalid page size in a TSB descriptor
609 *		EBADTSB			Invalid associativity or size in a TSB
610 *					descriptor
611 *		EINVAL			Invalid number of TSB descriptions, or
612 *					invalid context index in a TSB
613 *					descriptor, or index page size not
614 *					equal to smallest page size in page
615 *					size bitmask field.
616 *
617 * Configures the TSBs for the current CPU for virtual addresses with
618 * context zero.  The TSB descriptions pointer is a pointer to an
619 * array of the given number of TSB descriptions.
620 *
621 * Note: The maximum number of TSBs available to a virtual CPU is given by the
622 *       mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
623 *       machine description.
624 */
625#define HV_FAST_MMU_TSB_CTX0		0x20
626
627#ifndef __ASSEMBLY__
628extern unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
629					unsigned long tsb_desc_ra);
630#endif
631
632/* mmu_tsb_ctxnon0()
633 * TRAP:	HV_FAST_TRAP
634 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0
635 * ARG0:	number of TSB descriptions
636 * ARG1:	TSB descriptions pointer
637 * RET0:	status
638 * ERRORS:	Same as for mmu_tsb_ctx0() above.
639 *
640 * Configures the TSBs for the current CPU for virtual addresses with
641 * non-zero contexts.  The TSB descriptions pointer is a pointer to an
642 * array of the given number of TSB descriptions.
643 *
644 * Note: A maximum of 16 TSBs may be specified in the TSB description list.
645 */
646#define HV_FAST_MMU_TSB_CTXNON0		0x21
647
648/* mmu_demap_page()
649 * TRAP:	HV_FAST_TRAP
650 * FUNCTION:	HV_FAST_MMU_DEMAP_PAGE
651 * ARG0:	reserved, must be zero
652 * ARG1:	reserved, must be zero
653 * ARG2:	virtual address
654 * ARG3:	mmu context
655 * ARG4:	flags (HV_MMU_{IMMU,DMMU})
656 * RET0:	status
657 * ERRORS:	EINVAL			Invalid virutal address, context, or
658 *					flags value
659 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
660 *
661 * Demaps any page mapping of the given virtual address in the given
662 * mmu context for the current virtual CPU.  Any virtually tagged
663 * caches are guaranteed to be kept consistent.  The flags argument
664 * determines which TLB (instruction, or data, or both) participate in
665 * the operation.
666 *
667 * ARG0 and ARG1 are both reserved and must be set to zero.
668 */
669#define HV_FAST_MMU_DEMAP_PAGE		0x22
670
671/* mmu_demap_ctx()
672 * TRAP:	HV_FAST_TRAP
673 * FUNCTION:	HV_FAST_MMU_DEMAP_CTX
674 * ARG0:	reserved, must be zero
675 * ARG1:	reserved, must be zero
676 * ARG2:	mmu context
677 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
678 * RET0:	status
679 * ERRORS:	EINVAL			Invalid context or flags value
680 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
681 *
682 * Demaps all non-permanent virtual page mappings previously specified
683 * for the given context for the current virtual CPU.  Any virtual
684 * tagged caches are guaranteed to be kept consistent.  The flags
685 * argument determines which TLB (instruction, or data, or both)
686 * participate in the operation.
687 *
688 * ARG0 and ARG1 are both reserved and must be set to zero.
689 */
690#define HV_FAST_MMU_DEMAP_CTX		0x23
691
692/* mmu_demap_all()
693 * TRAP:	HV_FAST_TRAP
694 * FUNCTION:	HV_FAST_MMU_DEMAP_ALL
695 * ARG0:	reserved, must be zero
696 * ARG1:	reserved, must be zero
697 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
698 * RET0:	status
699 * ERRORS:	EINVAL			Invalid flags value
700 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
701 *
702 * Demaps all non-permanent virtual page mappings previously specified
703 * for the current virtual CPU.  Any virtual tagged caches are
704 * guaranteed to be kept consistent.  The flags argument determines
705 * which TLB (instruction, or data, or both) participate in the
706 * operation.
707 *
708 * ARG0 and ARG1 are both reserved and must be set to zero.
709 */
710#define HV_FAST_MMU_DEMAP_ALL		0x24
711
712#ifndef __ASSEMBLY__
713extern void sun4v_mmu_demap_all(void);
714#endif
715
716/* mmu_map_perm_addr()
717 * TRAP:	HV_FAST_TRAP
718 * FUNCTION:	HV_FAST_MMU_MAP_PERM_ADDR
719 * ARG0:	virtual address
720 * ARG1:	reserved, must be zero
721 * ARG2:	TTE
722 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
723 * RET0:	status
724 * ERRORS:	EINVAL			Invalid virutal address or flags value
725 *		EBADPGSZ		Invalid page size value
726 *		ENORADDR		Invalid real address in TTE
727 *		ETOOMANY		Too many mappings (max of 8 reached)
728 *
729 * Create a permanent mapping using the given TTE and virtual address
730 * for context 0 on the calling virtual CPU.  A maximum of 8 such
731 * permanent mappings may be specified by privileged code.  Mappings
732 * may be removed with mmu_unmap_perm_addr().
733 *
734 * The behavior is undefined if a TTE with the valid bit clear is given.
735 *
736 * Note: This call is used to specify address space mappings for which
737 *       privileged code does not expect to receive misses.  For example,
738 *       this mechanism can be used to map kernel nucleus code and data.
739 */
740#define HV_FAST_MMU_MAP_PERM_ADDR	0x25
741
742#ifndef __ASSEMBLY__
743extern unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
744					     unsigned long set_to_zero,
745					     unsigned long tte,
746					     unsigned long flags);
747#endif
748
749/* mmu_fault_area_conf()
750 * TRAP:	HV_FAST_TRAP
751 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_CONF
752 * ARG0:	real address
753 * RET0:	status
754 * RET1:	previous mmu fault area real address
755 * ERRORS:	ENORADDR		Invalid real address
756 *		EBADALIGN		Invalid alignment for fault area
757 *
758 * Configure the MMU fault status area for the calling CPU.  A 64-byte
759 * aligned real address specifies where MMU fault status information
760 * is placed.  The return value is the previously specified area, or 0
761 * for the first invocation.  Specifying a fault area at real address
762 * 0 is not allowed.
763 */
764#define HV_FAST_MMU_FAULT_AREA_CONF	0x26
765
766/* mmu_enable()
767 * TRAP:	HV_FAST_TRAP
768 * FUNCTION:	HV_FAST_MMU_ENABLE
769 * ARG0:	enable flag
770 * ARG1:	return target address
771 * RET0:	status
772 * ERRORS:	ENORADDR		Invalid real address when disabling
773 *					translation.
774 *		EBADALIGN		The return target address is not
775 *					aligned to an instruction.
776 *		EINVAL			The enable flag request the current
777 *					operating mode (e.g. disable if already
778 *					disabled)
779 *
780 * Enable or disable virtual address translation for the calling CPU
781 * within the virtual machine domain.  If the enable flag is zero,
782 * translation is disabled, any non-zero value will enable
783 * translation.
784 *
785 * When this function returns, the newly selected translation mode
786 * will be active.  If the mmu is being enabled, then the return
787 * target address is a virtual address else it is a real address.
788 *
789 * Upon successful completion, control will be returned to the given
790 * return target address (ie. the cpu will jump to that address).  On
791 * failure, the previous mmu mode remains and the trap simply returns
792 * as normal with the appropriate error code in RET0.
793 */
794#define HV_FAST_MMU_ENABLE		0x27
795
796/* mmu_unmap_perm_addr()
797 * TRAP:	HV_FAST_TRAP
798 * FUNCTION:	HV_FAST_MMU_UNMAP_PERM_ADDR
799 * ARG0:	virtual address
800 * ARG1:	reserved, must be zero
801 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
802 * RET0:	status
803 * ERRORS:	EINVAL			Invalid virutal address or flags value
804 *		ENOMAP			Specified mapping was not found
805 *
806 * Demaps any permanent page mapping (established via
807 * mmu_map_perm_addr()) at the given virtual address for context 0 on
808 * the current virtual CPU.  Any virtual tagged caches are guaranteed
809 * to be kept consistent.
810 */
811#define HV_FAST_MMU_UNMAP_PERM_ADDR	0x28
812
813/* mmu_tsb_ctx0_info()
814 * TRAP:	HV_FAST_TRAP
815 * FUNCTION:	HV_FAST_MMU_TSB_CTX0_INFO
816 * ARG0:	max TSBs
817 * ARG1:	buffer pointer
818 * RET0:	status
819 * RET1:	number of TSBs
820 * ERRORS:	EINVAL			Supplied buffer is too small
821 *		EBADALIGN		The buffer pointer is badly aligned
822 *		ENORADDR		Invalid real address for buffer pointer
823 *
824 * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
825 * into the provided buffer.  The size of the buffer is given in ARG1
826 * in terms of the number of TSB description entries.
827 *
828 * Upon return, RET1 always contains the number of TSB descriptions
829 * previously configured.  If zero TSBs were configured, EOK is
830 * returned with RET1 containing 0.
831 */
832#define HV_FAST_MMU_TSB_CTX0_INFO	0x29
833
834/* mmu_tsb_ctxnon0_info()
835 * TRAP:	HV_FAST_TRAP
836 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0_INFO
837 * ARG0:	max TSBs
838 * ARG1:	buffer pointer
839 * RET0:	status
840 * RET1:	number of TSBs
841 * ERRORS:	EINVAL			Supplied buffer is too small
842 *		EBADALIGN		The buffer pointer is badly aligned
843 *		ENORADDR		Invalid real address for buffer pointer
844 *
845 * Return the TSB configuration as previous defined by
846 * mmu_tsb_ctxnon0() into the provided buffer.  The size of the buffer
847 * is given in ARG1 in terms of the number of TSB description entries.
848 *
849 * Upon return, RET1 always contains the number of TSB descriptions
850 * previously configured.  If zero TSBs were configured, EOK is
851 * returned with RET1 containing 0.
852 */
853#define HV_FAST_MMU_TSB_CTXNON0_INFO	0x2a
854
855/* mmu_fault_area_info()
856 * TRAP:	HV_FAST_TRAP
857 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_INFO
858 * RET0:	status
859 * RET1:	fault area real address
860 * ERRORS:	No errors defined.
861 *
862 * Return the currently defined MMU fault status area for the current
863 * CPU.  The real address of the fault status area is returned in
864 * RET1, or 0 is returned in RET1 if no fault status area is defined.
865 *
866 * Note: mmu_fault_area_conf() may be called with the return value (RET1)
867 *       from this service if there is a need to save and restore the fault
868 *	 area for a cpu.
869 */
870#define HV_FAST_MMU_FAULT_AREA_INFO	0x2b
871
872/* Cache and Memory services. */
873
874/* mem_scrub()
875 * TRAP:	HV_FAST_TRAP
876 * FUNCTION:	HV_FAST_MEM_SCRUB
877 * ARG0:	real address
878 * ARG1:	length
879 * RET0:	status
880 * RET1:	length scrubbed
881 * ERRORS:	ENORADDR	Invalid real address
882 *		EBADALIGN	Start address or length are not correctly
883 *				aligned
884 *		EINVAL		Length is zero
885 *
886 * Zero the memory contents in the range real address to real address
887 * plus length minus 1.  Also, valid ECC will be generated for that
888 * memory address range.  Scrubbing is started at the given real
889 * address, but may not scrub the entire given length.  The actual
890 * length scrubbed will be returned in RET1.
891 *
892 * The real address and length must be aligned on an 8K boundary, or
893 * contain the start address and length from a sun4v error report.
894 *
895 * Note: There are two uses for this function.  The first use is to block clear
896 *       and initialize memory and the second is to scrub an u ncorrectable
897 *       error reported via a resumable or non-resumable trap.  The second
898 *       use requires the arguments to be equal to the real address and length
899 *       provided in a sun4v memory error report.
900 */
901#define HV_FAST_MEM_SCRUB		0x31
902
903/* mem_sync()
904 * TRAP:	HV_FAST_TRAP
905 * FUNCTION:	HV_FAST_MEM_SYNC
906 * ARG0:	real address
907 * ARG1:	length
908 * RET0:	status
909 * RET1:	length synced
910 * ERRORS:	ENORADDR	Invalid real address
911 *		EBADALIGN	Start address or length are not correctly
912 *				aligned
913 *		EINVAL		Length is zero
914 *
915 * Force the next access within the real address to real address plus
916 * length minus 1 to be fetches from main system memory.  Less than
917 * the given length may be synced, the actual amount synced is
918 * returned in RET1.  The real address and length must be aligned on
919 * an 8K boundary.
