• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/powerpc/platforms/ps3/
1/*
2 *  PS3 Platform spu routines.
3 *
4 *  Copyright (C) 2006 Sony Computer Entertainment Inc.
5 *  Copyright 2006 Sony Corp.
6 *
7 *  This program is free software; you can redistribute it and/or modify
8 *  it under the terms of the GNU General Public License as published by
9 *  the Free Software Foundation; version 2 of the License.
10 *
11 *  This program is distributed in the hope that it will be useful,
12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 *  GNU General Public License for more details.
15 *
16 *  You should have received a copy of the GNU General Public License
17 *  along with this program; if not, write to the Free Software
18 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19 */
20
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/slab.h>
24#include <linux/mmzone.h>
25#include <linux/io.h>
26#include <linux/mm.h>
27
28#include <asm/spu.h>
29#include <asm/spu_priv1.h>
30#include <asm/lv1call.h>
31#include <asm/ps3.h>
32
33#include "../cell/spufs/spufs.h"
34#include "platform.h"
35
36/* spu_management_ops */
37
38/**
39 * enum spe_type - Type of spe to create.
40 * @spe_type_logical: Standard logical spe.
41 *
42 * For use with lv1_construct_logical_spe().  The current HV does not support
43 * any types other than those listed.
44 */
45
46enum spe_type {
47	SPE_TYPE_LOGICAL = 0,
48};
49
50/**
51 * struct spe_shadow - logical spe shadow register area.
52 *
53 * Read-only shadow of spe registers.
54 */
55
56struct spe_shadow {
57	u8 padding_0140[0x0140];
58	u64 int_status_class0_RW;       /* 0x0140 */
59	u64 int_status_class1_RW;       /* 0x0148 */
60	u64 int_status_class2_RW;       /* 0x0150 */
61	u8 padding_0158[0x0610-0x0158];
62	u64 mfc_dsisr_RW;               /* 0x0610 */
63	u8 padding_0618[0x0620-0x0618];
64	u64 mfc_dar_RW;                 /* 0x0620 */
65	u8 padding_0628[0x0800-0x0628];
66	u64 mfc_dsipr_R;                /* 0x0800 */
67	u8 padding_0808[0x0810-0x0808];
68	u64 mfc_lscrr_R;                /* 0x0810 */
69	u8 padding_0818[0x0c00-0x0818];
70	u64 mfc_cer_R;                  /* 0x0c00 */
71	u8 padding_0c08[0x0f00-0x0c08];
72	u64 spe_execution_status;       /* 0x0f00 */
73	u8 padding_0f08[0x1000-0x0f08];
74};
75
76/**
77 * enum spe_ex_state - Logical spe execution state.
78 * @spe_ex_state_unexecutable: Uninitialized.
79 * @spe_ex_state_executable: Enabled, not ready.
80 * @spe_ex_state_executed: Ready for use.
81 *
82 * The execution state (status) of the logical spe as reported in
83 * struct spe_shadow:spe_execution_status.
84 */
85
86enum spe_ex_state {
87	SPE_EX_STATE_UNEXECUTABLE = 0,
88	SPE_EX_STATE_EXECUTABLE = 2,
89	SPE_EX_STATE_EXECUTED = 3,
90};
91
92/**
93 * struct priv1_cache - Cached values of priv1 registers.
94 * @masks[]: Array of cached spe interrupt masks, indexed by class.
95 * @sr1: Cached mfc_sr1 register.
96 * @tclass_id: Cached mfc_tclass_id register.
97 */
98
99struct priv1_cache {
100	u64 masks[3];
101	u64 sr1;
102	u64 tclass_id;
103};
104
105/**
106 * struct spu_pdata - Platform state variables.
107 * @spe_id: HV spe id returned by lv1_construct_logical_spe().
108 * @resource_id: HV spe resource id returned by
109 * 	ps3_repository_read_spe_resource_id().
110 * @priv2_addr: lpar address of spe priv2 area returned by
111 * 	lv1_construct_logical_spe().
112 * @shadow_addr: lpar address of spe register shadow area returned by
113 * 	lv1_construct_logical_spe().
114 * @shadow: Virtual (ioremap) address of spe register shadow area.
115 * @cache: Cached values of priv1 registers.
