• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/powerpc/platforms/pseries/
1/*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24#undef DEBUG
25
26#include <linux/delay.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/pci.h>
30#include <linux/proc_fs.h>
31#include <linux/rbtree.h>
32#include <linux/seq_file.h>
33#include <linux/spinlock.h>
34#include <linux/of.h>
35
36#include <asm/atomic.h>
37#include <asm/eeh.h>
38#include <asm/eeh_event.h>
39#include <asm/io.h>
40#include <asm/machdep.h>
41#include <asm/ppc-pci.h>
42#include <asm/rtas.h>
43
44
45/** Overview:
46 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
47 *  dealing with PCI bus errors that can't be dealt with within the
48 *  usual PCI framework, except by check-stopping the CPU.  Systems
49 *  that are designed for high-availability/reliability cannot afford
50 *  to crash due to a "mere" PCI error, thus the need for EEH.
51 *  An EEH-capable bridge operates by converting a detected error
52 *  into a "slot freeze", taking the PCI adapter off-line, making
53 *  the slot behave, from the OS'es point of view, as if the slot
54 *  were "empty": all reads return 0xff's and all writes are silently
55 *  ignored.  EEH slot isolation events can be triggered by parity
56 *  errors on the address or data busses (e.g. during posted writes),
57 *  which in turn might be caused by low voltage on the bus, dust,
58 *  vibration, humidity, radioactivity or plain-old failed hardware.
59 *
60 *  Note, however, that one of the leading causes of EEH slot
61 *  freeze events are buggy device drivers, buggy device microcode,
62 *  or buggy device hardware.  This is because any attempt by the
63 *  device to bus-master data to a memory address that is not
64 *  assigned to the device will trigger a slot freeze.   (The idea
65 *  is to prevent devices-gone-wild from corrupting system memory).
66 *  Buggy hardware/drivers will have a miserable time co-existing
67 *  with EEH.
68 *
69 *  Ideally, a PCI device driver, when suspecting that an isolation
70 *  event has occured (e.g. by reading 0xff's), will then ask EEH
71 *  whether this is the case, and then take appropriate steps to
72 *  reset the PCI slot, the PCI device, and then resume operations.
73 *  However, until that day,  the checking is done here, with the
74 *  eeh_check_failure() routine embedded in the MMIO macros.  If
75 *  the slot is found to be isolated, an "EEH Event" is synthesized
76 *  and sent out for processing.
77 */
78
79/* If a device driver keeps reading an MMIO register in an interrupt
80 * handler after a slot isolation event, it might be broken.
81 * This sets the threshold for how many read attempts we allow
82 * before printing an error message.
83 */
84#define EEH_MAX_FAILS	2100000
85
86/* Time to wait for a PCI slot to report status, in milliseconds */
87#define PCI_BUS_RESET_WAIT_MSEC (60*1000)
88
89/* RTAS tokens */
90static int ibm_set_eeh_option;
91static int ibm_set_slot_reset;
92static int ibm_read_slot_reset_state;
93static int ibm_read_slot_reset_state2;
94static int ibm_slot_error_detail;
95static int ibm_get_config_addr_info;
96static int ibm_get_config_addr_info2;
97static int ibm_configure_bridge;
98
99int eeh_subsystem_enabled;
100EXPORT_SYMBOL(eeh_subsystem_enabled);
101
102/* Lock to avoid races due to multiple reports of an error */
103static DEFINE_RAW_SPINLOCK(confirm_error_lock);
104
105/* Buffer for reporting slot-error-detail rtas calls. Its here
106 * in BSS, and not dynamically alloced, so that it ends up in
107 * RMO where RTAS can access it.
108 */
109static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
110static DEFINE_SPINLOCK(slot_errbuf_lock);
111static int eeh_error_buf_size;
112
113/* Buffer for reporting pci register dumps. Its here in BSS, and
114 * not dynamically alloced, so that it ends up in RMO where RTAS
115 * can access it.