920 */
921#define HV_FAST_MEM_SYNC		0x32
922
923/* Time of day services.
924 *
925 * The hypervisor maintains the time of day on a per-domain basis.
926 * Changing the time of day in one domain does not affect the time of
927 * day on any other domain.
928 *
929 * Time is described by a single unsigned 64-bit word which is the
930 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
931 * 1970).
932 */
933
934/* tod_get()
935 * TRAP:	HV_FAST_TRAP
936 * FUNCTION:	HV_FAST_TOD_GET
937 * RET0:	status
938 * RET1:	TOD
939 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
940 *		ENOTSUPPORTED	If TOD not supported on this platform
941 *
942 * Return the current time of day.  May block if TOD access is
943 * temporarily not possible.
944 */
945#define HV_FAST_TOD_GET			0x50
946
947#ifndef __ASSEMBLY__
948extern unsigned long sun4v_tod_get(unsigned long *time);
949#endif
950
951/* tod_set()
952 * TRAP:	HV_FAST_TRAP
953 * FUNCTION:	HV_FAST_TOD_SET
954 * ARG0:	TOD
955 * RET0:	status
956 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
957 *		ENOTSUPPORTED	If TOD not supported on this platform
958 *
959 * The current time of day is set to the value specified in ARG0.  May
960 * block if TOD access is temporarily not possible.
961 */
962#define HV_FAST_TOD_SET			0x51
963
964#ifndef __ASSEMBLY__
965extern unsigned long sun4v_tod_set(unsigned long time);
966#endif
967
968/* Console services */
969
970/* con_getchar()
971 * TRAP:	HV_FAST_TRAP
972 * FUNCTION:	HV_FAST_CONS_GETCHAR
973 * RET0:	status
974 * RET1:	character
975 * ERRORS:	EWOULDBLOCK	No character available.
976 *
977 * Returns a character from the console device.  If no character is
978 * available then an EWOULDBLOCK error is returned.  If a character is
979 * available, then the returned status is EOK and the character value
980 * is in RET1.
981 *
982 * A virtual BREAK is represented by the 64-bit value -1.
983 *
984 * A virtual HUP signal is represented by the 64-bit value -2.
985 */
986#define HV_FAST_CONS_GETCHAR		0x60
987
988/* con_putchar()
989 * TRAP:	HV_FAST_TRAP
990 * FUNCTION:	HV_FAST_CONS_PUTCHAR
991 * ARG0:	character
992 * RET0:	status
993 * ERRORS:	EINVAL		Illegal character
994 *		EWOULDBLOCK	Output buffer currently full, would block
995 *
996 * Send a character to the console device.  Only character values
997 * between 0 and 255 may be used.  Values outside this range are
998 * invalid except for the 64-bit value -1 which is used to send a
999 * virtual BREAK.
1000 */
1001#define HV_FAST_CONS_PUTCHAR		0x61
1002
1003/* con_read()
1004 * TRAP:	HV_FAST_TRAP
1005 * FUNCTION:	HV_FAST_CONS_READ
1006 * ARG0:	buffer real address
1007 * ARG1:	buffer size in bytes
1008 * RET0:	status
1009 * RET1:	bytes read or BREAK or HUP
1010 * ERRORS:	EWOULDBLOCK	No character available.
1011 *
1012 * Reads characters into a buffer from the console device.  If no
1013 * character is available then an EWOULDBLOCK error is returned.
1014 * If a character is available, then the returned status is EOK
1015 * and the number of bytes read into the given buffer is provided
1016 * in RET1.
1017 *
1018 * A virtual BREAK is represented by the 64-bit RET1 value -1.
1019 *
1020 * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1021 *
1022 * If BREAK or HUP are indicated, no bytes were read into buffer.
1023 */
1024#define HV_FAST_CONS_READ		0x62
1025
1026/* con_write()
1027 * TRAP:	HV_FAST_TRAP
1028 * FUNCTION:	HV_FAST_CONS_WRITE
1029 * ARG0:	buffer real address
1030 * ARG1:	buffer size in bytes
1031 * RET0:	status
1032 * RET1:	bytes written
1033 * ERRORS:	EWOULDBLOCK	Output buffer currently full, would block
1034 *
1035 * Send a characters in buffer to the console device.  Breaks must be
1036 * sent using con_putchar().
1037 */
1038#define HV_FAST_CONS_WRITE		0x63
1039
1040#ifndef __ASSEMBLY__
1041extern long sun4v_con_getchar(long *status);
1042extern long sun4v_con_putchar(long c);
1043extern long sun4v_con_read(unsigned long buffer,
1044			   unsigned long size,
1045			   unsigned long *bytes_read);
1046extern unsigned long sun4v_con_write(unsigned long buffer,
1047				     unsigned long size,
1048				     unsigned long *bytes_written);
1049#endif
1050
1051/* mach_set_soft_state()
1052 * TRAP:	HV_FAST_TRAP
1053 * FUNCTION:	HV_FAST_MACH_SET_SOFT_STATE
1054 * ARG0:	software state
1055 * ARG1:	software state description pointer
1056 * RET0:	status
1057 * ERRORS:	EINVAL		software state not valid or software state
1058 *				description is not NULL terminated
1059 *		ENORADDR	software state description pointer is not a
1060 *				valid real address
1061 *		EBADALIGNED	software state description is not correctly
1062 *				aligned
1063 *
1064 * This allows the guest to report it's soft state to the hypervisor.  There
1065 * are two primary components to this state.  The first part states whether
1066 * the guest software is running or not.  The second containts optional
1067 * details specific to the software.
1068 *
1069 * The software state argument is defined below in HV_SOFT_STATE_*, and
1070 * indicates whether the guest is operating normally or in a transitional
1071 * state.
1072 *
1073 * The software state description argument is a real address of a data buffer
1074 * of size 32-bytes aligned on a 32-byte boundary.  It is treated as a NULL
1075 * terminated 7-bit ASCII string of up to 31 characters not including the
1076 * NULL termination.
1077 */
1078#define HV_FAST_MACH_SET_SOFT_STATE	0x70
1079#define  HV_SOFT_STATE_NORMAL		 0x01
1080#define  HV_SOFT_STATE_TRANSITION	 0x02
1081
1082#ifndef __ASSEMBLY__
1083extern unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1084					       unsigned long msg_string_ra);
1085#endif
1086
1087/* mach_get_soft_state()
1088 * TRAP:	HV_FAST_TRAP
1089 * FUNCTION:	HV_FAST_MACH_GET_SOFT_STATE
1090 * ARG0:	software state description pointer
1091 * RET0:	status
1092 * RET1:	software state
1093 * ERRORS:	ENORADDR	software state description pointer is not a
1094 *				valid real address
1095 *		EBADALIGNED	software state description is not correctly
1096 *				aligned
1097 *
1098 * Retrieve the current value of the guest's software state.  The rules
1099 * for the software state pointer are the same as for mach_set_soft_state()
1100 * above.
1101 */
1102#define HV_FAST_MACH_GET_SOFT_STATE	0x71
1103
1104/* svc_send()
1105 * TRAP:	HV_FAST_TRAP
1106 * FUNCTION:	HV_FAST_SVC_SEND
1107 * ARG0:	service ID
1108 * ARG1:	buffer real address
1109 * ARG2:	buffer size
1110 * RET0:	STATUS
1111 * RET1:	sent_bytes
1112 *
1113 * Be careful, all output registers are clobbered by this operation,
1114 * so for example it is not possible to save away a value in %o4
1115 * across the trap.
1116 */
1117#define HV_FAST_SVC_SEND		0x80
1118
1119/* svc_recv()
1120 * TRAP:	HV_FAST_TRAP
1121 * FUNCTION:	HV_FAST_SVC_RECV
1122 * ARG0:	service ID
1123 * ARG1:	buffer real address
1124 * ARG2:	buffer size
1125 * RET0:	STATUS
1126 * RET1:	recv_bytes
1127 *
1128 * Be careful, all output registers are clobbered by this operation,
1129 * so for example it is not possible to save away a value in %o4
1130 * across the trap.
1131 */
1132#define HV_FAST_SVC_RECV		0x81
1133
1134/* svc_getstatus()
1135 * TRAP:	HV_FAST_TRAP
1136 * FUNCTION:	HV_FAST_SVC_GETSTATUS
1137 * ARG0:	service ID
1138 * RET0:	STATUS
1139 * RET1:	status bits
1140 */
1141#define HV_FAST_SVC_GETSTATUS		0x82
1142
1143/* svc_setstatus()
1144 * TRAP:	HV_FAST_TRAP
1145 * FUNCTION:	HV_FAST_SVC_SETSTATUS
1146 * ARG0:	service ID
1147 * ARG1:	bits to set
1148 * RET0:	STATUS
1149 */
1150#define HV_FAST_SVC_SETSTATUS		0x83
1151
1152/* svc_clrstatus()
1153 * TRAP:	HV_FAST_TRAP
1154 * FUNCTION:	HV_FAST_SVC_CLRSTATUS
1155 * ARG0:	service ID
1156 * ARG1:	bits to clear
1157 * RET0:	STATUS
1158 */
1159#define HV_FAST_SVC_CLRSTATUS		0x84
1160
1161#ifndef __ASSEMBLY__
1162extern unsigned long sun4v_svc_send(unsigned long svc_id,
1163				    unsigned long buffer,
1164				    unsigned long buffer_size,
1165				    unsigned long *sent_bytes);
1166extern unsigned long sun4v_svc_recv(unsigned long svc_id,
1167				    unsigned long buffer,
1168				    unsigned long buffer_size,
1169				    unsigned long *recv_bytes);
1170extern unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1171					 unsigned long *status_bits);
1172extern unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1173					 unsigned long status_bits);
1174extern unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1175					 unsigned long status_bits);
1176#endif
1177
1178/* Trap trace services.
1179 *
1180 * The hypervisor provides a trap tracing capability for privileged
1181 * code running on each virtual CPU.  Privileged code provides a
1182 * round-robin trap trace queue within which the hypervisor writes
1183 * 64-byte entries detailing hyperprivileged traps taken n behalf of
1184 * privileged code.  This is provided as a debugging capability for
1185 * privileged code.
1186 *
1187 * The trap trace control structure is 64-bytes long and placed at the
1188 * start (offset 0) of the trap trace buffer, and is described as
1189 * follows:
1190 */
1191#ifndef __ASSEMBLY__
1192struct hv_trap_trace_control {
1193	unsigned long		head_offset;
1194	unsigned long		tail_offset;
1195	unsigned long		__reserved[0x30 / sizeof(unsigned long)];
1196};
1197#endif
1198#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET	0x00
1199#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET	0x08
1200
1201/* The head offset is the offset of the most recently completed entry
1202 * in the trap-trace buffer.  The tail offset is the offset of the
1203 * next entry to be written.  The control structure is owned and
1204 * modified by the hypervisor.  A guest may not modify the control
1205 * structure contents.  Attempts to do so will result in undefined
1206 * behavior for the guest.