116 */
117
118struct spu_pdata {
119	u64 spe_id;
120	u64 resource_id;
121	u64 priv2_addr;
122	u64 shadow_addr;
123	struct spe_shadow __iomem *shadow;
124	struct priv1_cache cache;
125};
126
127static struct spu_pdata *spu_pdata(struct spu *spu)
128{
129	return spu->pdata;
130}
131
132#define dump_areas(_a, _b, _c, _d, _e) \
133	_dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
134static void _dump_areas(unsigned int spe_id, unsigned long priv2,
135	unsigned long problem, unsigned long ls, unsigned long shadow,
136	const char* func, int line)
137{
138	pr_debug("%s:%d: spe_id:  %xh (%u)\n", func, line, spe_id, spe_id);
139	pr_debug("%s:%d: priv2:   %lxh\n", func, line, priv2);
140	pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
141	pr_debug("%s:%d: ls:      %lxh\n", func, line, ls);
142	pr_debug("%s:%d: shadow:  %lxh\n", func, line, shadow);
143}
144
145inline u64 ps3_get_spe_id(void *arg)
146{
147	return spu_pdata(arg)->spe_id;
148}
149EXPORT_SYMBOL_GPL(ps3_get_spe_id);
150
151static unsigned long get_vas_id(void)
152{
153	u64 id;
154
155	lv1_get_logical_ppe_id(&id);
156	lv1_get_virtual_address_space_id_of_ppe(id, &id);
157
158	return id;
159}
160
161static int __init construct_spu(struct spu *spu)
162{
163	int result;
164	u64 unused;
165	u64 problem_phys;
166	u64 local_store_phys;
167
168	result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
169		PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
170		&spu_pdata(spu)->priv2_addr, &problem_phys,
171		&local_store_phys, &unused,
172		&spu_pdata(spu)->shadow_addr,
173		&spu_pdata(spu)->spe_id);
174	spu->problem_phys = problem_phys;
175	spu->local_store_phys = local_store_phys;
176
177	if (result) {
178		pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
179			__func__, __LINE__, ps3_result(result));
180		return result;
181	}
182
183	return result;
184}
185
186static void spu_unmap(struct spu *spu)
187{
188	iounmap(spu->priv2);
189	iounmap(spu->problem);
190	iounmap((__force u8 __iomem *)spu->local_store);
191	iounmap(spu_pdata(spu)->shadow);
192}
193
194/**
195 * setup_areas - Map the spu regions into the address space.
196 *
197 * The current HV requires the spu shadow regs to be mapped with the
198 * PTE page protection bits set as read-only (PP=3).  This implementation
199 * uses the low level __ioremap() to bypass the page protection settings
200 * inforced by ioremap_flags() to get the needed PTE bits set for the
201 * shadow regs.
202 */
203
204static int __init setup_areas(struct spu *spu)
205{
206	struct table {char* name; unsigned long addr; unsigned long size;};
207	static const unsigned long shadow_flags = _PAGE_NO_CACHE | 3;
208
209	spu_pdata(spu)->shadow = __ioremap(spu_pdata(spu)->shadow_addr,
210					   sizeof(struct spe_shadow),
211					   shadow_flags);
212	if (!spu_pdata(spu)->shadow) {
213		pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
214		goto fail_ioremap;
215	}
216
217	spu->local_store = (__force void *)ioremap_flags(spu->local_store_phys,
218		LS_SIZE, _PAGE_NO_CACHE);
219
220	if (!spu->local_store) {
221		pr_debug("%s:%d: ioremap local_store failed\n",
222			__func__, __LINE__);
223		goto fail_ioremap;
224	}
225
226	spu->problem = ioremap(spu->problem_phys,
227		sizeof(struct spu_problem));
228
229	if (!spu->problem) {
230		pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
231		goto fail_ioremap;
232	}
233
234	spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
235		sizeof(struct spu_priv2));
236
237	if (!spu->priv2) {
238		pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
239		goto fail_ioremap;
240	}
241
242	dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
243		spu->problem_phys, spu->local_store_phys,
244		spu_pdata(spu)->shadow_addr);
245	dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
246		(unsigned long)spu->problem, (unsigned long)spu->local_store,
247		(unsigned long)spu_pdata(spu)->shadow);
248
249	return 0;
250
251fail_ioremap:
252	spu_unmap(spu);
253
254	return -ENOMEM;
255}
256
257static int __init setup_interrupts(struct spu *spu)
258{
259	int result;
260
261	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
262		0, &spu->irqs[0]);
263
264	if (result)
265		goto fail_alloc_0;
266
267	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
268		1, &spu->irqs[1]);
269
270	if (result)
271		goto fail_alloc_1;
272
273	result = ps3_spe_irq_setup(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