116 */
117#define EEH_PCI_REGS_LOG_LEN 4096
118static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
119
120/* System monitoring statistics */
121static unsigned long no_device;
122static unsigned long no_dn;
123static unsigned long no_cfg_addr;
124static unsigned long ignored_check;
125static unsigned long total_mmio_ffs;
126static unsigned long false_positives;
127static unsigned long slot_resets;
128
129#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
130
131/* --------------------------------------------------------------- */
132/* Below lies the EEH event infrastructure */
133
134static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
135                                   char *driver_log, size_t loglen)
136{
137	int config_addr;
138	unsigned long flags;
139	int rc;
140
141	/* Log the error with the rtas logger */
142	spin_lock_irqsave(&slot_errbuf_lock, flags);
143	memset(slot_errbuf, 0, eeh_error_buf_size);
144
145	/* Use PE configuration address, if present */
146	config_addr = pdn->eeh_config_addr;
147	if (pdn->eeh_pe_config_addr)
148		config_addr = pdn->eeh_pe_config_addr;
149
150	rc = rtas_call(ibm_slot_error_detail,
151	               8, 1, NULL, config_addr,
152	               BUID_HI(pdn->phb->buid),
153	               BUID_LO(pdn->phb->buid),
154	               virt_to_phys(driver_log), loglen,
155	               virt_to_phys(slot_errbuf),
156	               eeh_error_buf_size,
157	               severity);
158
159	if (rc == 0)
160		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
161	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
162}
163
164/**
165 * gather_pci_data - copy assorted PCI config space registers to buff
166 * @pdn: device to report data for
167 * @buf: point to buffer in which to log
168 * @len: amount of room in buffer
169 *
170 * This routine captures assorted PCI configuration space data,
171 * and puts them into a buffer for RTAS error logging.
172 */
173static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
174{
175	struct pci_dev *dev = pdn->pcidev;
176	u32 cfg;
177	int cap, i;
178	int n = 0;
179
180	n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
181	printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
182
183	rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
184	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
185	printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
186
187	rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
188	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
189	printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
190
191	if (!dev) {
192		printk(KERN_WARNING "EEH: no PCI device for this of node\n");
193		return n;
194	}
195
196	/* Gather bridge-specific registers */
197	if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
198		rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
199		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
200		printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
201
202		rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
203		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
204		printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
205	}
206
207	/* Dump out the PCI-X command and status regs */
208	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
209	if (cap) {
210		rtas_read_config(pdn, cap, 4, &cfg);
211		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
212		printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
213
214		rtas_read_config(pdn, cap+4, 4, &cfg);
215		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
216		printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
217	}
218
219	/* If PCI-E capable, dump PCI-E cap 10, and the AER */
220	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
221	if (cap) {
222		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
223		printk(KERN_WARNING
224		       "EEH: PCI-E capabilities and status follow:\n");
225
226		for (i=0; i<=8; i++) {
227			rtas_read_config(pdn, cap+4*i, 4, &cfg);
228			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
229			printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
230		}
231
232		cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
233		if (cap) {
234			n += scnprintf(buf+n, len-n, "pci-e AER:\n");
235			printk(KERN_WARNING
236			       "EEH: PCI-E AER capability register set follows:\n");
237
238			for (i=0; i<14; i++) {
239				rtas_read_config(pdn, cap+4*i, 4, &cfg);
240				n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
241				printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
242			}
243		}
244	}
245
246	/* Gather status on devices under the bridge */
247	if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
248		struct device_node *dn;
249
250		for_each_child_of_node(pdn->node, dn) {
251			pdn = PCI_DN(dn);
252			if (pdn)
253				n += gather_pci_data(pdn, buf+n, len-n);
254		}
255	}
256
257	return n;
258}
259
260void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
261{
262	size_t loglen = 0;
263	pci_regs_buf[0] = 0;
264
265	rtas_pci_enable(pdn, EEH_THAW_MMIO);
266	loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
267
268	rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
269}
270
271/**
272 * read_slot_reset_state - Read the reset state of a device node's slot
273 * @dn: device node to read
274 * @rets: array to return results in
275 */
276static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
277{
278	int token, outputs;
279	int config_addr;
280
281	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
282		token = ibm_read_slot_reset_state2;
283		outputs = 4;
284	} else {
285		token = ibm_read_slot_reset_state;
286		rets[2] = 0; /* fake PE Unavailable info */
287		outputs = 3;
288	}
289
290	/* Use PE configuration address, if present */
291	config_addr = pdn->eeh_config_addr;
292	if (pdn->eeh_pe_config_addr)
293		config_addr = pdn->eeh_pe_config_addr;
294
295	return rtas_call(token, 3, outputs, rets, config_addr,
296			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
297}
298
299/**
300 * eeh_wait_for_slot_status - returns error status of slot
301 * @pdn pci device node
302 * @max_wait_msecs maximum number to millisecs to wait
303 *
304 * Return negative value if a permanent error, else return
305 * Partition Endpoint (PE) status value.
306 *
307 * If @max_wait_msecs is positive, then this routine will
308 * sleep until a valid status can be obtained, or until
309 * the max allowed wait time is exceeded, in which case
310 * a -2 is returned.
