• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/sn/kernel/sn2/
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
7 *
8 * SGI Altix topology and hardware performance monitoring API.
9 * Mark Goodwin <markgw@sgi.com>.
10 *
11 * Creates /proc/sgi_sn/sn_topology (read-only) to export
12 * info about Altix nodes, routers, CPUs and NumaLink
13 * interconnection/topology.
14 *
15 * Also creates a dynamic misc device named "sn_hwperf"
16 * that supports an ioctl interface to call down into SAL
17 * to discover hw objects, topology and to read/write
18 * memory mapped registers, e.g. for performance monitoring.
19 * The "sn_hwperf" device is registered only after the procfs
20 * file is first opened, i.e. only if/when it's needed.
21 *
22 * This API is used by SGI Performance Co-Pilot and other
23 * tools, see http://oss.sgi.com/projects/pcp
24 */
25
26#include <linux/fs.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/seq_file.h>
30#include <linux/miscdevice.h>
31#include <linux/utsname.h>
32#include <linux/cpumask.h>
33#include <linux/nodemask.h>
34#include <linux/smp.h>
35#include <linux/mutex.h>
36
37#include <asm/processor.h>
38#include <asm/topology.h>
39#include <asm/uaccess.h>
40#include <asm/sal.h>
41#include <asm/sn/io.h>
42#include <asm/sn/sn_sal.h>
43#include <asm/sn/module.h>
44#include <asm/sn/geo.h>
45#include <asm/sn/sn2/sn_hwperf.h>
46#include <asm/sn/addrs.h>
47
48static void *sn_hwperf_salheap = NULL;
49static int sn_hwperf_obj_cnt = 0;
50static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
51static int sn_hwperf_init(void);
52static DEFINE_MUTEX(sn_hwperf_init_mutex);
53
54#define cnode_possible(n)	((n) < num_cnodes)
55
56static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
57{
58	int e;
59	u64 sz;
60	struct sn_hwperf_object_info *objbuf = NULL;
61
62	if ((e = sn_hwperf_init()) < 0) {
63		printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
64		goto out;
65	}
66
67	sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
68	objbuf = vmalloc(sz);
69	if (objbuf == NULL) {
70		printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
71		e = -ENOMEM;
72		goto out;
73	}
74
75	e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
76		0, sz, (u64) objbuf, 0, 0, NULL);
77	if (e != SN_HWPERF_OP_OK) {
78		e = -EINVAL;
79		vfree(objbuf);
80	}
81
82out:
83	*nobj = sn_hwperf_obj_cnt;
84	*ret = objbuf;
85	return e;
86}
87
88static int sn_hwperf_location_to_bpos(char *location,
89	int *rack, int *bay, int *slot, int *slab)
90{
91	char type;
92
93	/* first scan for an old style geoid string */
94	if (sscanf(location, "%03d%c%02d#%d",
95		rack, &type, bay, slab) == 4)
96		*slot = 0;
97	else /* scan for a new bladed geoid string */
98	if (sscanf(location, "%03d%c%02d^%02d#%d",
99		rack, &type, bay, slot, slab) != 5)
100		return -1;
101	/* success */
102	return 0;
103}
104
105static int sn_hwperf_geoid_to_cnode(char *location)
106{
107	int cnode;
108	geoid_t geoid;
109	moduleid_t module_id;
110	int rack, bay, slot, slab;
111	int this_rack, this_bay, this_slot, this_slab;
112
113	if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
114		return -1;
115
116	for (cnode = 0; cnode < num_cnodes; cnode++) {
117		geoid = cnodeid_get_geoid(cnode);
118		module_id = geo_module(geoid);
119		this_rack = MODULE_GET_RACK(module_id);
120		this_bay = MODULE_GET_BPOS(module_id);
121		this_slot = geo_slot(geoid);
122		this_slab = geo_slab(geoid);
123		if (rack == this_rack && bay == this_bay &&
124			slot == this_slot && slab == this_slab) {
125			break;
126		}
127	}
128
129	return cnode_possible(cnode) ? cnode : -1;
130}
131
132static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
133{
134	if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
135		BUG();
136	if (SN_HWPERF_FOREIGN(obj))
137		return -1;
138	return sn_hwperf_geoid_to_cnode(obj->location);
139}
140
141static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
142				struct sn_hwperf_object_info *objs)
143{
144	int ordinal;
145	struct sn_hwperf_object_info *p;
146
147	for (ordinal=0, p=objs; p != obj; p++) {
148		if (SN_HWPERF_FOREIGN(p))
149			continue;
150		if (SN_HWPERF_SAME_OBJTYPE(p, obj))
151			ordinal++;
152	}
153
154	return ordinal;
155}
156
157static const char *slabname_node =	"node"; /* SHub asic */
158static const char *slabname_ionode =	"ionode"; /* TIO asic */
159static const char *slabname_router =	"router"; /* NL3R or NL4R */
160static const char *slabname_other =	"other"; /* unknown asic */
161
162static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