274		2, &spu->irqs[2]);
275
276	if (result)
277		goto fail_alloc_2;
278
279	return result;
280
281fail_alloc_2:
282	ps3_spe_irq_destroy(spu->irqs[1]);
283fail_alloc_1:
284	ps3_spe_irq_destroy(spu->irqs[0]);
285fail_alloc_0:
286	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
287	return result;
288}
289
290static int __init enable_spu(struct spu *spu)
291{
292	int result;
293
294	result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
295		spu_pdata(spu)->resource_id);
296
297	if (result) {
298		pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
299			__func__, __LINE__, ps3_result(result));
300		goto fail_enable;
301	}
302
303	result = setup_areas(spu);
304
305	if (result)
306		goto fail_areas;
307
308	result = setup_interrupts(spu);
309
310	if (result)
311		goto fail_interrupts;
312
313	return 0;
314
315fail_interrupts:
316	spu_unmap(spu);
317fail_areas:
318	lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
319fail_enable:
320	return result;
321}
322
323static int ps3_destroy_spu(struct spu *spu)
324{
325	int result;
326
327	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
328
329	result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
330	BUG_ON(result);
331
332	ps3_spe_irq_destroy(spu->irqs[2]);
333	ps3_spe_irq_destroy(spu->irqs[1]);
334	ps3_spe_irq_destroy(spu->irqs[0]);
335
336	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
337
338	spu_unmap(spu);
339
340	result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
341	BUG_ON(result);
342
343	kfree(spu->pdata);
344	spu->pdata = NULL;
345
346	return 0;
347}
348
349static int __init ps3_create_spu(struct spu *spu, void *data)
350{
351	int result;
352
353	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);
354
355	spu->pdata = kzalloc(sizeof(struct spu_pdata),
356		GFP_KERNEL);
357
358	if (!spu->pdata) {
359		result = -ENOMEM;
360		goto fail_malloc;
361	}
362
363	spu_pdata(spu)->resource_id = (unsigned long)data;
364
365	/* Init cached reg values to HV defaults. */
366
367	spu_pdata(spu)->cache.sr1 = 0x33;
368
369	result = construct_spu(spu);
370
371	if (result)
372		goto fail_construct;
373
374	/* For now, just go ahead and enable it. */
375
376	result = enable_spu(spu);
377
378	if (result)
379		goto fail_enable;
380
381	/* Make sure the spu is in SPE_EX_STATE_EXECUTED. */
382
383	/* need something better here!!! */
384	while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
385		!= SPE_EX_STATE_EXECUTED)
386		(void)0;
387
388	return result;
389
390fail_enable:
391fail_construct:
392	ps3_destroy_spu(spu);
393fail_malloc:
394	return result;
395}
396
397static int __init ps3_enumerate_spus(int (*fn)(void *data))
398{
399	int result;
400	unsigned int num_resource_id;
401	unsigned int i;
402
403	result = ps3_repository_read_num_spu_resource_id(&num_resource_id);
404
405	pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
406		num_resource_id);
407
408	/*
409	 * For now, just create logical spus equal to the number
410	 * of physical spus reserved for the partition.
411	 */
412
413	for (i = 0; i < num_resource_id; i++) {
414		enum ps3_spu_resource_type resource_type;
415		unsigned int resource_id;
416
417		result = ps3_repository_read_spu_resource_id(i,
418			&resource_type, &resource_id);
419
420		if (result)
421			break;
422
423		if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
424			result = fn((void*)(unsigned long)resource_id);
425
426			if (result)
427				break;
428		}
429	}
430
431	if (result) {
432		printk(KERN_WARNING "%s:%d: Error initializing spus\n",
433			__func__, __LINE__);
434		return result;
435	}
436
437	return num_resource_id;
438}
439
440static int ps3_init_affinity(void)
441{
442	return 0;
443}
444
445/**
446 * ps3_enable_spu - Enable SPU run control.
447 *
448 * An outstanding enhancement for the PS3 would be to add a guard to check
449 * for incorrect access to the spu problem state when the spu context is
450 * disabled.  This check could be implemented with a flag added to the spu
451 * context that would inhibit mapping problem state pages, and a routine
452 * to unmap spu problem state pages.  When the spu is enabled with
453 * ps3_enable_spu() the flag would be set allowing pages to be mapped,
454 * and when the spu is disabled with ps3_disable_spu() the flag would be
455 * cleared and the mapped problem state pages would be unmapped.