311 */
312int
313eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
314{
315	int rc;
316	int rets[3];
317	int mwait;
318
319	while (1) {
320		rc = read_slot_reset_state(pdn, rets);
321		if (rc) return rc;
322		if (rets[1] == 0) return -1;  /* EEH is not supported */
323
324		if (rets[0] != 5) return rets[0]; /* return actual status */
325
326		if (rets[2] == 0) return -1; /* permanently unavailable */
327
328		if (max_wait_msecs <= 0) break;
329
330		mwait = rets[2];
331		if (mwait <= 0) {
332			printk (KERN_WARNING
333			        "EEH: Firmware returned bad wait value=%d\n", mwait);
334			mwait = 1000;
335		} else if (mwait > 300*1000) {
336			printk (KERN_WARNING
337			        "EEH: Firmware is taking too long, time=%d\n", mwait);
338			mwait = 300*1000;
339		}
340		max_wait_msecs -= mwait;
341		msleep (mwait);
342	}
343
344	printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
345	return -2;
346}
347
348/**
349 * eeh_token_to_phys - convert EEH address token to phys address
350 * @token i/o token, should be address in the form 0xA....
351 */
352static inline unsigned long eeh_token_to_phys(unsigned long token)
353{
354	pte_t *ptep;
355	unsigned long pa;
356
357	ptep = find_linux_pte(init_mm.pgd, token);
358	if (!ptep)
359		return token;
360	pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362	return pa | (token & (PAGE_SIZE-1));
363}
364
365/**
366 * Return the "partitionable endpoint" (pe) under which this device lies
367 */
368struct device_node * find_device_pe(struct device_node *dn)
369{
370	while ((dn->parent) && PCI_DN(dn->parent) &&
371	      (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
372		dn = dn->parent;
373	}
374	return dn;
375}
376
377/** Mark all devices that are children of this device as failed.
378 *  Mark the device driver too, so that it can see the failure
379 *  immediately; this is critical, since some drivers poll
380 *  status registers in interrupts ... If a driver is polling,
381 *  and the slot is frozen, then the driver can deadlock in
382 *  an interrupt context, which is bad.
383 */
384
385static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
386{
387	struct device_node *dn;
388
389	for_each_child_of_node(parent, dn) {
390		if (PCI_DN(dn)) {
391			/* Mark the pci device driver too */
392			struct pci_dev *dev = PCI_DN(dn)->pcidev;
393
394			PCI_DN(dn)->eeh_mode |= mode_flag;
395
396			if (dev && dev->driver)
397				dev->error_state = pci_channel_io_frozen;
398
399			__eeh_mark_slot(dn, mode_flag);
400		}
401	}
402}
403
404void eeh_mark_slot (struct device_node *dn, int mode_flag)
405{
406	struct pci_dev *dev;
407	dn = find_device_pe (dn);
408
409	/* Back up one, since config addrs might be shared */
410	if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
411		dn = dn->parent;
412
413	PCI_DN(dn)->eeh_mode |= mode_flag;
414
415	/* Mark the pci device too */
416	dev = PCI_DN(dn)->pcidev;
417	if (dev)
418		dev->error_state = pci_channel_io_frozen;
419
420	__eeh_mark_slot(dn, mode_flag);
421}
422
423static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
424{
425	struct device_node *dn;
426
427	for_each_child_of_node(parent, dn) {
428		if (PCI_DN(dn)) {
429			PCI_DN(dn)->eeh_mode &= ~mode_flag;
430			PCI_DN(dn)->eeh_check_count = 0;
431			__eeh_clear_slot(dn, mode_flag);
432		}
433	}
434}
435
436void eeh_clear_slot (struct device_node *dn, int mode_flag)
437{
438	unsigned long flags;
439	raw_spin_lock_irqsave(&confirm_error_lock, flags);
440
441	dn = find_device_pe (dn);
442
443	/* Back up one, since config addrs might be shared */
444	if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
445		dn = dn->parent;
446
447	PCI_DN(dn)->eeh_mode &= ~mode_flag;
448	PCI_DN(dn)->eeh_check_count = 0;
449	__eeh_clear_slot(dn, mode_flag);
450	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
451}
452
453/**
454 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
455 * @dn device node
456 * @dev pci device, if known
457 *
458 * Check for an EEH failure for the given device node.  Call this
459 * routine if the result of a read was all 0xff's and you want to
460 * find out if this is due to an EEH slot freeze.  This routine
461 * will query firmware for the EEH status.
462 *
463 * Returns 0 if there has not been an EEH error; otherwise returns
464 * a non-zero value and queues up a slot isolation event notification.
465 *
466 * It is safe to call this routine in an interrupt context.
467 */
468int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
469{
470	int ret;
471	int rets[3];
472	unsigned long flags;
473	struct pci_dn *pdn;
474	int rc = 0;
475	const char *location;
476
477	total_mmio_ffs++;
478
479	if (!eeh_subsystem_enabled)
480		return 0;
481
482	if (!dn) {
483		no_dn++;
484		return 0;
485	}
486	dn = find_device_pe(dn);
487	pdn = PCI_DN(dn);
488
489	/* Access to IO BARs might get this far and still not want checking. */
490	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
491	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
492		ignored_check++;
493		pr_debug("EEH: Ignored check (%x) for %s %s\n",
494			 pdn->eeh_mode, eeh_pci_name(dev), dn->full_name);
495		return 0;
496	}
497
498	if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
499		no_cfg_addr++;
500		return 0;
501	}
502
503	/* If we already have a pending isolation event for this
504	 * slot, we know it's bad already, we don't need to check.