1207 *
1208 * Each trap trace buffer entry is layed out as follows:
1209 */
1210#ifndef __ASSEMBLY__
1211struct hv_trap_trace_entry {
1212	unsigned char	type;		/* Hypervisor or guest entry?	*/
1213	unsigned char	hpstate;	/* Hyper-privileged state	*/
1214	unsigned char	tl;		/* Trap level			*/
1215	unsigned char	gl;		/* Global register level	*/
1216	unsigned short	tt;		/* Trap type			*/
1217	unsigned short	tag;		/* Extended trap identifier	*/
1218	unsigned long	tstate;		/* Trap state			*/
1219	unsigned long	tick;		/* Tick				*/
1220	unsigned long	tpc;		/* Trap PC			*/
1221	unsigned long	f1;		/* Entry specific		*/
1222	unsigned long	f2;		/* Entry specific		*/
1223	unsigned long	f3;		/* Entry specific		*/
1224	unsigned long	f4;		/* Entry specific		*/
1225};
1226#endif
1227#define HV_TRAP_TRACE_ENTRY_TYPE	0x00
1228#define HV_TRAP_TRACE_ENTRY_HPSTATE	0x01
1229#define HV_TRAP_TRACE_ENTRY_TL		0x02
1230#define HV_TRAP_TRACE_ENTRY_GL		0x03
1231#define HV_TRAP_TRACE_ENTRY_TT		0x04
1232#define HV_TRAP_TRACE_ENTRY_TAG		0x06
1233#define HV_TRAP_TRACE_ENTRY_TSTATE	0x08
1234#define HV_TRAP_TRACE_ENTRY_TICK	0x10
1235#define HV_TRAP_TRACE_ENTRY_TPC		0x18
1236#define HV_TRAP_TRACE_ENTRY_F1		0x20
1237#define HV_TRAP_TRACE_ENTRY_F2		0x28
1238#define HV_TRAP_TRACE_ENTRY_F3		0x30
1239#define HV_TRAP_TRACE_ENTRY_F4		0x38
1240
1241/* The type field is encoded as follows.  */
1242#define HV_TRAP_TYPE_UNDEF		0x00 /* Entry content undefined     */
1243#define HV_TRAP_TYPE_HV			0x01 /* Hypervisor trap entry       */
1244#define HV_TRAP_TYPE_GUEST		0xff /* Added via ttrace_addentry() */
1245
1246/* ttrace_buf_conf()
1247 * TRAP:	HV_FAST_TRAP
1248 * FUNCTION:	HV_FAST_TTRACE_BUF_CONF
1249 * ARG0:	real address
1250 * ARG1:	number of entries
1251 * RET0:	status
1252 * RET1:	number of entries
1253 * ERRORS:	ENORADDR	Invalid real address
1254 *		EINVAL		Size is too small
1255 *		EBADALIGN	Real address not aligned on 64-byte boundary
1256 *
1257 * Requests hypervisor trap tracing and declares a virtual CPU's trap
1258 * trace buffer to the hypervisor.  The real address supplies the real
1259 * base address of the trap trace queue and must be 64-byte aligned.
1260 * Specifying a value of 0 for the number of entries disables trap
1261 * tracing for the calling virtual CPU.  The buffer allocated must be
1262 * sized for a power of two number of 64-byte trap trace entries plus
1263 * an initial 64-byte control structure.
1264 *
1265 * This may be invoked any number of times so that a virtual CPU may
1266 * relocate a trap trace buffer or create "snapshots" of information.
1267 *
1268 * If the real address is illegal or badly aligned, then trap tracing
1269 * is disabled and an error is returned.
1270 *
1271 * Upon failure with EINVAL, this service call returns in RET1 the
1272 * minimum number of buffer entries required.  Upon other failures
1273 * RET1 is undefined.
1274 */
1275#define HV_FAST_TTRACE_BUF_CONF		0x90
1276
1277/* ttrace_buf_info()
1278 * TRAP:	HV_FAST_TRAP
1279 * FUNCTION:	HV_FAST_TTRACE_BUF_INFO
1280 * RET0:	status
1281 * RET1:	real address
1282 * RET2:	size
1283 * ERRORS:	None defined.
1284 *
1285 * Returns the size and location of the previously declared trap-trace
1286 * buffer.  In the event that no buffer was previously defined, or the
1287 * buffer is disabled, this call will return a size of zero bytes.
1288 */
1289#define HV_FAST_TTRACE_BUF_INFO		0x91
1290
1291/* ttrace_enable()
1292 * TRAP:	HV_FAST_TRAP
1293 * FUNCTION:	HV_FAST_TTRACE_ENABLE
1294 * ARG0:	enable
1295 * RET0:	status
1296 * RET1:	previous enable state
1297 * ERRORS:	EINVAL		No trap trace buffer currently defined
1298 *
1299 * Enable or disable trap tracing, and return the previous enabled
1300 * state in RET1.  Future systems may define various flags for the
1301 * enable argument (ARG0), for the moment a guest should pass
1302 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1303 * tracing - which will ensure future compatability.
1304 */
1305#define HV_FAST_TTRACE_ENABLE		0x92
1306
1307/* ttrace_freeze()
1308 * TRAP:	HV_FAST_TRAP
1309 * FUNCTION:	HV_FAST_TTRACE_FREEZE
1310 * ARG0:	freeze
1311 * RET0:	status
1312 * RET1:	previous freeze state
1313 * ERRORS:	EINVAL		No trap trace buffer currently defined
1314 *
1315 * Freeze or unfreeze trap tracing, returning the previous freeze
1316 * state in RET1.  A guest should pass a non-zero value to freeze and
1317 * a zero value to unfreeze all tracing.  The returned previous state
1318 * is 0 for not frozen and 1 for frozen.
1319 */
1320#define HV_FAST_TTRACE_FREEZE		0x93
1321
1322/* ttrace_addentry()
1323 * TRAP:	HV_TTRACE_ADDENTRY_TRAP
1324 * ARG0:	tag (16-bits)
1325 * ARG1:	data word 0
1326 * ARG2:	data word 1
1327 * ARG3:	data word 2
1328 * ARG4:	data word 3
1329 * RET0:	status
1330 * ERRORS:	EINVAL		No trap trace buffer currently defined
1331 *
1332 * Add an entry to the trap trace buffer.  Upon return only ARG0/RET0
1333 * is modified - none of the other registers holding arguments are
1334 * volatile across this hypervisor service.
1335 */
1336
1337/* Core dump services.
1338 *
1339 * Since the hypervisor viraulizes and thus obscures a lot of the
1340 * physical machine layout and state, traditional OS crash dumps can
1341 * be difficult to diagnose especially when the problem is a
1342 * configuration error of some sort.
1343 *
1344 * The dump services provide an opaque buffer into which the
1345 * hypervisor can place it's internal state in order to assist in
1346 * debugging such situations.  The contents are opaque and extremely
1347 * platform and hypervisor implementation specific.  The guest, during
1348 * a core dump, requests that the hypervisor update any information in
1349 * the dump buffer in preparation to being dumped as part of the
1350 * domain's memory image.
1351 */
1352
1353/* dump_buf_update()
1354 * TRAP:	HV_FAST_TRAP
1355 * FUNCTION:	HV_FAST_DUMP_BUF_UPDATE
1356 * ARG0:	real address
1357 * ARG1:	size
1358 * RET0:	status
1359 * RET1:	required size of dump buffer
1360 * ERRORS:	ENORADDR	Invalid real address
1361 *		EBADALIGN	Real address is not aligned on a 64-byte
1362 *				boundary
1363 *		EINVAL		Size is non-zero but less than minimum size
1364 *				required
1365 *		ENOTSUPPORTED	Operation not supported on current logical
1366 *				domain
1367 *
1368 * Declare a domain dump buffer to the hypervisor.  The real address
1369 * provided for the domain dump buffer must be 64-byte aligned.  The
1370 * size specifies the size of the dump buffer and may be larger than
1371 * the minimum size specified in the machine description.  The
1372 * hypervisor will fill the dump buffer with opaque data.
1373 *
1374 * Note: A guest may elect to include dump buffer contents as part of a crash
1375 *       dump to assist with debugging.  This function may be called any number
1376 *       of times so that a guest may relocate a dump buffer, or create
1377 *       "snapshots" of any dump-buffer information.  Each call to
1378 *       dump_buf_update() atomically declares the new dump buffer to the
1379 *       hypervisor.
1380 *
1381 * A specified size of 0 unconfigures the dump buffer.  If the real
1382 * address is illegal or badly aligned, then any currently active dump
1383 * buffer is disabled and an error is returned.
1384 *
1385 * In the event that the call fails with EINVAL, RET1 contains the
1386 * minimum size requires by the hypervisor for a valid dump buffer.
1387 */
1388#define HV_FAST_DUMP_BUF_UPDATE		0x94
1389
1390/* dump_buf_info()
1391 * TRAP:	HV_FAST_TRAP
1392 * FUNCTION:	HV_FAST_DUMP_BUF_INFO
1393 * RET0:	status
1394 * RET1:	real address of current dump buffer
1395 * RET2:	size of current dump buffer
1396 * ERRORS:	No errors defined.
1397 *
1398 * Return the currently configures dump buffer description.  A
1399 * returned size of 0 bytes indicates an undefined dump buffer.  In
1400 * this case the return address in RET1 is undefined.
1401 */
1402#define HV_FAST_DUMP_BUF_INFO		0x95
1403
1404/* Device interrupt services.
1405 *
1406 * Device interrupts are allocated to system bus bridges by the hypervisor,
1407 * and described to OBP in the machine description.  OBP then describes
1408 * these interrupts to the OS via properties in the device tree.
1409 *
1410 * Terminology:
1411 *
1412 *	cpuid		Unique opaque value which represents a target cpu.
1413 *
1414 *	devhandle	Device handle.  It uniquely identifies a device, and
1415 *			consistes of the lower 28-bits of the hi-cell of the
1416 *			first entry of the device's "reg" property in the
1417 *			OBP device tree.
1418 *
1419 *	devino		Device interrupt number.  Specifies the relative
1420 *			interrupt number within the device.  The unique
1421 *			combination of devhandle and devino are used to
1422 *			identify a specific device interrupt.
1423 *
1424 *			Note: The devino value is the same as the values in the
1425 *			      "interrupts" property or "interrupt-map" property
1426 *			      in the OBP device tree for that device.
1427 *
1428 *	sysino		System interrupt number.  A 64-bit unsigned interger
1429 *			representing a unique interrupt within a virtual
1430 *			machine.
1431 *
1432 *	intr_state	A flag representing the interrupt state for a given
1433 *			sysino.  The state values are defined below.
1434 *
1435 *	intr_enabled	A flag representing the 'enabled' state for a given
1436 *			sysino.  The enable values are defined below.
1437 */
1438
1439#define HV_INTR_STATE_IDLE		0 /* Nothing pending */
1440#define HV_INTR_STATE_RECEIVED		1 /* Interrupt received by hardware */
1441#define HV_INTR_STATE_DELIVERED		2 /* Interrupt delivered to queue */
1442
1443#define HV_INTR_DISABLED		0 /* sysino not enabled */
1444#define HV_INTR_ENABLED			1 /* sysino enabled */
1445
1446/* intr_devino_to_sysino()
1447 * TRAP:	HV_FAST_TRAP
1448 * FUNCTION:	HV_FAST_INTR_DEVINO2SYSINO
1449 * ARG0:	devhandle
1450 * ARG1:	devino
1451 * RET0:	status
1452 * RET1:	sysino
1453 * ERRORS:	EINVAL		Invalid devhandle/devino
1454 *
1455 * Converts a device specific interrupt number of the given
1456 * devhandle/devino into a system specific ino (sysino).
1457 */
1458#define HV_FAST_INTR_DEVINO2SYSINO	0xa0
1459
1460#ifndef __ASSEMBLY__
1461extern unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1462					    unsigned long devino);
1463#endif
1464
1465/* intr_getenabled()
1466 * TRAP:	HV_FAST_TRAP
1467 * FUNCTION:	HV_FAST_INTR_GETENABLED
1468 * ARG0:	sysino
1469 * RET0:	status
1470 * RET1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1471 * ERRORS:	EINVAL		Invalid sysino
1472 *
1473 * Returns interrupt enabled state in RET1 for the interrupt defined
1474 * by the given sysino.
1475 */
1476#define HV_FAST_INTR_GETENABLED		0xa1
1477
1478#ifndef __ASSEMBLY__
1479extern unsigned long sun4v_intr_getenabled(unsigned long sysino);
1480#endif
1481
1482/* intr_setenabled()
1483 * TRAP:	HV_FAST_TRAP
1484 * FUNCTION:	HV_FAST_INTR_SETENABLED
1485 * ARG0:	sysino
1486 * ARG1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1487 * RET0:	status
1488 * ERRORS:	EINVAL		Invalid sysino or intr_enabled value
1489 *
1490 * Set the 'enabled' state of the interrupt sysino.
1491 */
1492#define HV_FAST_INTR_SETENABLED		0xa2
1493
1494#ifndef __ASSEMBLY__
1495extern unsigned long sun4v_intr_setenabled(unsigned long sysino, unsigned long intr_enabled);
1496#endif
1497
1498/* intr_getstate()
1499 * TRAP:	HV_FAST_TRAP
1500 * FUNCTION:	HV_FAST_INTR_GETSTATE
1501 * ARG0:	sysino
1502 * RET0:	status
1503 * RET1:	intr_state (HV_INTR_STATE_*)
1504 * ERRORS:	EINVAL		Invalid sysino
1505 *
1506 * Returns current state of the interrupt defined by the given sysino.