456 */
457
458static void ps3_enable_spu(struct spu_context *ctx)
459{
460}
461
462static void ps3_disable_spu(struct spu_context *ctx)
463{
464	ctx->ops->runcntl_stop(ctx);
465}
466
467const struct spu_management_ops spu_management_ps3_ops = {
468	.enumerate_spus = ps3_enumerate_spus,
469	.create_spu = ps3_create_spu,
470	.destroy_spu = ps3_destroy_spu,
471	.enable_spu = ps3_enable_spu,
472	.disable_spu = ps3_disable_spu,
473	.init_affinity = ps3_init_affinity,
474};
475
476/* spu_priv1_ops */
477
478static void int_mask_and(struct spu *spu, int class, u64 mask)
479{
480	u64 old_mask;
481
482	/* are these serialized by caller??? */
483	old_mask = spu_int_mask_get(spu, class);
484	spu_int_mask_set(spu, class, old_mask & mask);
485}
486
487static void int_mask_or(struct spu *spu, int class, u64 mask)
488{
489	u64 old_mask;
490
491	old_mask = spu_int_mask_get(spu, class);
492	spu_int_mask_set(spu, class, old_mask | mask);
493}
494
495static void int_mask_set(struct spu *spu, int class, u64 mask)
496{
497	spu_pdata(spu)->cache.masks[class] = mask;
498	lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
499		spu_pdata(spu)->cache.masks[class]);
500}
501
502static u64 int_mask_get(struct spu *spu, int class)
503{
504	return spu_pdata(spu)->cache.masks[class];
505}
506
507static void int_stat_clear(struct spu *spu, int class, u64 stat)
508{
509	/* Note that MFC_DSISR will be cleared when class1[MF] is set. */
510
511	lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
512		stat, 0);
513}
514
515static u64 int_stat_get(struct spu *spu, int class)
516{
517	u64 stat;
518
519	lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
520	return stat;
521}
522
523static void cpu_affinity_set(struct spu *spu, int cpu)
524{
525	/* No support. */
526}
527
528static u64 mfc_dar_get(struct spu *spu)
529{
530	return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
531}
532
533static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
534{
535	/* Nothing to do, cleared in int_stat_clear(). */
536}
537
538static u64 mfc_dsisr_get(struct spu *spu)
539{
540	return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
541}
542
543static void mfc_sdr_setup(struct spu *spu)
544{
545	/* Nothing to do. */
546}
547
548static void mfc_sr1_set(struct spu *spu, u64 sr1)
549{
550	/* Check bits allowed by HV. */
551
552	static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
553		| MFC_STATE1_PROBLEM_STATE_MASK);
554
555	BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));
556
557	spu_pdata(spu)->cache.sr1 = sr1;
558	lv1_set_spe_privilege_state_area_1_register(
559		spu_pdata(spu)->spe_id,
560		offsetof(struct spu_priv1, mfc_sr1_RW),
561		spu_pdata(spu)->cache.sr1);
562}
563
564static u64 mfc_sr1_get(struct spu *spu)
565{
566	return spu_pdata(spu)->cache.sr1;
567}
568
569static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
570{
571	spu_pdata(spu)->cache.tclass_id = tclass_id;
572	lv1_set_spe_privilege_state_area_1_register(
573		spu_pdata(spu)->spe_id,
574		offsetof(struct spu_priv1, mfc_tclass_id_RW),
575		spu_pdata(spu)->cache.tclass_id);
576}
577
578static u64 mfc_tclass_id_get(struct spu *spu)
579{
580	return spu_pdata(spu)->cache.tclass_id;
581}
582
583static void tlb_invalidate(struct spu *spu)
584{
585	/* Nothing to do. */
586}
587
588static void resource_allocation_groupID_set(struct spu *spu, u64 id)
589{
590	/* No support. */
591}
592
593static u64 resource_allocation_groupID_get(struct spu *spu)
594{
595	return 0; /* No support. */
596}
597
598static void resource_allocation_enable_set(struct spu *spu, u64 enable)
599{
600	/* No support. */
601}
602
603static u64 resource_allocation_enable_get(struct spu *spu)
604{
605	return 0; /* No support. */
606}
607
608const struct spu_priv1_ops spu_priv1_ps3_ops = {
609	.int_mask_and = int_mask_and,
610	.int_mask_or = int_mask_or,
611	.int_mask_set = int_mask_set,
612	.int_mask_get = int_mask_get,
613	.int_stat_clear = int_stat_clear,
614	.int_stat_get = int_stat_get,
615	.cpu_affinity_set = cpu_affinity_set,
616	.mfc_dar_get = mfc_dar_get,
617	.mfc_dsisr_set = mfc_dsisr_set,
618	.mfc_dsisr_get = mfc_dsisr_get,
619	.mfc_sdr_setup = mfc_sdr_setup,
620	.mfc_sr1_set = mfc_sr1_set,
621	.mfc_sr1_get = mfc_sr1_get,
622	.mfc_tclass_id_set = mfc_tclass_id_set,
623	.mfc_tclass_id_get = mfc_tclass_id_get,
624	.tlb_invalidate = tlb_invalidate,
625	.resource_allocation_groupID_set = resource_allocation_groupID_set,
626	.resource_allocation_groupID_get = resource_allocation_groupID_get,
627	.resource_allocation_enable_set = resource_allocation_enable_set,
628	.resource_allocation_enable_get = resource_allocation_enable_get,
629};
630
631void ps3_spu_set_platform(void)
632{
633	spu_priv1_ops = &spu_priv1_ps3_ops;
634	spu_management_ops = &spu_management_ps3_ops;
635}
636