505	 * Do this checking under a lock; as multiple PCI devices
506	 * in one slot might report errors simultaneously, and we
507	 * only want one error recovery routine running.
508	 */
509	raw_spin_lock_irqsave(&confirm_error_lock, flags);
510	rc = 1;
511	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
512		pdn->eeh_check_count ++;
513		if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) {
514			location = of_get_property(dn, "ibm,loc-code", NULL);
515			printk (KERN_ERR "EEH: %d reads ignored for recovering device at "
516				"location=%s driver=%s pci addr=%s\n",
517				pdn->eeh_check_count, location,
518				dev->driver->name, eeh_pci_name(dev));
519			printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n",
520				dev->driver->name);
521			dump_stack();
522		}
523		goto dn_unlock;
524	}
525
526	/*
527	 * Now test for an EEH failure.  This is VERY expensive.
528	 * Note that the eeh_config_addr may be a parent device
529	 * in the case of a device behind a bridge, or it may be
530	 * function zero of a multi-function device.
531	 * In any case they must share a common PHB.
532	 */
533	ret = read_slot_reset_state(pdn, rets);
534
535	/* If the call to firmware failed, punt */
536	if (ret != 0) {
537		printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
538		       ret, dn->full_name);
539		false_positives++;
540		pdn->eeh_false_positives ++;
541		rc = 0;
542		goto dn_unlock;
543	}
544
545	/* Note that config-io to empty slots may fail;
546	 * they are empty when they don't have children. */
547	if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
548		false_positives++;
549		pdn->eeh_false_positives ++;
550		rc = 0;
551		goto dn_unlock;
552	}
553
554	/* If EEH is not supported on this device, punt. */
555	if (rets[1] != 1) {
556		printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
557		       ret, dn->full_name);
558		false_positives++;
559		pdn->eeh_false_positives ++;
560		rc = 0;
561		goto dn_unlock;
562	}
563
564	/* If not the kind of error we know about, punt. */
565	if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
566		false_positives++;
567		pdn->eeh_false_positives ++;
568		rc = 0;
569		goto dn_unlock;
570	}
571
572	slot_resets++;
573
574	/* Avoid repeated reports of this failure, including problems
575	 * with other functions on this device, and functions under
576	 * bridges. */
577	eeh_mark_slot (dn, EEH_MODE_ISOLATED);
578	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
579
580	eeh_send_failure_event (dn, dev);
581
582	/* Most EEH events are due to device driver bugs.  Having
583	 * a stack trace will help the device-driver authors figure
584	 * out what happened.  So print that out. */
585	dump_stack();
586	return 1;
587
588dn_unlock:
589	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
590	return rc;
591}
592
593EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
594
595unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
596{
597	unsigned long addr;
598	struct pci_dev *dev;
599	struct device_node *dn;
600
601	/* Finding the phys addr + pci device; this is pretty quick. */
602	addr = eeh_token_to_phys((unsigned long __force) token);
603	dev = pci_get_device_by_addr(addr);
604	if (!dev) {
605		no_device++;
606		return val;
607	}
608
609	dn = pci_device_to_OF_node(dev);
610	eeh_dn_check_failure (dn, dev);
611
612	pci_dev_put(dev);
613	return val;
614}
615
616EXPORT_SYMBOL(eeh_check_failure);
617
618/* ------------------------------------------------------------- */
619/* The code below deals with error recovery */
620
621/**
622 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
623 * @pdn pci device node
624 */
625
626int
627rtas_pci_enable(struct pci_dn *pdn, int function)
628{
629	int config_addr;
630	int rc;
631
632	/* Use PE configuration address, if present */
633	config_addr = pdn->eeh_config_addr;
634	if (pdn->eeh_pe_config_addr)
635		config_addr = pdn->eeh_pe_config_addr;
636
637	rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
638	               config_addr,
639	               BUID_HI(pdn->phb->buid),
640	               BUID_LO(pdn->phb->buid),
641		            function);
642
643	if (rc)
644		printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
645		        function, rc, pdn->node->full_name);
646
647	rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
648	if ((rc == 4) && (function == EEH_THAW_MMIO))
649		return 0;
650
651	return rc;
652}
653
654/**
655 * rtas_pci_slot_reset - raises/lowers the pci #RST line
656 * @pdn pci device node
657 * @state: 1/0 to raise/lower the #RST
658 *
659 * Clear the EEH-frozen condition on a slot.  This routine
660 * asserts the PCI #RST line if the 'state' argument is '1',
661 * and drops the #RST line if 'state is '0'.  This routine is
662 * safe to call in an interrupt context.