1507 */
1508#define HV_FAST_INTR_GETSTATE		0xa3
1509
1510#ifndef __ASSEMBLY__
1511extern unsigned long sun4v_intr_getstate(unsigned long sysino);
1512#endif
1513
1514/* intr_setstate()
1515 * TRAP:	HV_FAST_TRAP
1516 * FUNCTION:	HV_FAST_INTR_SETSTATE
1517 * ARG0:	sysino
1518 * ARG1:	intr_state (HV_INTR_STATE_*)
1519 * RET0:	status
1520 * ERRORS:	EINVAL		Invalid sysino or intr_state value
1521 *
1522 * Sets the current state of the interrupt described by the given sysino
1523 * value.
1524 *
1525 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1526 *       interrupt for sysino.
1527 */
1528#define HV_FAST_INTR_SETSTATE		0xa4
1529
1530#ifndef __ASSEMBLY__
1531extern unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1532#endif
1533
1534/* intr_gettarget()
1535 * TRAP:	HV_FAST_TRAP
1536 * FUNCTION:	HV_FAST_INTR_GETTARGET
1537 * ARG0:	sysino
1538 * RET0:	status
1539 * RET1:	cpuid
1540 * ERRORS:	EINVAL		Invalid sysino
1541 *
1542 * Returns CPU that is the current target of the interrupt defined by
1543 * the given sysino.  The CPU value returned is undefined if the target
1544 * has not been set via intr_settarget().
1545 */
1546#define HV_FAST_INTR_GETTARGET		0xa5
1547
1548#ifndef __ASSEMBLY__
1549extern unsigned long sun4v_intr_gettarget(unsigned long sysino);
1550#endif
1551
1552/* intr_settarget()
1553 * TRAP:	HV_FAST_TRAP
1554 * FUNCTION:	HV_FAST_INTR_SETTARGET
1555 * ARG0:	sysino
1556 * ARG1:	cpuid
1557 * RET0:	status
1558 * ERRORS:	EINVAL		Invalid sysino
1559 *		ENOCPU		Invalid cpuid
1560 *
1561 * Set the target CPU for the interrupt defined by the given sysino.
1562 */
1563#define HV_FAST_INTR_SETTARGET		0xa6
1564
1565#ifndef __ASSEMBLY__
1566extern unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1567#endif
1568
1569/* vintr_get_cookie()
1570 * TRAP:	HV_FAST_TRAP
1571 * FUNCTION:	HV_FAST_VINTR_GET_COOKIE
1572 * ARG0:	device handle
1573 * ARG1:	device ino
1574 * RET0:	status
1575 * RET1:	cookie
1576 */
1577#define HV_FAST_VINTR_GET_COOKIE	0xa7
1578
1579/* vintr_set_cookie()
1580 * TRAP:	HV_FAST_TRAP
1581 * FUNCTION:	HV_FAST_VINTR_SET_COOKIE
1582 * ARG0:	device handle
1583 * ARG1:	device ino
1584 * ARG2:	cookie
1585 * RET0:	status
1586 */
1587#define HV_FAST_VINTR_SET_COOKIE	0xa8
1588
1589/* vintr_get_valid()
1590 * TRAP:	HV_FAST_TRAP
1591 * FUNCTION:	HV_FAST_VINTR_GET_VALID
1592 * ARG0:	device handle
1593 * ARG1:	device ino
1594 * RET0:	status
1595 * RET1:	valid state
1596 */
1597#define HV_FAST_VINTR_GET_VALID		0xa9
1598
1599/* vintr_set_valid()
1600 * TRAP:	HV_FAST_TRAP
1601 * FUNCTION:	HV_FAST_VINTR_SET_VALID
1602 * ARG0:	device handle
1603 * ARG1:	device ino
1604 * ARG2:	valid state
1605 * RET0:	status
1606 */
1607#define HV_FAST_VINTR_SET_VALID		0xaa
1608
1609/* vintr_get_state()
1610 * TRAP:	HV_FAST_TRAP
1611 * FUNCTION:	HV_FAST_VINTR_GET_STATE
1612 * ARG0:	device handle
1613 * ARG1:	device ino
1614 * RET0:	status
1615 * RET1:	state
1616 */
1617#define HV_FAST_VINTR_GET_STATE		0xab
1618
1619/* vintr_set_state()
1620 * TRAP:	HV_FAST_TRAP
1621 * FUNCTION:	HV_FAST_VINTR_SET_STATE
1622 * ARG0:	device handle
1623 * ARG1:	device ino
1624 * ARG2:	state
1625 * RET0:	status
1626 */
1627#define HV_FAST_VINTR_SET_STATE		0xac
1628
1629/* vintr_get_target()
1630 * TRAP:	HV_FAST_TRAP
1631 * FUNCTION:	HV_FAST_VINTR_GET_TARGET
1632 * ARG0:	device handle
1633 * ARG1:	device ino
1634 * RET0:	status
1635 * RET1:	cpuid
1636 */
1637#define HV_FAST_VINTR_GET_TARGET	0xad
1638
1639/* vintr_set_target()
1640 * TRAP:	HV_FAST_TRAP
1641 * FUNCTION:	HV_FAST_VINTR_SET_TARGET
1642 * ARG0:	device handle
1643 * ARG1:	device ino
1644 * ARG2:	cpuid
1645 * RET0:	status
1646 */
1647#define HV_FAST_VINTR_SET_TARGET	0xae
1648
1649#ifndef __ASSEMBLY__
1650extern unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1651					    unsigned long dev_ino,
1652					    unsigned long *cookie);
1653extern unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1654					    unsigned long dev_ino,
1655					    unsigned long cookie);
1656extern unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1657					   unsigned long dev_ino,
1658					   unsigned long *valid);
1659extern unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1660					   unsigned long dev_ino,
1661					   unsigned long valid);
1662extern unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1663					   unsigned long dev_ino,
1664					   unsigned long *state);
1665extern unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1666					   unsigned long dev_ino,
1667					   unsigned long state);
1668extern unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1669					    unsigned long dev_ino,
1670					    unsigned long *cpuid);
1671extern unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1672					    unsigned long dev_ino,
1673					    unsigned long cpuid);
1674#endif
1675
1676/* PCI IO services.
1677 *
1678 * See the terminology descriptions in the device interrupt services
1679 * section above as those apply here too.  Here are terminology
1680 * definitions specific to these PCI IO services:
1681 *
1682 *	tsbnum		TSB number.  Indentifies which io-tsb is used.
1683 *			For this version of the specification, tsbnum
1684 *			must be zero.
1685 *
1686 *	tsbindex	TSB index.  Identifies which entry in the TSB
1687 *			is used.  The first entry is zero.
1688 *
1689 *	tsbid		A 64-bit aligned data structure which contains
1690 *			a tsbnum and a tsbindex.  Bits 63:32 contain the
1691 *			tsbnum and bits 31:00 contain the tsbindex.
1692 *
1693 *			Use the HV_PCI_TSBID() macro to construct such
1694 * 			values.
1695 *
1696 *	io_attributes	IO attributes for IOMMU mappings.  One of more
1697 *			of the attritbute bits are stores in a 64-bit
1698 *			value.  The values are defined below.
1699 *
1700 *	r_addr		64-bit real address
1701 *
1702 *	pci_device	PCI device address.  A PCI device address identifies
1703 *			a specific device on a specific PCI bus segment.
1704 *			A PCI device address ia a 32-bit unsigned integer
1705 *			with the following format:
1706 *
1707 *				00000000.bbbbbbbb.dddddfff.00000000
1708 *
1709 *			Use the HV_PCI_DEVICE_BUILD() macro to construct
1710 *			such values.
1711 *
1712 *	pci_config_offset
1713 *			PCI configureation space offset.  For conventional
1714 *			PCI a value between 0 and 255.  For extended
1715 *			configuration space, a value between 0 and 4095.
1716 *
1717 *			Note: For PCI configuration space accesses, the offset
1718 *			      must be aligned to the access size.
1719 *
1720 *	error_flag	A return value which specifies if the action succeeded
1721 *			or failed.  0 means no error, non-0 means some error
1722 *			occurred while performing the service.
1723 *
1724 *	io_sync_direction
1725 *			Direction definition for pci_dma_sync(), defined
1726 *			below in HV_PCI_SYNC_*.
1727 *
1728 *	io_page_list	A list of io_page_addresses, an io_page_address is
1729 *			a real address.
1730 *
1731 *	io_page_list_p	A pointer to an io_page_list.
1732 *
1733 *	"size based byte swap" - Some functions do size based byte swapping
1734 *				 which allows sw to access pointers and
1735 *				 counters in native form when the processor
1736 *				 operates in a different endianness than the
1737 *				 IO bus.  Size-based byte swapping converts a
1738 *				 multi-byte field between big-endian and
1739 *				 little-endian format.
1740 */
1741
1742#define HV_PCI_MAP_ATTR_READ		0x01
1743#define HV_PCI_MAP_ATTR_WRITE		0x02
1744
1745#define HV_PCI_DEVICE_BUILD(b,d,f)	\
1746	((((b) & 0xff) << 16) | \
1747	 (((d) & 0x1f) << 11) | \
1748	 (((f) & 0x07) <<  8))
1749
1750#define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1751	((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1752
1753#define HV_PCI_SYNC_FOR_DEVICE		0x01
1754#define HV_PCI_SYNC_FOR_CPU		0x02
1755
1756/* pci_iommu_map()
1757 * TRAP:	HV_FAST_TRAP
1758 * FUNCTION:	HV_FAST_PCI_IOMMU_MAP
1759 * ARG0:	devhandle
1760 * ARG1:	tsbid
1761 * ARG2:	#ttes
1762 * ARG3:	io_attributes
1763 * ARG4:	io_page_list_p
1764 * RET0:	status
1765 * RET1:	#ttes mapped
1766 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex/io_attributes
1767 *		EBADALIGN	Improperly aligned real address
1768 *		ENORADDR	Invalid real address
1769 *
1770 * Create IOMMU mappings in the sun4v device defined by the given
1771 * devhandle.  The mappings are created in the TSB defined by the
1772 * tsbnum component of the given tsbid.  The first mapping is created
1773 * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1774 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1775 * the second at tsbnum, tsbindex + 1, etc.
1776 *
1777 * All mappings are created with the attributes defined by the io_attributes
1778 * argument.  The page mapping addresses are described in the io_page_list
1779 * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1780 * The first entry in the io_page_list is the address for the first iotte, the
1781 * 2nd for the 2nd iotte, and so on.
1782 *
1783 * Each io_page_address in the io_page_list must be appropriately aligned.
1784 * #ttes must be greater than zero.  For this version of the spec, the tsbnum
1785 * component of the given tsbid must be zero.
1786 *
1787 * Returns the actual number of mappings creates, which may be less than
1788 * or equal to the argument #ttes.  If the function returns a value which
1789 * is less than the #ttes, the caller may continus to call the function with
1790 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1791 * mapped.
1792 *
1793 * Note: This function does not imply an iotte cache flush.  The guest must
1794 *       demap an entry before re-mapping it.
1795 */
1796#define HV_FAST_PCI_IOMMU_MAP		0xb0
1797
1798/* pci_iommu_demap()
1799 * TRAP:	HV_FAST_TRAP
1800 * FUNCTION:	HV_FAST_PCI_IOMMU_DEMAP
1801 * ARG0:	devhandle
1802 * ARG1:	tsbid
1803 * ARG2:	#ttes
1804 * RET0:	status
1805 * RET1:	#ttes demapped
1806 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1807 *
1808 * Demap and flush IOMMU mappings in the device defined by the given
1809 * devhandle.  Demaps up to #ttes entries in the TSB defined by the tsbnum
1810 * component of the given tsbid, starting at the TSB index defined by the
1811 * tsbindex component of the given tsbid.
1812 *
1813 * For this version of the spec, the tsbnum of the given tsbid must be zero.
1814 * #ttes must be greater than zero.
1815 *
1816 * Returns the actual number of ttes demapped, which may be less than or equal
1817 * to the argument #ttes.  If #ttes demapped is less than #ttes, the caller
1818 * may continue to call this function with updated tsbid and #ttes arguments
1819 * until all pages are demapped.
1820 *
1821 * Note: Entries do not have to be mapped to be demapped.  A demap of an
1822 *       unmapped page will flush the entry from the tte cache.
