• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/parisc/kernel/
1/*
2 *  linux/arch/parisc/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02  Alan Modra
9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
25#include <linux/clocksource.h>
26#include <linux/platform_device.h>
27#include <linux/ftrace.h>
28
29#include <asm/uaccess.h>
30#include <asm/io.h>
31#include <asm/irq.h>
32#include <asm/param.h>
33#include <asm/pdc.h>
34#include <asm/led.h>
35
36#include <linux/timex.h>
37
38static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
39
40/*
41 * We keep time on PA-RISC Linux by using the Interval Timer which is
42 * a pair of registers; one is read-only and one is write-only; both
43 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
44 * and increments by 1 every CPU clock tick.  The architecture only
45 * guarantees us a rate between 0.5 and 2, but all implementations use a
46 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
47 * 32 bits of the read-only register compare equal to the write-only
48 * register, it raises a maskable external interrupt.  Each processor has
49 * an Interval Timer of its own and they are not synchronised.
50 *
51 * We want to generate an interrupt every 1/HZ seconds.  So we program
52 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
53 * is programmed with the intended time of the next tick.  We can be
54 * held off for an arbitrarily long period of time by interrupts being
55 * disabled, so we may miss one or more ticks.
56 */
57irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
58{
59	unsigned long now, now2;
60	unsigned long next_tick;
61	unsigned long cycles_elapsed, ticks_elapsed = 1;
62	unsigned long cycles_remainder;
63	unsigned int cpu = smp_processor_id();
64	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
65
66	/* gcc can optimize for "read-only" case with a local clocktick */
67	unsigned long cpt = clocktick;
68
69	profile_tick(CPU_PROFILING);
70
71	/* Initialize next_tick to the expected tick time. */
72	next_tick = cpuinfo->it_value;
73
74	/* Get current cycle counter (Control Register 16). */
75	now = mfctl(16);
76
77	cycles_elapsed = now - next_tick;
78
79	if ((cycles_elapsed >> 6) < cpt) {
80		/* use "cheap" math (add/subtract) instead
81		 * of the more expensive div/mul method
82		 */
83		cycles_remainder = cycles_elapsed;
84		while (cycles_remainder > cpt) {
85			cycles_remainder -= cpt;
86			ticks_elapsed++;
87		}
88	} else {
89		/* TODO: Reduce this to one fdiv op */
90		cycles_remainder = cycles_elapsed % cpt;
91		ticks_elapsed += cycles_elapsed / cpt;
92	}
93
94	/* convert from "division remainder" to "remainder of clock tick" */
95	cycles_remainder = cpt - cycles_remainder;
96
97	/* Determine when (in CR16 cycles) next IT interrupt will fire.
98	 * We want IT to fire modulo clocktick even if we miss/skip some.
99	 * But those interrupts don't in fact get delivered that regularly.
100	 */
101	next_tick = now + cycles_remainder;
102
103	cpuinfo->it_value = next_tick;
104
105	/* Program the IT when to deliver the next interrupt.
106	 * Only bottom 32-bits of next_tick are writable in CR16!
107	 */
108	mtctl(next_tick, 16);
109
110	/* Skip one clocktick on purpose if we missed next_tick.
111	 * The new CR16 must be "later" than current CR16 otherwise
112	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
113	 * later on a 1Ghz processor. We'll account for the missed
114	 * tick on the next timer interrupt.
115	 *
116	 * "next_tick - now" will always give the difference regardless
117	 * if one or the other wrapped. If "now" is "bigger" we'll end up
118	 * with a very large unsigned number.
119	 */
120	now2 = mfctl(16);
121	if (next_tick - now2 > cpt)
122		mtctl(next_tick+cpt, 16);
123
124/*
125 * GGG: DEBUG code for how many cycles programming CR16 used.
126 */
127	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
128		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
129			" cyc %lX rem %lX "
130			" next/now %lX/%lX\n",
131			cpu, now2 - now, cycles_elapsed, cycles_remainder,
132			next_tick, now );
133
134	/* Can we differentiate between "early CR16" (aka Scenario 1) and
135	 * "long delay" (aka Scenario 3)? I don't think so.