663 *
664 */
665
666static void
667rtas_pci_slot_reset(struct pci_dn *pdn, int state)
668{
669	int config_addr;
670	int rc;
671
672	BUG_ON (pdn==NULL);
673
674	if (!pdn->phb) {
675		printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
676		        pdn->node->full_name);
677		return;
678	}
679
680	/* Use PE configuration address, if present */
681	config_addr = pdn->eeh_config_addr;
682	if (pdn->eeh_pe_config_addr)
683		config_addr = pdn->eeh_pe_config_addr;
684
685	rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
686	               config_addr,
687	               BUID_HI(pdn->phb->buid),
688	               BUID_LO(pdn->phb->buid),
689	               state);
690	if (rc)
691		printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
692		        " (%d) #RST=%d dn=%s\n",
693		        rc, state, pdn->node->full_name);
694}
695
696/**
697 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
698 * @dev:	pci device struct
699 * @state:	reset state to enter
700 *
701 * Return value:
702 * 	0 if success
703 **/
704int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
705{
706	struct device_node *dn = pci_device_to_OF_node(dev);
707	struct pci_dn *pdn = PCI_DN(dn);
708
709	switch (state) {
710	case pcie_deassert_reset:
711		rtas_pci_slot_reset(pdn, 0);
712		break;
713	case pcie_hot_reset:
714		rtas_pci_slot_reset(pdn, 1);
715		break;
716	case pcie_warm_reset:
717		rtas_pci_slot_reset(pdn, 3);
718		break;
719	default:
720		return -EINVAL;
721	};
722
723	return 0;
724}
725
726/**
727 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
728 * @pdn: pci device node to be reset.
729 *
730 *  Return 0 if success, else a non-zero value.
731 */
732
733static void __rtas_set_slot_reset(struct pci_dn *pdn)
734{
735	struct pci_dev *dev = pdn->pcidev;
736
737	/* Determine type of EEH reset required by device,
738	 * default hot reset or fundamental reset
739	 */
740	if (dev && dev->needs_freset)
741		rtas_pci_slot_reset(pdn, 3);
742	else
743		rtas_pci_slot_reset(pdn, 1);
744
745	/* The PCI bus requires that the reset be held high for at least
746	 * a 100 milliseconds. We wait a bit longer 'just in case'.  */
747
748#define PCI_BUS_RST_HOLD_TIME_MSEC 250
749	msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
750
751	/* We might get hit with another EEH freeze as soon as the
752	 * pci slot reset line is dropped. Make sure we don't miss
753	 * these, and clear the flag now. */
754	eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
755
756	rtas_pci_slot_reset (pdn, 0);
757
758	/* After a PCI slot has been reset, the PCI Express spec requires
759	 * a 1.5 second idle time for the bus to stabilize, before starting
760	 * up traffic. */
761#define PCI_BUS_SETTLE_TIME_MSEC 1800
762	msleep (PCI_BUS_SETTLE_TIME_MSEC);
763}
764
765int rtas_set_slot_reset(struct pci_dn *pdn)
766{
767	int i, rc;
768
769	/* Take three shots at resetting the bus */
770	for (i=0; i<3; i++) {
771		__rtas_set_slot_reset(pdn);
772
773		rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
774		if (rc == 0)
775			return 0;
776
777		if (rc < 0) {
778			printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
779			       pdn->node->full_name);
780			return -1;
781		}
782		printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
783		       i+1, pdn->node->full_name, rc);
784	}
785
786	return -1;
787}
788
789/* ------------------------------------------------------- */
790/** Save and restore of PCI BARs
791 *
792 * Although firmware will set up BARs during boot, it doesn't
793 * set up device BAR's after a device reset, although it will,
794 * if requested, set up bridge configuration. Thus, we need to
795 * configure the PCI devices ourselves.
796 */
797
798/**
799 * __restore_bars - Restore the Base Address Registers
800 * @pdn: pci device node
801 *
802 * Loads the PCI configuration space base address registers,
803 * the expansion ROM base address, the latency timer, and etc.
804 * from the saved values in the device node.