1823 */
1824#define HV_FAST_PCI_IOMMU_DEMAP		0xb1
1825
1826/* pci_iommu_getmap()
1827 * TRAP:	HV_FAST_TRAP
1828 * FUNCTION:	HV_FAST_PCI_IOMMU_GETMAP
1829 * ARG0:	devhandle
1830 * ARG1:	tsbid
1831 * RET0:	status
1832 * RET1:	io_attributes
1833 * RET2:	real address
1834 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1835 *		ENOMAP		Mapping is not valid, no translation exists
1836 *
1837 * Read and return the mapping in the device described by the given devhandle
1838 * and tsbid.  If successful, the io_attributes shall be returned in RET1
1839 * and the page address of the mapping shall be returned in RET2.
1840 *
1841 * For this version of the spec, the tsbnum component of the given tsbid
1842 * must be zero.
1843 */
1844#define HV_FAST_PCI_IOMMU_GETMAP	0xb2
1845
1846/* pci_iommu_getbypass()
1847 * TRAP:	HV_FAST_TRAP
1848 * FUNCTION:	HV_FAST_PCI_IOMMU_GETBYPASS
1849 * ARG0:	devhandle
1850 * ARG1:	real address
1851 * ARG2:	io_attributes
1852 * RET0:	status
1853 * RET1:	io_addr
1854 * ERRORS:	EINVAL		Invalid devhandle/io_attributes
1855 *		ENORADDR	Invalid real address
1856 *		ENOTSUPPORTED	Function not supported in this implementation.
1857 *
1858 * Create a "special" mapping in the device described by the given devhandle,
1859 * for the given real address and attributes.  Return the IO address in RET1
1860 * if successful.
1861 */
1862#define HV_FAST_PCI_IOMMU_GETBYPASS	0xb3
1863
1864/* pci_config_get()
1865 * TRAP:	HV_FAST_TRAP
1866 * FUNCTION:	HV_FAST_PCI_CONFIG_GET
1867 * ARG0:	devhandle
1868 * ARG1:	pci_device
1869 * ARG2:	pci_config_offset
1870 * ARG3:	size
1871 * RET0:	status
1872 * RET1:	error_flag
1873 * RET2:	data
1874 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1875 *		EBADALIGN	pci_config_offset not size aligned
1876 *		ENOACCESS	Access to this offset is not permitted
1877 *
1878 * Read PCI configuration space for the adapter described by the given
1879 * devhandle.  Read size (1, 2, or 4) bytes of data from the given
1880 * pci_device, at pci_config_offset from the beginning of the device's
1881 * configuration space.  If there was no error, RET1 is set to zero and
1882 * RET2 is set to the data read.  Insignificant bits in RET2 are not
1883 * guarenteed to have any specific value and therefore must be ignored.
1884 *
1885 * The data returned in RET2 is size based byte swapped.
1886 *
1887 * If an error occurs during the read, set RET1 to a non-zero value.  The
1888 * given pci_config_offset must be 'size' aligned.
1889 */
1890#define HV_FAST_PCI_CONFIG_GET		0xb4
1891
1892/* pci_config_put()
1893 * TRAP:	HV_FAST_TRAP
1894 * FUNCTION:	HV_FAST_PCI_CONFIG_PUT
1895 * ARG0:	devhandle
1896 * ARG1:	pci_device
1897 * ARG2:	pci_config_offset
1898 * ARG3:	size
1899 * ARG4:	data
1900 * RET0:	status
1901 * RET1:	error_flag
1902 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1903 *		EBADALIGN	pci_config_offset not size aligned
1904 *		ENOACCESS	Access to this offset is not permitted
1905 *
1906 * Write PCI configuration space for the adapter described by the given
1907 * devhandle.  Write size (1, 2, or 4) bytes of data in a single operation,
1908 * at pci_config_offset from the beginning of the device's configuration
1909 * space.  The data argument contains the data to be written to configuration
1910 * space.  Prior to writing, the data is size based byte swapped.
1911 *
1912 * If an error occurs during the write access, do not generate an error
1913 * report, do set RET1 to a non-zero value.  Otherwise RET1 is zero.
1914 * The given pci_config_offset must be 'size' aligned.
1915 *
1916 * This function is permitted to read from offset zero in the configuration
1917 * space described by the given pci_device if necessary to ensure that the
1918 * write access to config space completes.
1919 */
1920#define HV_FAST_PCI_CONFIG_PUT		0xb5
1921
1922/* pci_peek()
1923 * TRAP:	HV_FAST_TRAP
1924 * FUNCTION:	HV_FAST_PCI_PEEK
1925 * ARG0:	devhandle
1926 * ARG1:	real address
1927 * ARG2:	size
1928 * RET0:	status
1929 * RET1:	error_flag
1930 * RET2:	data
1931 * ERRORS:	EINVAL		Invalid devhandle or size
1932 *		EBADALIGN	Improperly aligned real address
1933 *		ENORADDR	Bad real address
1934 *		ENOACCESS	Guest access prohibited
1935 *
1936 * Attempt to read the IO address given by the given devhandle, real address,
1937 * and size.  Size must be 1, 2, 4, or 8.  The read is performed as a single
1938 * access operation using the given size.  If an error occurs when reading
1939 * from the given location, do not generate an error report, but return a
1940 * non-zero value in RET1.  If the read was successful, return zero in RET1
1941 * and return the actual data read in RET2.  The data returned is size based
1942 * byte swapped.
1943 *
1944 * Non-significant bits in RET2 are not guarenteed to have any specific value
1945 * and therefore must be ignored.  If RET1 is returned as non-zero, the data
1946 * value is not guarenteed to have any specific value and should be ignored.
1947 *
1948 * The caller must have permission to read from the given devhandle, real
1949 * address, which must be an IO address.  The argument real address must be a
1950 * size aligned address.
1951 *
1952 * The hypervisor implementation of this function must block access to any
1953 * IO address that the guest does not have explicit permission to access.
1954 */
1955#define HV_FAST_PCI_PEEK		0xb6
1956
1957/* pci_poke()
1958 * TRAP:	HV_FAST_TRAP
1959 * FUNCTION:	HV_FAST_PCI_POKE
1960 * ARG0:	devhandle
1961 * ARG1:	real address
1962 * ARG2:	size
1963 * ARG3:	data
1964 * ARG4:	pci_device
1965 * RET0:	status
1966 * RET1:	error_flag
1967 * ERRORS:	EINVAL		Invalid devhandle, size, or pci_device
1968 *		EBADALIGN	Improperly aligned real address
1969 *		ENORADDR	Bad real address
1970 *		ENOACCESS	Guest access prohibited
1971 *		ENOTSUPPORTED	Function is not supported by implementation
1972 *
1973 * Attempt to write data to the IO address given by the given devhandle,
1974 * real address, and size.  Size must be 1, 2, 4, or 8.  The write is
1975 * performed as a single access operation using the given size. Prior to
1976 * writing the data is size based swapped.
1977 *
1978 * If an error occurs when writing to the given location, do not generate an
1979 * error report, but return a non-zero value in RET1.  If the write was
1980 * successful, return zero in RET1.
1981 *
1982 * pci_device describes the configuration address of the device being
1983 * written to.  The implementation may safely read from offset 0 with
1984 * the configuration space of the device described by devhandle and
1985 * pci_device in order to guarantee that the write portion of the operation
1986 * completes
1987 *
1988 * Any error that occurs due to the read shall be reported using the normal
1989 * error reporting mechanisms .. the read error is not suppressed.
1990 *
1991 * The caller must have permission to write to the given devhandle, real
1992 * address, which must be an IO address.  The argument real address must be a
1993 * size aligned address.  The caller must have permission to read from
1994 * the given devhandle, pci_device cofiguration space offset 0.
1995 *
1996 * The hypervisor implementation of this function must block access to any
1997 * IO address that the guest does not have explicit permission to access.
1998 */
1999#define HV_FAST_PCI_POKE		0xb7
2000
2001/* pci_dma_sync()
2002 * TRAP:	HV_FAST_TRAP
2003 * FUNCTION:	HV_FAST_PCI_DMA_SYNC
2004 * ARG0:	devhandle
2005 * ARG1:	real address
2006 * ARG2:	size
2007 * ARG3:	io_sync_direction
2008 * RET0:	status
2009 * RET1:	#synced
2010 * ERRORS:	EINVAL		Invalid devhandle or io_sync_direction
2011 *		ENORADDR	Bad real address
2012 *
2013 * Synchronize a memory region described by the given real address and size,
2014 * for the device defined by the given devhandle using the direction(s)
2015 * defined by the given io_sync_direction.  The argument size is the size of
2016 * the memory region in bytes.
2017 *
2018 * Return the actual number of bytes synchronized in the return value #synced,
2019 * which may be less than or equal to the argument size.  If the return
2020 * value #synced is less than size, the caller must continue to call this
2021 * function with updated real address and size arguments until the entire
2022 * memory region is synchronized.
2023 */
2024#define HV_FAST_PCI_DMA_SYNC		0xb8
2025
2026/* PCI MSI services.  */
2027
2028#define HV_MSITYPE_MSI32		0x00
2029#define HV_MSITYPE_MSI64		0x01
2030
2031#define HV_MSIQSTATE_IDLE		0x00
2032#define HV_MSIQSTATE_ERROR		0x01
2033
2034#define HV_MSIQ_INVALID			0x00
2035#define HV_MSIQ_VALID			0x01
2036
2037#define HV_MSISTATE_IDLE		0x00
2038#define HV_MSISTATE_DELIVERED		0x01
2039
2040#define HV_MSIVALID_INVALID		0x00
2041#define HV_MSIVALID_VALID		0x01
2042
2043#define HV_PCIE_MSGTYPE_PME_MSG		0x18
2044#define HV_PCIE_MSGTYPE_PME_ACK_MSG	0x1b
2045#define HV_PCIE_MSGTYPE_CORR_MSG	0x30
2046#define HV_PCIE_MSGTYPE_NONFATAL_MSG	0x31
2047#define HV_PCIE_MSGTYPE_FATAL_MSG	0x33
2048
2049#define HV_MSG_INVALID			0x00
2050#define HV_MSG_VALID			0x01
2051
2052/* pci_msiq_conf()
2053 * TRAP:	HV_FAST_TRAP
2054 * FUNCTION:	HV_FAST_PCI_MSIQ_CONF
2055 * ARG0:	devhandle
2056 * ARG1:	msiqid
2057 * ARG2:	real address
2058 * ARG3:	number of entries
2059 * RET0:	status
2060 * ERRORS:	EINVAL		Invalid devhandle, msiqid or nentries
2061 *		EBADALIGN	Improperly aligned real address
2062 *		ENORADDR	Bad real address
2063 *
2064 * Configure the MSI queue given by the devhandle and msiqid arguments,
2065 * and to be placed at the given real address and be of the given
2066 * number of entries.  The real address must be aligned exactly to match
2067 * the queue size.  Each queue entry is 64-bytes long, so f.e. a 32 entry
2068 * queue must be aligned on a 2048 byte real address boundary.  The MSI-EQ
2069 * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2070 *
2071 * Implementation Note: Certain implementations have fixed sized queues.  In
2072 *                      that case, number of entries must contain the correct
2073 *                      value.
2074 */
2075#define HV_FAST_PCI_MSIQ_CONF		0xc0
2076
2077/* pci_msiq_info()
2078 * TRAP:	HV_FAST_TRAP
2079 * FUNCTION:	HV_FAST_PCI_MSIQ_INFO
2080 * ARG0:	devhandle
2081 * ARG1:	msiqid
2082 * RET0:	status
2083 * RET1:	real address
2084 * RET2:	number of entries
2085 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2086 *
2087 * Return the configuration information for the MSI queue described
2088 * by the given devhandle and msiqid.  The base address of the queue
2089 * is returned in ARG1 and the number of entries is returned in ARG2.
2090 * If the queue is unconfigured, the real address is undefined and the
2091 * number of entries will be returned as zero.
2092 */
2093#define HV_FAST_PCI_MSIQ_INFO		0xc1
2094
2095/* pci_msiq_getvalid()
2096 * TRAP:	HV_FAST_TRAP
2097 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2098 * ARG0:	devhandle
2099 * ARG1:	msiqid
2100 * RET0:	status
2101 * RET1:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2102 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2103 *
2104 * Get the valid state of the MSI-EQ described by the given devhandle and
2105 * msiqid.