163			struct sn_hwperf_object_info *objs, int *ordinal)
164{
165	int isnode;
166	const char *slabname = slabname_other;
167
168	if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
169	    	slabname = isnode ? slabname_node : slabname_ionode;
170		*ordinal = sn_hwperf_obj_to_cnode(obj);
171	}
172	else {
173		*ordinal = sn_hwperf_generic_ordinal(obj, objs);
174		if (SN_HWPERF_IS_ROUTER(obj))
175			slabname = slabname_router;
176	}
177
178	return slabname;
179}
180
181static void print_pci_topology(struct seq_file *s)
182{
183	char *p;
184	size_t sz;
185	int e;
186
187	for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
188		if (!(p = kmalloc(sz, GFP_KERNEL)))
189			break;
190		e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
191		if (e == SALRET_OK)
192			seq_puts(s, p);
193		kfree(p);
194		if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
195			break;
196	}
197}
198
199static inline int sn_hwperf_has_cpus(cnodeid_t node)
200{
201	return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
202}
203
204static inline int sn_hwperf_has_mem(cnodeid_t node)
205{
206	return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
207}
208
209static struct sn_hwperf_object_info *
210sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
211	int nobj, int id)
212{
213	int i;
214	struct sn_hwperf_object_info *p = objbuf;
215
216	for (i=0; i < nobj; i++, p++) {
217		if (p->id == id)
218			return p;
219	}
220
221	return NULL;
222
223}
224
225static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
226	int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
227{
228	int e;
229	struct sn_hwperf_object_info *nodeobj = NULL;
230	struct sn_hwperf_object_info *op;
231	struct sn_hwperf_object_info *dest;
232	struct sn_hwperf_object_info *router;
233	struct sn_hwperf_port_info ptdata[16];
234	int sz, i, j;
235	cnodeid_t c;
236	int found_mem = 0;
237	int found_cpu = 0;
238
239	if (!cnode_possible(node))
240		return -EINVAL;
241
242	if (sn_hwperf_has_cpus(node)) {
243		if (near_cpu_node)
244			*near_cpu_node = node;
245		found_cpu++;
246	}
247
248	if (sn_hwperf_has_mem(node)) {
249		if (near_mem_node)
250			*near_mem_node = node;
251		found_mem++;
252	}
253
254	if (found_cpu && found_mem)
255		return 0; /* trivially successful */
256
257	/* find the argument node object */
258	for (i=0, op=objbuf; i < nobj; i++, op++) {
259		if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
260			continue;
261		if (node == sn_hwperf_obj_to_cnode(op)) {
262			nodeobj = op;
263			break;
264		}
265	}
266	if (!nodeobj) {
267		e = -ENOENT;
268		goto err;
269	}
270
271	/* get it's interconnect topology */
272	sz = op->ports * sizeof(struct sn_hwperf_port_info);
273	BUG_ON(sz > sizeof(ptdata));
274	e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
275			      SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
276			      (u64)&ptdata, 0, 0, NULL);
277	if (e != SN_HWPERF_OP_OK) {
278		e = -EINVAL;
279		goto err;
280	}
281
282	/* find nearest node with cpus and nearest memory */
283	for (router=NULL, j=0; j < op->ports; j++) {
284		dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
285		if (dest && SN_HWPERF_IS_ROUTER(dest))
286			router = dest;
287		if (!dest || SN_HWPERF_FOREIGN(dest) ||
288		    !SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
289			continue;
290		}
291		c = sn_hwperf_obj_to_cnode(dest);
292		if (!found_cpu && sn_hwperf_has_cpus(c)) {
293			if (near_cpu_node)
294				*near_cpu_node = c;
295			found_cpu++;
296		}
297		if (!found_mem && sn_hwperf_has_mem(c)) {
298			if (near_mem_node)
299				*near_mem_node = c;
300			found_mem++;
301		}
302	}
303
304	if (router && (!found_cpu || !found_mem)) {
305		/* search for a node connected to the same router */
306		sz = router->ports * sizeof(struct sn_hwperf_port_info);
307		BUG_ON(sz > sizeof(ptdata));
308		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
309				      SN_HWPERF_ENUM_PORTS, router->id, sz,
310				      (u64)&ptdata, 0, 0, NULL);
311		if (e != SN_HWPERF_OP_OK) {
312			e = -EINVAL;
313			goto err;
314		}
315		for (j=0; j < router->ports; j++) {
316			dest = sn_hwperf_findobj_id(objbuf, nobj,
317				ptdata[j].conn_id);
318			if (!dest || dest->id == node ||
319			    SN_HWPERF_FOREIGN(dest) ||
320			    !SN_HWPERF_IS_NODE(dest) ||
321			    SN_HWPERF_IS_IONODE(dest)) {
322				continue;
323			}
324			c = sn_hwperf_obj_to_cnode(dest);
325			if (!found_cpu && sn_hwperf_has_cpus(c)) {
326				if (near_cpu_node)
327					*near_cpu_node = c;
328				found_cpu++;
329			}