805 */
806static inline void __restore_bars (struct pci_dn *pdn)
807{
808	int i;
809	u32 cmd;
810
811	if (NULL==pdn->phb) return;
812	for (i=4; i<10; i++) {
813		rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
814	}
815
816	/* 12 == Expansion ROM Address */
817	rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
818
819#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
820#define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
821
822	rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
823	            SAVED_BYTE(PCI_CACHE_LINE_SIZE));
824
825	rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
826	            SAVED_BYTE(PCI_LATENCY_TIMER));
827
828	/* max latency, min grant, interrupt pin and line */
829	rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
830
831	/* Restore PERR & SERR bits, some devices require it,
832	   don't touch the other command bits */
833	rtas_read_config(pdn, PCI_COMMAND, 4, &cmd);
834	if (pdn->config_space[1] & PCI_COMMAND_PARITY)
835		cmd |= PCI_COMMAND_PARITY;
836	else
837		cmd &= ~PCI_COMMAND_PARITY;
838	if (pdn->config_space[1] & PCI_COMMAND_SERR)
839		cmd |= PCI_COMMAND_SERR;
840	else
841		cmd &= ~PCI_COMMAND_SERR;
842	rtas_write_config(pdn, PCI_COMMAND, 4, cmd);
843}
844
845/**
846 * eeh_restore_bars - restore the PCI config space info
847 *
848 * This routine performs a recursive walk to the children
849 * of this device as well.
850 */
851void eeh_restore_bars(struct pci_dn *pdn)
852{
853	struct device_node *dn;
854	if (!pdn)
855		return;
856
857	if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
858		__restore_bars (pdn);
859
860	for_each_child_of_node(pdn->node, dn)
861		eeh_restore_bars (PCI_DN(dn));
862}
863
864/**
865 * eeh_save_bars - save device bars
866 *
867 * Save the values of the device bars. Unlike the restore
868 * routine, this routine is *not* recursive. This is because
869 * PCI devices are added individuallly; but, for the restore,
870 * an entire slot is reset at a time.
871 */
872static void eeh_save_bars(struct pci_dn *pdn)
873{
874	int i;
875
876	if (!pdn )
877		return;
878
879	for (i = 0; i < 16; i++)
880		rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
881}
882
883void
884rtas_configure_bridge(struct pci_dn *pdn)
885{
886	int config_addr;
887	int rc;
888
889	/* Use PE configuration address, if present */
890	config_addr = pdn->eeh_config_addr;
891	if (pdn->eeh_pe_config_addr)
892		config_addr = pdn->eeh_pe_config_addr;
893
894	rc = rtas_call(ibm_configure_bridge,3,1, NULL,
895	               config_addr,
896	               BUID_HI(pdn->phb->buid),
897	               BUID_LO(pdn->phb->buid));
898	if (rc) {
899		printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
900		        rc, pdn->node->full_name);
901	}
902}
903
904/* ------------------------------------------------------------- */
905/* The code below deals with enabling EEH for devices during  the
906 * early boot sequence.  EEH must be enabled before any PCI probing
907 * can be done.
908 */
909
910#define EEH_ENABLE 1
911
912struct eeh_early_enable_info {
913	unsigned int buid_hi;
914	unsigned int buid_lo;
915};
916
917static int get_pe_addr (int config_addr,
918                        struct eeh_early_enable_info *info)
919{
920	unsigned int rets[3];
921	int ret;
922
923	/* Use latest config-addr token on power6 */
924	if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
925		/* Make sure we have a PE in hand */
926		ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
927			config_addr, info->buid_hi, info->buid_lo, 1);
928		if (ret || (rets[0]==0))
929			return 0;
930
931		ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
932			config_addr, info->buid_hi, info->buid_lo, 0);
933		if (ret)
934			return 0;
935		return rets[0];
936	}
937
938	/* Use older config-addr token on power5 */
939	if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
940		ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
941			config_addr, info->buid_hi, info->buid_lo, 0);
942		if (ret)
943			return 0;
944		return rets[0];
945	}
946	return 0;
947}
948
949/* Enable eeh for the given device node. */
950static void *early_enable_eeh(struct device_node *dn, void *data)
951{
952	unsigned int rets[3];
953	struct eeh_early_enable_info *info = data;
954	int ret;
955	const u32 *class_code = of_get_property(dn, "class-code", NULL);
956	const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
957	const u32 *device_id = of_get_property(dn, "device-id", NULL);
958	const u32 *regs;
959	int enable;
960	struct pci_dn *pdn = PCI_DN(dn);
961
962	pdn->class_code = 0;
963	pdn->eeh_mode = 0;
964	pdn->eeh_check_count = 0;
965	pdn->eeh_freeze_count = 0;
966	pdn->eeh_false_positives = 0;
967
968	if (!of_device_is_available(dn))
969		return NULL;
970
971	/* Ignore bad nodes. */
972	if (!class_code || !vendor_id || !device_id)
973		return NULL;
974
975	/* There is nothing to check on PCI to ISA bridges */
976	if (dn->type && !strcmp(dn->type, "isa")) {
977		pdn->eeh_mode |= EEH_MODE_NOCHECK;
978		return NULL;
979	}
980	pdn->class_code = *class_code;
981
982	/* Ok... see if this device supports EEH.  Some do, some don't,
983	 * and the only way to find out is to check each and every one. */
984	regs = of_get_property(dn, "reg", NULL);
985	if (regs) {
986		/* First register entry is addr (00BBSS00)  */
987		/* Try to enable eeh */
988		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
989		                regs[0], info->buid_hi, info->buid_lo,
990		                EEH_ENABLE);
991
992		enable = 0;
993		if (ret == 0) {