2106 */
2107#define HV_FAST_PCI_MSIQ_GETVALID	0xc2
2108
2109/* pci_msiq_setvalid()
2110 * TRAP:	HV_FAST_TRAP
2111 * FUNCTION:	HV_FAST_PCI_MSIQ_SETVALID
2112 * ARG0:	devhandle
2113 * ARG1:	msiqid
2114 * ARG2:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2115 * RET0:	status
2116 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqvalid
2117 *				value or MSI EQ is uninitialized
2118 *
2119 * Set the valid state of the MSI-EQ described by the given devhandle and
2120 * msiqid to the given msiqvalid.
2121 */
2122#define HV_FAST_PCI_MSIQ_SETVALID	0xc3
2123
2124/* pci_msiq_getstate()
2125 * TRAP:	HV_FAST_TRAP
2126 * FUNCTION:	HV_FAST_PCI_MSIQ_GETSTATE
2127 * ARG0:	devhandle
2128 * ARG1:	msiqid
2129 * RET0:	status
2130 * RET1:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2131 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2132 *
2133 * Get the state of the MSI-EQ described by the given devhandle and
2134 * msiqid.
2135 */
2136#define HV_FAST_PCI_MSIQ_GETSTATE	0xc4
2137
2138/* pci_msiq_getvalid()
2139 * TRAP:	HV_FAST_TRAP
2140 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2141 * ARG0:	devhandle
2142 * ARG1:	msiqid
2143 * ARG2:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2144 * RET0:	status
2145 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqstate
2146 *				value or MSI EQ is uninitialized
2147 *
2148 * Set the state of the MSI-EQ described by the given devhandle and
2149 * msiqid to the given msiqvalid.
2150 */
2151#define HV_FAST_PCI_MSIQ_SETSTATE	0xc5
2152
2153/* pci_msiq_gethead()
2154 * TRAP:	HV_FAST_TRAP
2155 * FUNCTION:	HV_FAST_PCI_MSIQ_GETHEAD
2156 * ARG0:	devhandle
2157 * ARG1:	msiqid
2158 * RET0:	status
2159 * RET1:	msiqhead
2160 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2161 *
2162 * Get the current MSI EQ queue head for the MSI-EQ described by the
2163 * given devhandle and msiqid.
2164 */
2165#define HV_FAST_PCI_MSIQ_GETHEAD	0xc6
2166
2167/* pci_msiq_sethead()
2168 * TRAP:	HV_FAST_TRAP
2169 * FUNCTION:	HV_FAST_PCI_MSIQ_SETHEAD
2170 * ARG0:	devhandle
2171 * ARG1:	msiqid
2172 * ARG2:	msiqhead
2173 * RET0:	status
2174 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqhead,
2175 *				or MSI EQ is uninitialized
2176 *
2177 * Set the current MSI EQ queue head for the MSI-EQ described by the
2178 * given devhandle and msiqid.
2179 */
2180#define HV_FAST_PCI_MSIQ_SETHEAD	0xc7
2181
2182/* pci_msiq_gettail()
2183 * TRAP:	HV_FAST_TRAP
2184 * FUNCTION:	HV_FAST_PCI_MSIQ_GETTAIL
2185 * ARG0:	devhandle
2186 * ARG1:	msiqid
2187 * RET0:	status
2188 * RET1:	msiqtail
2189 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2190 *
2191 * Get the current MSI EQ queue tail for the MSI-EQ described by the
2192 * given devhandle and msiqid.
2193 */
2194#define HV_FAST_PCI_MSIQ_GETTAIL	0xc8
2195
2196/* pci_msi_getvalid()
2197 * TRAP:	HV_FAST_TRAP
2198 * FUNCTION:	HV_FAST_PCI_MSI_GETVALID
2199 * ARG0:	devhandle
2200 * ARG1:	msinum
2201 * RET0:	status
2202 * RET1:	msivalidstate
2203 * ERRORS:	EINVAL		Invalid devhandle or msinum
2204 *
2205 * Get the current valid/enabled state for the MSI defined by the
2206 * given devhandle and msinum.
2207 */
2208#define HV_FAST_PCI_MSI_GETVALID	0xc9
2209
2210/* pci_msi_setvalid()
2211 * TRAP:	HV_FAST_TRAP
2212 * FUNCTION:	HV_FAST_PCI_MSI_SETVALID
2213 * ARG0:	devhandle
2214 * ARG1:	msinum
2215 * ARG2:	msivalidstate
2216 * RET0:	status
2217 * ERRORS:	EINVAL		Invalid devhandle or msinum or msivalidstate
2218 *
2219 * Set the current valid/enabled state for the MSI defined by the
2220 * given devhandle and msinum.
2221 */
2222#define HV_FAST_PCI_MSI_SETVALID	0xca
2223
2224/* pci_msi_getmsiq()
2225 * TRAP:	HV_FAST_TRAP
2226 * FUNCTION:	HV_FAST_PCI_MSI_GETMSIQ
2227 * ARG0:	devhandle
2228 * ARG1:	msinum
2229 * RET0:	status
2230 * RET1:	msiqid
2231 * ERRORS:	EINVAL		Invalid devhandle or msinum or MSI is unbound
2232 *
2233 * Get the MSI EQ that the MSI defined by the given devhandle and
2234 * msinum is bound to.
2235 */
2236#define HV_FAST_PCI_MSI_GETMSIQ		0xcb
2237
2238/* pci_msi_setmsiq()
2239 * TRAP:	HV_FAST_TRAP
2240 * FUNCTION:	HV_FAST_PCI_MSI_SETMSIQ
2241 * ARG0:	devhandle
2242 * ARG1:	msinum
2243 * ARG2:	msitype
2244 * ARG3:	msiqid
2245 * RET0:	status
2246 * ERRORS:	EINVAL		Invalid devhandle or msinum or msiqid
2247 *
2248 * Set the MSI EQ that the MSI defined by the given devhandle and
2249 * msinum is bound to.
2250 */
2251#define HV_FAST_PCI_MSI_SETMSIQ		0xcc
2252
2253/* pci_msi_getstate()
2254 * TRAP:	HV_FAST_TRAP
2255 * FUNCTION:	HV_FAST_PCI_MSI_GETSTATE
2256 * ARG0:	devhandle
2257 * ARG1:	msinum
2258 * RET0:	status
2259 * RET1:	msistate
2260 * ERRORS:	EINVAL		Invalid devhandle or msinum
2261 *
2262 * Get the state of the MSI defined by the given devhandle and msinum.
2263 * If not initialized, return HV_MSISTATE_IDLE.
2264 */
2265#define HV_FAST_PCI_MSI_GETSTATE	0xcd
2266
2267/* pci_msi_setstate()
2268 * TRAP:	HV_FAST_TRAP
2269 * FUNCTION:	HV_FAST_PCI_MSI_SETSTATE
2270 * ARG0:	devhandle
2271 * ARG1:	msinum
2272 * ARG2:	msistate
2273 * RET0:	status
2274 * ERRORS:	EINVAL		Invalid devhandle or msinum or msistate
2275 *
2276 * Set the state of the MSI defined by the given devhandle and msinum.
2277 */
2278#define HV_FAST_PCI_MSI_SETSTATE	0xce
2279
2280/* pci_msg_getmsiq()
2281 * TRAP:	HV_FAST_TRAP
2282 * FUNCTION:	HV_FAST_PCI_MSG_GETMSIQ
2283 * ARG0:	devhandle
2284 * ARG1:	msgtype
2285 * RET0:	status
2286 * RET1:	msiqid
2287 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2288 *
2289 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2290 */
2291#define HV_FAST_PCI_MSG_GETMSIQ		0xd0
2292
2293/* pci_msg_setmsiq()
2294 * TRAP:	HV_FAST_TRAP
2295 * FUNCTION:	HV_FAST_PCI_MSG_SETMSIQ
2296 * ARG0:	devhandle
2297 * ARG1:	msgtype
2298 * ARG2:	msiqid
2299 * RET0:	status
2300 * ERRORS:	EINVAL		Invalid devhandle, msgtype, or msiqid
2301 *
2302 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2303 */
2304#define HV_FAST_PCI_MSG_SETMSIQ		0xd1
2305
2306/* pci_msg_getvalid()
2307 * TRAP:	HV_FAST_TRAP
2308 * FUNCTION:	HV_FAST_PCI_MSG_GETVALID
2309 * ARG0:	devhandle
2310 * ARG1:	msgtype
2311 * RET0:	status
2312 * RET1:	msgvalidstate
2313 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2314 *
2315 * Get the valid/enabled state of the MSG defined by the given
2316 * devhandle and msgtype.
2317 */
2318#define HV_FAST_PCI_MSG_GETVALID	0xd2
2319
2320/* pci_msg_setvalid()
2321 * TRAP:	HV_FAST_TRAP
2322 * FUNCTION:	HV_FAST_PCI_MSG_SETVALID
2323 * ARG0:	devhandle
2324 * ARG1:	msgtype
2325 * ARG2:	msgvalidstate
2326 * RET0:	status
2327 * ERRORS:	EINVAL		Invalid devhandle or msgtype or msgvalidstate
2328 *
2329 * Set the valid/enabled state of the MSG defined by the given
2330 * devhandle and msgtype.
2331 */
2332#define HV_FAST_PCI_MSG_SETVALID	0xd3
2333
2334/* Logical Domain Channel services.  */
2335
2336#define LDC_CHANNEL_DOWN		0
2337#define LDC_CHANNEL_UP			1
2338#define LDC_CHANNEL_RESETTING		2
2339
2340/* ldc_tx_qconf()
2341 * TRAP:	HV_FAST_TRAP
2342 * FUNCTION:	HV_FAST_LDC_TX_QCONF
2343 * ARG0:	channel ID
2344 * ARG1:	real address base of queue
2345 * ARG2:	num entries in queue
2346 * RET0:	status
2347 *
2348 * Configure transmit queue for the LDC endpoint specified by the
2349 * given channel ID, to be placed at the given real address, and
2350 * be of the given num entries.  Num entries must be a power of two.
2351 * The real address base of the queue must be aligned on the queue
2352 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2353 * queue must be aligned on a 2048 byte real address boundary.
2354 *
2355 * Upon configuration of a valid transmit queue the head and tail
2356 * pointers are set to a hypervisor specific identical value indicating
2357 * that the queue initially is empty.
2358 *
2359 * The endpoint's transmit queue is un-configured if num entries is zero.
2360 *
2361 * The maximum number of entries for each queue for a specific cpu may be
2362 * determined from the machine description.  A transmit queue may be
2363 * specified even in the event that the LDC is down (peer endpoint has no
2364 * receive queue specified).  Transmission will begin as soon as the peer
2365 * endpoint defines a receive queue.
2366 *
2367 * It is recommended that a guest wait for a transmit queue to empty prior
2368 * to reconfiguring it, or un-configuring it.  Re or un-configuring of a
2369 * non-empty transmit queue behaves exactly as defined above, however it
2370 * is undefined as to how many of the pending entries in the original queue
2371 * will be delivered prior to the re-configuration taking effect.
2372 * Furthermore, as the queue configuration causes a reset of the head and
2373 * tail pointers there is no way for a guest to determine how many entries
2374 * have been sent after the configuration operation.
2375 */
2376#define HV_FAST_LDC_TX_QCONF		0xe0
2377
2378/* ldc_tx_qinfo()
2379 * TRAP:	HV_FAST_TRAP
2380 * FUNCTION:	HV_FAST_LDC_TX_QINFO
2381 * ARG0:	channel ID
2382 * RET0:	status
2383 * RET1:	real address base of queue
2384 * RET2:	num entries in queue
2385 *
2386 * Return the configuration info for the transmit queue of LDC endpoint
2387 * defined by the given channel ID.  The real address is the currently
2388 * defined real address base of the defined queue, and num entries is the
2389 * size of the queue in terms of number of entries.
2390 *
2391 * If the specified channel ID is a valid endpoint number, but no transmit
2392 * queue has been defined this service will return success, but with num
2393 * entries set to zero and the real address will have an undefined value.
2394 */
2395#define HV_FAST_LDC_TX_QINFO		0xe1
2396
2397/* ldc_tx_get_state()
2398 * TRAP:	HV_FAST_TRAP
2399 * FUNCTION:	HV_FAST_LDC_TX_GET_STATE
2400 * ARG0:	channel ID
2401 * RET0:	status
2402 * RET1:	head offset
2403 * RET2:	tail offset
2404 * RET3:	channel state
2405 *
2406 * Return the transmit state, and the head and tail queue pointers, for
2407 * the transmit queue of the LDC endpoint defined by the given channel ID.