136	 *
137	 * Timer_interrupt will be delivered at least a few hundred cycles
138	 * after the IT fires. But it's arbitrary how much time passes
139	 * before we call it "late". I've picked one second.
140	 *
141	 * It's important NO printk's are between reading CR16 and
142	 * setting up the next value. May introduce huge variance.
143	 */
144	if (unlikely(ticks_elapsed > HZ)) {
145		/* Scenario 3: very long delay?  bad in any case */
146		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
147			" cycles %lX rem %lX "
148			" next/now %lX/%lX\n",
149			cpu,
150			cycles_elapsed, cycles_remainder,
151			next_tick, now );
152	}
153
154	/* Done mucking with unreliable delivery of interrupts.
155	 * Go do system house keeping.
156	 */
157
158	if (!--cpuinfo->prof_counter) {
159		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
160		update_process_times(user_mode(get_irq_regs()));
161	}
162
163	if (cpu == 0) {
164		write_seqlock(&xtime_lock);
165		do_timer(ticks_elapsed);
166		write_sequnlock(&xtime_lock);
167	}
168
169	return IRQ_HANDLED;
170}
171
172
173unsigned long profile_pc(struct pt_regs *regs)
174{
175	unsigned long pc = instruction_pointer(regs);
176
177	if (regs->gr[0] & PSW_N)
178		pc -= 4;
179
180#ifdef CONFIG_SMP
181	if (in_lock_functions(pc))
182		pc = regs->gr[2];
183#endif
184
185	return pc;
186}
187EXPORT_SYMBOL(profile_pc);
188
189
190/* clock source code */
191
192static cycle_t read_cr16(struct clocksource *cs)
193{
194	return get_cycles();
195}
196
197static struct clocksource clocksource_cr16 = {
198	.name			= "cr16",
199	.rating			= 300,
200	.read			= read_cr16,
201	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
202	.mult			= 0, /* to be set */
203	.shift			= 22,
204	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
205};
206
207#ifdef CONFIG_SMP
208int update_cr16_clocksource(void)
209{
210	/* since the cr16 cycle counters are not synchronized across CPUs,
211	   we'll check if we should switch to a safe clocksource: */
212	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
213		clocksource_change_rating(&clocksource_cr16, 0);
214		return 1;
215	}
216
217	return 0;
218}
219#else
220int update_cr16_clocksource(void)
221{
222	return 0; /* no change */
223}
224#endif /*CONFIG_SMP*/
225
226void __init start_cpu_itimer(void)
227{
228	unsigned int cpu = smp_processor_id();
229	unsigned long next_tick = mfctl(16) + clocktick;
230
231	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
232
233	per_cpu(cpu_data, cpu).it_value = next_tick;
234}
235
236static struct platform_device rtc_generic_dev = {
237	.name = "rtc-generic",
238	.id = -1,
239};
240
241static int __init rtc_init(void)
242{
243	if (platform_device_register(&rtc_generic_dev) < 0)
244		printk(KERN_ERR "unable to register rtc device...\n");
245
246	/* not necessarily an error */
247	return 0;
248}
249module_init(rtc_init);
250
251void read_persistent_clock(struct timespec *ts)
252{
253	static struct pdc_tod tod_data;
254	if (pdc_tod_read(&tod_data) == 0) {
255		ts->tv_sec = tod_data.tod_sec;
256		ts->tv_nsec = tod_data.tod_usec * 1000;
257	} else {
258		printk(KERN_ERR "Error reading tod clock\n");
259	        ts->tv_sec = 0;
260		ts->tv_nsec = 0;
261	}
262}
263
264void __init time_init(void)
265{
266	unsigned long current_cr16_khz;
267
268	clocktick = (100 * PAGE0->mem_10msec) / HZ;
269
270	start_cpu_itimer();	/* get CPU 0 started */
271
272	/* register at clocksource framework */
273	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
274	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
275						clocksource_cr16.shift);
276	clocksource_register(&clocksource_cr16);
277}
278