994			pdn->eeh_config_addr = regs[0];
995
996			/* If the newer, better, ibm,get-config-addr-info is supported,
997			 * then use that instead. */
998			pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
999
1000			/* Some older systems (Power4) allow the
1001			 * ibm,set-eeh-option call to succeed even on nodes
1002			 * where EEH is not supported. Verify support
1003			 * explicitly. */
1004			ret = read_slot_reset_state(pdn, rets);
1005			if ((ret == 0) && (rets[1] == 1))
1006				enable = 1;
1007		}
1008
1009		if (enable) {
1010			eeh_subsystem_enabled = 1;
1011			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1012
1013			pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1014				 dn->full_name, pdn->eeh_config_addr,
1015				 pdn->eeh_pe_config_addr);
1016		} else {
1017
1018			/* This device doesn't support EEH, but it may have an
1019			 * EEH parent, in which case we mark it as supported. */
1020			if (dn->parent && PCI_DN(dn->parent)
1021			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1022				/* Parent supports EEH. */
1023				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1024				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1025				return NULL;
1026			}
1027		}
1028	} else {
1029		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1030		       dn->full_name);
1031	}
1032
1033	eeh_save_bars(pdn);
1034	return NULL;
1035}
1036
1037/*
1038 * Initialize EEH by trying to enable it for all of the adapters in the system.
1039 * As a side effect we can determine here if eeh is supported at all.
1040 * Note that we leave EEH on so failed config cycles won't cause a machine
1041 * check.  If a user turns off EEH for a particular adapter they are really
1042 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1043 * grant access to a slot if EEH isn't enabled, and so we always enable
1044 * EEH for all slots/all devices.
1045 *
1046 * The eeh-force-off option disables EEH checking globally, for all slots.
1047 * Even if force-off is set, the EEH hardware is still enabled, so that
1048 * newer systems can boot.
1049 */
1050void __init eeh_init(void)
1051{
1052	struct device_node *phb, *np;
1053	struct eeh_early_enable_info info;
1054
1055	raw_spin_lock_init(&confirm_error_lock);
1056	spin_lock_init(&slot_errbuf_lock);
1057
1058	np = of_find_node_by_path("/rtas");
1059	if (np == NULL)
1060		return;
1061
1062	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1063	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1064	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1065	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1066	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1067	ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1068	ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1069	ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1070
1071	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1072		return;
1073
1074	eeh_error_buf_size = rtas_token("rtas-error-log-max");
1075	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1076		eeh_error_buf_size = 1024;
1077	}
1078	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1079		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1080		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1081		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1082	}
1083
1084	/* Enable EEH for all adapters.  Note that eeh requires buid's */
1085	for (phb = of_find_node_by_name(NULL, "pci"); phb;
1086	     phb = of_find_node_by_name(phb, "pci")) {
1087		unsigned long buid;
1088
1089		buid = get_phb_buid(phb);
1090		if (buid == 0 || PCI_DN(phb) == NULL)
1091			continue;
1092
1093		info.buid_lo = BUID_LO(buid);
1094		info.buid_hi = BUID_HI(buid);
1095		traverse_pci_devices(phb, early_enable_eeh, &info);
1096	}
1097
1098	if (eeh_subsystem_enabled)
1099		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1100	else
1101		printk(KERN_WARNING "EEH: No capable adapters found\n");
1102}
1103
1104/**
1105 * eeh_add_device_early - enable EEH for the indicated device_node
1106 * @dn: device node for which to set up EEH
1107 *
1108 * This routine must be used to perform EEH initialization for PCI
1109 * devices that were added after system boot (e.g. hotplug, dlpar).
1110 * This routine must be called before any i/o is performed to the
1111 * adapter (inluding any config-space i/o).
1112 * Whether this actually enables EEH or not for this device depends
1113 * on the CEC architecture, type of the device, on earlier boot
1114 * command-line arguments & etc.
1115 */
1116static void eeh_add_device_early(struct device_node *dn)
1117{
1118	struct pci_controller *phb;
1119	struct eeh_early_enable_info info;
1120
1121	if (!dn || !PCI_DN(dn))
1122		return;
1123	phb = PCI_DN(dn)->phb;
1124
1125	/* USB Bus children of PCI devices will not have BUID's */
1126	if (NULL == phb || 0 == phb->buid)
1127		return;
1128
1129	info.buid_hi = BUID_HI(phb->buid);
1130	info.buid_lo = BUID_LO(phb->buid);
1131	early_enable_eeh(dn, &info);
1132}
1133
1134void eeh_add_device_tree_early(struct device_node *dn)
1135{
1136	struct device_node *sib;
1137
1138	for_each_child_of_node(dn, sib)
1139		eeh_add_device_tree_early(sib);
1140	eeh_add_device_early(dn);
1141}
1142EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1143
1144/**
1145 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1146 * @dev: pci device for which to set up EEH
1147 *
1148 * This routine must be used to complete EEH initialization for PCI
1149 * devices that were added after system boot (e.g. hotplug, dlpar).