2408 * The head and tail values are the byte offset of the head and tail
2409 * positions of the transmit queue for the specified endpoint.
2410 */
2411#define HV_FAST_LDC_TX_GET_STATE	0xe2
2412
2413/* ldc_tx_set_qtail()
2414 * TRAP:	HV_FAST_TRAP
2415 * FUNCTION:	HV_FAST_LDC_TX_SET_QTAIL
2416 * ARG0:	channel ID
2417 * ARG1:	tail offset
2418 * RET0:	status
2419 *
2420 * Update the tail pointer for the transmit queue associated with the LDC
2421 * endpoint defined by the given channel ID.  The tail offset specified
2422 * must be aligned on a 64 byte boundary, and calculated so as to increase
2423 * the number of pending entries on the transmit queue.  Any attempt to
2424 * decrease the number of pending transmit queue entires is considered
2425 * an invalid tail offset and will result in an EINVAL error.
2426 *
2427 * Since the tail of the transmit queue may not be moved backwards, the
2428 * transmit queue may be flushed by configuring a new transmit queue,
2429 * whereupon the hypervisor will configure the initial transmit head and
2430 * tail pointers to be equal.
2431 */
2432#define HV_FAST_LDC_TX_SET_QTAIL	0xe3
2433
2434/* ldc_rx_qconf()
2435 * TRAP:	HV_FAST_TRAP
2436 * FUNCTION:	HV_FAST_LDC_RX_QCONF
2437 * ARG0:	channel ID
2438 * ARG1:	real address base of queue
2439 * ARG2:	num entries in queue
2440 * RET0:	status
2441 *
2442 * Configure receive queue for the LDC endpoint specified by the
2443 * given channel ID, to be placed at the given real address, and
2444 * be of the given num entries.  Num entries must be a power of two.
2445 * The real address base of the queue must be aligned on the queue
2446 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2447 * queue must be aligned on a 2048 byte real address boundary.
2448 *
2449 * The endpoint's transmit queue is un-configured if num entries is zero.
2450 *
2451 * If a valid receive queue is specified for a local endpoint the LDC is
2452 * in the up state for the purpose of transmission to this endpoint.
2453 *
2454 * The maximum number of entries for each queue for a specific cpu may be
2455 * determined from the machine description.
2456 *
2457 * As receive queue configuration causes a reset of the queue's head and
2458 * tail pointers there is no way for a gues to determine how many entries
2459 * have been received between a preceeding ldc_get_rx_state() API call
2460 * and the completion of the configuration operation.  It should be noted
2461 * that datagram delivery is not guarenteed via domain channels anyway,
2462 * and therefore any higher protocol should be resilient to datagram
2463 * loss if necessary.  However, to overcome this specific race potential
2464 * it is recommended, for example, that a higher level protocol be employed
2465 * to ensure either retransmission, or ensure that no datagrams are pending
2466 * on the peer endpoint's transmit queue prior to the configuration process.
2467 */
2468#define HV_FAST_LDC_RX_QCONF		0xe4
2469
2470/* ldc_rx_qinfo()
2471 * TRAP:	HV_FAST_TRAP
2472 * FUNCTION:	HV_FAST_LDC_RX_QINFO
2473 * ARG0:	channel ID
2474 * RET0:	status
2475 * RET1:	real address base of queue
2476 * RET2:	num entries in queue
2477 *
2478 * Return the configuration info for the receive queue of LDC endpoint
2479 * defined by the given channel ID.  The real address is the currently
2480 * defined real address base of the defined queue, and num entries is the
2481 * size of the queue in terms of number of entries.
2482 *
2483 * If the specified channel ID is a valid endpoint number, but no receive
2484 * queue has been defined this service will return success, but with num
2485 * entries set to zero and the real address will have an undefined value.
2486 */
2487#define HV_FAST_LDC_RX_QINFO		0xe5
2488
2489/* ldc_rx_get_state()
2490 * TRAP:	HV_FAST_TRAP
2491 * FUNCTION:	HV_FAST_LDC_RX_GET_STATE
2492 * ARG0:	channel ID
2493 * RET0:	status
2494 * RET1:	head offset
2495 * RET2:	tail offset
2496 * RET3:	channel state
2497 *
2498 * Return the receive state, and the head and tail queue pointers, for
2499 * the receive queue of the LDC endpoint defined by the given channel ID.
2500 * The head and tail values are the byte offset of the head and tail
2501 * positions of the receive queue for the specified endpoint.
2502 */
2503#define HV_FAST_LDC_RX_GET_STATE	0xe6
2504
2505/* ldc_rx_set_qhead()
2506 * TRAP:	HV_FAST_TRAP
2507 * FUNCTION:	HV_FAST_LDC_RX_SET_QHEAD
2508 * ARG0:	channel ID
2509 * ARG1:	head offset
2510 * RET0:	status
2511 *
2512 * Update the head pointer for the receive queue associated with the LDC
2513 * endpoint defined by the given channel ID.  The head offset specified
2514 * must be aligned on a 64 byte boundary, and calculated so as to decrease
2515 * the number of pending entries on the receive queue.  Any attempt to
2516 * increase the number of pending receive queue entires is considered
2517 * an invalid head offset and will result in an EINVAL error.
2518 *
2519 * The receive queue may be flushed by setting the head offset equal
2520 * to the current tail offset.
2521 */
2522#define HV_FAST_LDC_RX_SET_QHEAD	0xe7
2523
2524/* LDC Map Table Entry.  Each slot is defined by a translation table
2525 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
2526 * hypervisor invalidation cookie.
2527 */
2528#define LDC_MTE_PADDR	0x0fffffffffffe000 /* pa[55:13]          */
2529#define LDC_MTE_COPY_W	0x0000000000000400 /* copy write access  */
2530#define LDC_MTE_COPY_R	0x0000000000000200 /* copy read access   */
2531#define LDC_MTE_IOMMU_W	0x0000000000000100 /* IOMMU write access */
2532#define LDC_MTE_IOMMU_R	0x0000000000000080 /* IOMMU read access  */
2533#define LDC_MTE_EXEC	0x0000000000000040 /* execute            */
2534#define LDC_MTE_WRITE	0x0000000000000020 /* read               */
2535#define LDC_MTE_READ	0x0000000000000010 /* write              */
2536#define LDC_MTE_SZALL	0x000000000000000f /* page size bits     */
2537#define LDC_MTE_SZ16GB	0x0000000000000007 /* 16GB page          */
2538#define LDC_MTE_SZ2GB	0x0000000000000006 /* 2GB page           */
2539#define LDC_MTE_SZ256MB	0x0000000000000005 /* 256MB page         */
2540#define LDC_MTE_SZ32MB	0x0000000000000004 /* 32MB page          */
2541#define LDC_MTE_SZ4MB	0x0000000000000003 /* 4MB page           */
2542#define LDC_MTE_SZ512K	0x0000000000000002 /* 512K page          */
2543#define LDC_MTE_SZ64K	0x0000000000000001 /* 64K page           */
2544#define LDC_MTE_SZ8K	0x0000000000000000 /* 8K page            */
2545
2546#ifndef __ASSEMBLY__
2547struct ldc_mtable_entry {
2548	unsigned long	mte;
2549	unsigned long	cookie;
2550};
2551#endif
2552
2553/* ldc_set_map_table()
2554 * TRAP:	HV_FAST_TRAP
2555 * FUNCTION:	HV_FAST_LDC_SET_MAP_TABLE
2556 * ARG0:	channel ID
2557 * ARG1:	table real address
2558 * ARG2:	num entries
2559 * RET0:	status
2560 *
2561 * Register the MTE table at the given table real address, with the
2562 * specified num entries, for the LDC indicated by the given channel
2563 * ID.
2564 */
2565#define HV_FAST_LDC_SET_MAP_TABLE	0xea
2566
2567/* ldc_get_map_table()
2568 * TRAP:	HV_FAST_TRAP
2569 * FUNCTION:	HV_FAST_LDC_GET_MAP_TABLE
2570 * ARG0:	channel ID
2571 * RET0:	status
2572 * RET1:	table real address
2573 * RET2:	num entries
2574 *
2575 * Return the configuration of the current mapping table registered
2576 * for the given channel ID.
2577 */
2578#define HV_FAST_LDC_GET_MAP_TABLE	0xeb
2579
2580#define LDC_COPY_IN	0
2581#define LDC_COPY_OUT	1
2582
2583/* ldc_copy()
2584 * TRAP:	HV_FAST_TRAP
2585 * FUNCTION:	HV_FAST_LDC_COPY
2586 * ARG0:	channel ID
2587 * ARG1:	LDC_COPY_* direction code
2588 * ARG2:	target real address
2589 * ARG3:	local real address
2590 * ARG4:	length in bytes
2591 * RET0:	status
2592 * RET1:	actual length in bytes
2593 */
2594#define HV_FAST_LDC_COPY		0xec
2595
2596#define LDC_MEM_READ	1
2597#define LDC_MEM_WRITE	2
2598#define LDC_MEM_EXEC	4
2599
2600/* ldc_mapin()
2601 * TRAP:	HV_FAST_TRAP
2602 * FUNCTION:	HV_FAST_LDC_MAPIN
2603 * ARG0:	channel ID
2604 * ARG1:	cookie
2605 * RET0:	status
2606 * RET1:	real address
2607 * RET2:	LDC_MEM_* permissions
2608 */
2609#define HV_FAST_LDC_MAPIN		0xed
2610
2611/* ldc_unmap()
2612 * TRAP:	HV_FAST_TRAP
2613 * FUNCTION:	HV_FAST_LDC_UNMAP
2614 * ARG0:	real address
2615 * RET0:	status
2616 */
2617#define HV_FAST_LDC_UNMAP		0xee
2618
2619/* ldc_revoke()
2620 * TRAP:	HV_FAST_TRAP
2621 * FUNCTION:	HV_FAST_LDC_REVOKE
2622 * ARG0:	channel ID
2623 * ARG1:	cookie
2624 * ARG2:	ldc_mtable_entry cookie
2625 * RET0:	status
2626 */
2627#define HV_FAST_LDC_REVOKE		0xef
2628
2629#ifndef __ASSEMBLY__
2630extern unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
2631					unsigned long ra,
2632					unsigned long num_entries);
2633extern unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
2634					unsigned long *ra,
2635					unsigned long *num_entries);
2636extern unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
2637					    unsigned long *head_off,
2638					    unsigned long *tail_off,
2639					    unsigned long *chan_state);
2640extern unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
2641					    unsigned long tail_off);
2642extern unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
2643					unsigned long ra,
2644					unsigned long num_entries);
2645extern unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
2646					unsigned long *ra,
2647					unsigned long *num_entries);
2648extern unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
2649					    unsigned long *head_off,
2650					    unsigned long *tail_off,
2651					    unsigned long *chan_state);
2652extern unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
2653					    unsigned long head_off);
2654extern unsigned long sun4v_ldc_set_map_table(unsigned long channel,
2655					     unsigned long ra,
2656					     unsigned long num_entries);
2657extern unsigned long sun4v_ldc_get_map_table(unsigned long channel,
2658					     unsigned long *ra,
2659					     unsigned long *num_entries);
2660extern unsigned long sun4v_ldc_copy(unsigned long channel,
2661				    unsigned long dir_code,
2662				    unsigned long tgt_raddr,
2663				    unsigned long lcl_raddr,
2664				    unsigned long len,
2665				    unsigned long *actual_len);
2666extern unsigned long sun4v_ldc_mapin(unsigned long channel,
2667				     unsigned long cookie,
2668				     unsigned long *ra,
2669				     unsigned long *perm);
2670extern unsigned long sun4v_ldc_unmap(unsigned long ra);
2671extern unsigned long sun4v_ldc_revoke(unsigned long channel,
2672				      unsigned long cookie,
2673				      unsigned long mte_cookie);
2674#endif
2675
2676/* Performance counter services.  */
2677
2678#define HV_PERF_JBUS_PERF_CTRL_REG	0x00
2679#define HV_PERF_JBUS_PERF_CNT_REG	0x01
2680#define HV_PERF_DRAM_PERF_CTRL_REG_0	0x02
2681#define HV_PERF_DRAM_PERF_CNT_REG_0	0x03
2682#define HV_PERF_DRAM_PERF_CTRL_REG_1	0x04
2683#define HV_PERF_DRAM_PERF_CNT_REG_1	0x05
2684#define HV_PERF_DRAM_PERF_CTRL_REG_2	0x06
2685#define HV_PERF_DRAM_PERF_CNT_REG_2	0x07
2686#define HV_PERF_DRAM_PERF_CTRL_REG_3	0x08
2687#define HV_PERF_DRAM_PERF_CNT_REG_3	0x09
2688
2689/* get_perfreg()
2690 * TRAP:	HV_FAST_TRAP
2691 * FUNCTION:	HV_FAST_GET_PERFREG
2692 * ARG0:	performance reg number
2693 * RET0:	status
2694 * RET1:	performance reg value
2695 * ERRORS:	EINVAL		Invalid performance register number
2696 *		ENOACCESS	No access allowed to performance counters
2697 *
2698 * Read the value of the given DRAM/JBUS performance counter/control register.
2699 */
2700#define HV_FAST_GET_PERFREG		0x100
2701
2702/* set_perfreg()
2703 * TRAP:	HV_FAST_TRAP
2704 * FUNCTION:	HV_FAST_SET_PERFREG
2705 * ARG0:	performance reg number
2706 * ARG1:	performance reg value
2707 * RET0:	status
2708 * ERRORS:	EINVAL		Invalid performance register number
2709 *		ENOACCESS	No access allowed to performance counters
2710 *
2711 * Write the given performance reg value to the given DRAM/JBUS
2712 * performance counter/control register.
2713 */
2714#define HV_FAST_SET_PERFREG		0x101
2715
2716#define HV_N2_PERF_SPARC_CTL		0x0
2717#define HV_N2_PERF_DRAM_CTL0		0x1
2718#define HV_N2_PERF_DRAM_CNT0		0x2
2719#define HV_N2_PERF_DRAM_CTL1		0x3
2720#define HV_N2_PERF_DRAM_CNT1		0x4
2721#define HV_N2_PERF_DRAM_CTL2		0x5
2722#define HV_N2_PERF_DRAM_CNT2		0x6
2723#define HV_N2_PERF_DRAM_CTL3		0x7
2724#define HV_N2_PERF_DRAM_CNT3		0x8
2725
2726#define HV_FAST_N2_GET_PERFREG		0x104
2727#define HV_FAST_N2_SET_PERFREG		0x105
2728
2729#ifndef __ASSEMBLY__
2730extern unsigned long sun4v_niagara_getperf(unsigned long reg,
2731					   unsigned long *val);
2732extern unsigned long sun4v_niagara_setperf(unsigned long reg,
2733					   unsigned long val);
2734extern unsigned long sun4v_niagara2_getperf(unsigned long reg,
2735					    unsigned long *val);
2736extern unsigned long sun4v_niagara2_setperf(unsigned long reg,
2737					    unsigned long val);
2738#endif
2739
2740/* MMU statistics services.
2741 *
2742 * The hypervisor maintains MMU statistics and privileged code provides
2743 * a buffer where these statistics can be collected.  It is continually
2744 * updated once configured.  The layout is as follows:
2745 */
2746#ifndef __ASSEMBLY__
2747struct hv_mmu_statistics {
2748	unsigned long immu_tsb_hits_ctx0_8k_tte;
2749	unsigned long immu_tsb_ticks_ctx0_8k_tte;
2750	unsigned long immu_tsb_hits_ctx0_64k_tte;
2751	unsigned long immu_tsb_ticks_ctx0_64k_tte;
2752	unsigned long __reserved1[2];
2753	unsigned long immu_tsb_hits_ctx0_4mb_tte;
2754	unsigned long immu_tsb_ticks_ctx0_4mb_tte;
2755	unsigned long __reserved2[2];
2756	unsigned long immu_tsb_hits_ctx0_256mb_tte;
2757	unsigned long immu_tsb_ticks_ctx0_256mb_tte;
2758	unsigned long __reserved3[4];
2759	unsigned long immu_tsb_hits_ctxnon0_8k_tte;
2760	unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
2761	unsigned long immu_tsb_hits_ctxnon0_64k_tte;
2762	unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
2763	unsigned long __reserved4[2];
2764	unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
2765	unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
2766	unsigned long __reserved5[2];
2767	unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
2768	unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
2769	unsigned long __reserved6[4];
2770	unsigned long dmmu_tsb_hits_ctx0_8k_tte;
2771	unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
2772	unsigned long dmmu_tsb_hits_ctx0_64k_tte;
2773	unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
2774	unsigned long __reserved7[2];
2775	unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
2776	unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
2777	unsigned long __reserved8[2];
2778	unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
2779	unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
2780	unsigned long __reserved9[4];
2781	unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
2782	unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
2783	unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
2784	unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
2785	unsigned long __reserved10[2];
2786	unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
2787	unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
2788	unsigned long __reserved11[2];
2789	unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
2790	unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
2791	unsigned long __reserved12[4];
2792};
2793#endif
2794
2795/* mmustat_conf()
2796 * TRAP:	HV_FAST_TRAP
2797 * FUNCTION:	HV_FAST_MMUSTAT_CONF
2798 * ARG0:	real address
2799 * RET0:	status
2800 * RET1:	real address
2801 * ERRORS:	ENORADDR	Invalid real address
2802 *		EBADALIGN	Real address not aligned on 64-byte boundary
2803 *		EBADTRAP	API not supported on this processor
2804 *
2805 * Enable MMU statistic gathering using the buffer at the given real
2806 * address on the current virtual CPU.  The new buffer real address
2807 * is given in ARG1, and the previously specified buffer real address
2808 * is returned in RET1, or is returned as zero for the first invocation.
2809 *
2810 * If the passed in real address argument is zero, this will disable
2811 * MMU statistic collection on the current virtual CPU.  If an error is
2812 * returned then no statistics are collected.
2813 *
2814 * The buffer contents should be initialized to all zeros before being
2815 * given to the hypervisor or else the statistics will be meaningless.
2816 */
2817#define HV_FAST_MMUSTAT_CONF		0x102
2818
2819/* mmustat_info()
2820 * TRAP:	HV_FAST_TRAP
2821 * FUNCTION:	HV_FAST_MMUSTAT_INFO
2822 * RET0:	status
2823 * RET1:	real address
2824 * ERRORS:	EBADTRAP	API not supported on this processor
2825 *
2826 * Return the current state and real address of the currently configured
2827 * MMU statistics buffer on the current virtual CPU.
2828 */
2829#define HV_FAST_MMUSTAT_INFO		0x103
2830
2831#ifndef __ASSEMBLY__
2832extern unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
2833extern unsigned long sun4v_mmustat_info(unsigned long *ra);
2834#endif
2835
2836/* NCS crypto services  */
2837
2838/* ncs_request() sub-function numbers */
2839#define HV_NCS_QCONF			0x01
2840#define HV_NCS_QTAIL_UPDATE		0x02
2841
2842#ifndef __ASSEMBLY__
2843struct hv_ncs_queue_entry {
2844	/* MAU Control Register */
2845	unsigned long	mau_control;
2846#define MAU_CONTROL_INV_PARITY	0x0000000000002000
2847#define MAU_CONTROL_STRAND	0x0000000000001800
2848#define MAU_CONTROL_BUSY	0x0000000000000400
2849#define MAU_CONTROL_INT		0x0000000000000200
2850#define MAU_CONTROL_OP		0x00000000000001c0
2851#define MAU_CONTROL_OP_SHIFT	6
2852#define MAU_OP_LOAD_MA_MEMORY	0x0
2853#define MAU_OP_STORE_MA_MEMORY	0x1
2854#define MAU_OP_MODULAR_MULT	0x2
2855#define MAU_OP_MODULAR_REDUCE	0x3
2856#define MAU_OP_MODULAR_EXP_LOOP	0x4
2857#define MAU_CONTROL_LEN		0x000000000000003f
2858#define MAU_CONTROL_LEN_SHIFT	0
2859
2860	/* Real address of bytes to load or store bytes
2861	 * into/out-of the MAU.
2862	 */
2863	unsigned long	mau_mpa;
2864
2865	/* Modular Arithmetic MA Offset Register.  */
2866	unsigned long	mau_ma;
2867
2868	/* Modular Arithmetic N Prime Register.  */
2869	unsigned long	mau_np;
2870};
2871
2872struct hv_ncs_qconf_arg {
2873	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2874	unsigned long	base;     /* Real address base of queue */
2875	unsigned long	end;	  /* Real address end of queue */
2876	unsigned long	num_ents; /* Number of entries in queue */
2877};
2878
2879struct hv_ncs_qtail_update_arg {
2880	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2881	unsigned long	tail;     /* New tail index to use */
2882	unsigned long	syncflag; /* only SYNCFLAG_SYNC is implemented */
2883#define HV_NCS_SYNCFLAG_SYNC	0x00
2884#define HV_NCS_SYNCFLAG_ASYNC	0x01
2885};
2886#endif
2887
2888/* ncs_request()
2889 * TRAP:	HV_FAST_TRAP
2890 * FUNCTION:	HV_FAST_NCS_REQUEST
2891 * ARG0:	NCS sub-function
2892 * ARG1:	sub-function argument real address
2893 * ARG2:	size in bytes of sub-function argument
2894 * RET0:	status
2895 *
2896 * The MAU chip of the Niagara processor is not directly accessible
2897 * to privileged code, instead it is programmed indirectly via this
2898 * hypervisor API.
2899 *
2900 * The interfaces defines a queue of MAU operations to perform.
2901 * Privileged code registers a queue with the hypervisor by invoking
2902 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
2903 * base, end, and number of entries of the queue.  Each queue entry
2904 * contains a MAU register struct block.
2905 *
2906 * The privileged code then proceeds to add entries to the queue and
2907 * then invoke the HV_NCS_QTAIL_UPDATE sub-function.  Since only
2908 * synchronous operations are supported by the current hypervisor,
2909 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
2910 * completion and return HV_EOK, or return an error code.
2911 *
2912 * The real address of the sub-function argument must be aligned on at
2913 * least an 8-byte boundary.
2914 *
2915 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
2916 * offset, into the queue and must be less than or equal the 'num_ents'
2917 * argument given in the HV_NCS_QCONF call.
2918 */
2919#define HV_FAST_NCS_REQUEST		0x110
2920
2921#ifndef __ASSEMBLY__
2922extern unsigned long sun4v_ncs_request(unsigned long request,
2923				       unsigned long arg_ra,
2924				       unsigned long arg_size);
2925#endif
2926
2927#define HV_FAST_FIRE_GET_PERFREG	0x120
2928#define HV_FAST_FIRE_SET_PERFREG	0x121
2929
2930/* Function numbers for HV_CORE_TRAP.  */
2931#define HV_CORE_SET_VER			0x00
2932#define HV_CORE_PUTCHAR			0x01
2933#define HV_CORE_EXIT			0x02
2934#define HV_CORE_GET_VER			0x03
2935
2936/* Hypervisor API groups for use with HV_CORE_SET_VER and
2937 * HV_CORE_GET_VER.
2938 */
2939#define HV_GRP_SUN4V			0x0000
2940#define HV_GRP_CORE			0x0001
2941#define HV_GRP_INTR			0x0002
2942#define HV_GRP_SOFT_STATE		0x0003
2943#define HV_GRP_PCI			0x0100
2944#define HV_GRP_LDOM			0x0101
2945#define HV_GRP_SVC_CHAN			0x0102
2946#define HV_GRP_NCS			0x0103
2947#define HV_GRP_RNG			0x0104
2948#define HV_GRP_NIAG_PERF		0x0200
2949#define HV_GRP_FIRE_PERF		0x0201
2950#define HV_GRP_N2_CPU			0x0202
2951#define HV_GRP_NIU			0x0204
2952#define HV_GRP_VF_CPU			0x0205
2953#define HV_GRP_DIAG			0x0300
2954
2955#ifndef __ASSEMBLY__
2956extern unsigned long sun4v_get_version(unsigned long group,
2957				       unsigned long *major,
2958				       unsigned long *minor);
2959extern unsigned long sun4v_set_version(unsigned long group,
2960				       unsigned long major,
2961				       unsigned long minor,
2962				       unsigned long *actual_minor);
2963
2964extern int sun4v_hvapi_register(unsigned long group, unsigned long major,
2965				unsigned long *minor);
2966extern void sun4v_hvapi_unregister(unsigned long group);
2967extern int sun4v_hvapi_get(unsigned long group,
2968			   unsigned long *major,
2969			   unsigned long *minor);
2970extern void sun4v_hvapi_init(void);
2971#endif
2972
2973#endif /* !(_SPARC64_HYPERVISOR_H) */
2974