1150 */
1151static void eeh_add_device_late(struct pci_dev *dev)
1152{
1153	struct device_node *dn;
1154	struct pci_dn *pdn;
1155
1156	if (!dev || !eeh_subsystem_enabled)
1157		return;
1158
1159	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1160
1161	dn = pci_device_to_OF_node(dev);
1162	pdn = PCI_DN(dn);
1163	if (pdn->pcidev == dev) {
1164		pr_debug("EEH: Already referenced !\n");
1165		return;
1166	}
1167	WARN_ON(pdn->pcidev);
1168
1169	pci_dev_get (dev);
1170	pdn->pcidev = dev;
1171
1172	pci_addr_cache_insert_device(dev);
1173	eeh_sysfs_add_device(dev);
1174}
1175
1176void eeh_add_device_tree_late(struct pci_bus *bus)
1177{
1178	struct pci_dev *dev;
1179
1180	list_for_each_entry(dev, &bus->devices, bus_list) {
1181 		eeh_add_device_late(dev);
1182 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1183 			struct pci_bus *subbus = dev->subordinate;
1184 			if (subbus)
1185 				eeh_add_device_tree_late(subbus);
1186 		}
1187	}
1188}
1189EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1190
1191/**
1192 * eeh_remove_device - undo EEH setup for the indicated pci device
1193 * @dev: pci device to be removed
1194 *
1195 * This routine should be called when a device is removed from
1196 * a running system (e.g. by hotplug or dlpar).  It unregisters
1197 * the PCI device from the EEH subsystem.  I/O errors affecting
1198 * this device will no longer be detected after this call; thus,
1199 * i/o errors affecting this slot may leave this device unusable.
1200 */
1201static void eeh_remove_device(struct pci_dev *dev)
1202{
1203	struct device_node *dn;
1204	if (!dev || !eeh_subsystem_enabled)
1205		return;
1206
1207	/* Unregister the device with the EEH/PCI address search system */
1208	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1209
1210	dn = pci_device_to_OF_node(dev);
1211	if (PCI_DN(dn)->pcidev == NULL) {
1212		pr_debug("EEH: Not referenced !\n");
1213		return;
1214	}
1215	PCI_DN(dn)->pcidev = NULL;
1216	pci_dev_put (dev);
1217
1218	pci_addr_cache_remove_device(dev);
1219	eeh_sysfs_remove_device(dev);
1220}
1221
1222void eeh_remove_bus_device(struct pci_dev *dev)
1223{
1224	struct pci_bus *bus = dev->subordinate;
1225	struct pci_dev *child, *tmp;
1226
1227	eeh_remove_device(dev);
1228
1229	if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1230		list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1231			 eeh_remove_bus_device(child);
1232	}
1233}
1234EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1235
1236static int proc_eeh_show(struct seq_file *m, void *v)
1237{
1238	if (0 == eeh_subsystem_enabled) {
1239		seq_printf(m, "EEH Subsystem is globally disabled\n");
1240		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1241	} else {
1242		seq_printf(m, "EEH Subsystem is enabled\n");
1243		seq_printf(m,
1244				"no device=%ld\n"
1245				"no device node=%ld\n"
1246				"no config address=%ld\n"
1247				"check not wanted=%ld\n"
1248				"eeh_total_mmio_ffs=%ld\n"
1249				"eeh_false_positives=%ld\n"
1250				"eeh_slot_resets=%ld\n",
1251				no_device, no_dn, no_cfg_addr,
1252				ignored_check, total_mmio_ffs,
1253				false_positives,
1254				slot_resets);
1255	}
1256
1257	return 0;
1258}
1259
1260static int proc_eeh_open(struct inode *inode, struct file *file)
1261{
1262	return single_open(file, proc_eeh_show, NULL);
1263}
1264
1265static const struct file_operations proc_eeh_operations = {
1266	.open      = proc_eeh_open,
1267	.read      = seq_read,
1268	.llseek    = seq_lseek,
1269	.release   = single_release,
1270};
1271
1272static int __init eeh_init_proc(void)
1273{
1274	if (machine_is(pseries))
1275		proc_create("ppc64/eeh", 0, NULL, &proc_eeh_operations);
1276	return 0;
1277}
1278__initcall(eeh_init_proc);
1279