330			if (!found_mem && sn_hwperf_has_mem(c)) {
331				if (near_mem_node)
332					*near_mem_node = c;
333				found_mem++;
334			}
335			if (found_cpu && found_mem)
336				break;
337		}
338	}
339
340	if (!found_cpu || !found_mem) {
341		/* resort to _any_ node with CPUs and memory */
342		for (i=0, op=objbuf; i < nobj; i++, op++) {
343			if (SN_HWPERF_FOREIGN(op) ||
344			    SN_HWPERF_IS_IONODE(op) ||
345			    !SN_HWPERF_IS_NODE(op)) {
346				continue;
347			}
348			c = sn_hwperf_obj_to_cnode(op);
349			if (!found_cpu && sn_hwperf_has_cpus(c)) {
350				if (near_cpu_node)
351					*near_cpu_node = c;
352				found_cpu++;
353			}
354			if (!found_mem && sn_hwperf_has_mem(c)) {
355				if (near_mem_node)
356					*near_mem_node = c;
357				found_mem++;
358			}
359			if (found_cpu && found_mem)
360				break;
361		}
362	}
363
364	if (!found_cpu || !found_mem)
365		e = -ENODATA;
366
367err:
368	return e;
369}
370
371
372static int sn_topology_show(struct seq_file *s, void *d)
373{
374	int sz;
375	int pt;
376	int e = 0;
377	int i;
378	int j;
379	const char *slabname;
380	int ordinal;
381	char slice;
382	struct cpuinfo_ia64 *c;
383	struct sn_hwperf_port_info *ptdata;
384	struct sn_hwperf_object_info *p;
385	struct sn_hwperf_object_info *obj = d;	/* this object */
386	struct sn_hwperf_object_info *objs = s->private; /* all objects */
387	u8 shubtype;
388	u8 system_size;
389	u8 sharing_size;
390	u8 partid;
391	u8 coher;
392	u8 nasid_shift;
393	u8 region_size;
394	u16 nasid_mask;
395	int nasid_msb;
396
397	if (obj == objs) {
398		seq_printf(s, "# sn_topology version 2\n");
399		seq_printf(s, "# objtype ordinal location partition"
400			" [attribute value [, ...]]\n");
401
402		if (ia64_sn_get_sn_info(0,
403			&shubtype, &nasid_mask, &nasid_shift, &system_size,
404			&sharing_size, &partid, &coher, &region_size))
405			BUG();
406		for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
407			if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
408				break;
409		}
410		seq_printf(s, "partition %u %s local "
411			"shubtype %s, "
412			"nasid_mask 0x%016llx, "
413			"nasid_bits %d:%d, "
414			"system_size %d, "
415			"sharing_size %d, "
416			"coherency_domain %d, "
417			"region_size %d\n",
418
419			partid, utsname()->nodename,
420			shubtype ? "shub2" : "shub1",
421			(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
422			system_size, sharing_size, coher, region_size);
423
424		print_pci_topology(s);
425	}
426
427	if (SN_HWPERF_FOREIGN(obj)) {
428		/* private in another partition: not interesting */
429		return 0;
430	}
431
432	for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
433		if (obj->name[i] == ' ')
434			obj->name[i] = '_';
435	}
436
437	slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
438	seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
439		obj->sn_hwp_this_part ? "local" : "shared", obj->name);
440
441	if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
442		seq_putc(s, '\n');
443	else {
444		cnodeid_t near_mem = -1;
445		cnodeid_t near_cpu = -1;
446
447		seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
448
449		if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
450			ordinal, &near_mem, &near_cpu) == 0) {
451			seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
452				near_mem, near_cpu);
453		}
454
455		if (!SN_HWPERF_IS_IONODE(obj)) {
456			for_each_online_node(i) {
457				seq_printf(s, i ? ":%d" : ", dist %d",
458					node_distance(ordinal, i));
459			}
460		}
461
462		seq_putc(s, '\n');
463
464		/*
465		 * CPUs on this node, if any
466		 */
467		if (!SN_HWPERF_IS_IONODE(obj)) {
468			for_each_cpu_and(i, cpu_online_mask,
469					 cpumask_of_node(ordinal)) {
470				slice = 'a' + cpuid_to_slice(i);
471				c = cpu_data(i);
472				seq_printf(s, "cpu %d %s%c local"
473					   " freq %luMHz, arch ia64",
474					   i, obj->location, slice,
475					   c->proc_freq / 1000000);
476				for_each_online_cpu(j) {
477					seq_printf(s, j ? ":%d" : ", dist %d",
478						   node_distance(
479						    	cpu_to_node(i),
480						    	cpu_to_node(j)));
481				}
482				seq_putc(s, '\n');
483			}
484		}
485	}
486
487	if (obj->ports) {
488		/*
489		 * numalink ports
490		 */
491		sz = obj->ports * sizeof(struct sn_hwperf_port_info);
492		if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
493			return -ENOMEM;
494		e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
495				      SN_HWPERF_ENUM_PORTS, obj->id, sz,
496				      (u64) ptdata, 0, 0, NULL);
497		if (e != SN_HWPERF_OP_OK)
498			return -EINVAL;
499		for (ordinal=0, p=objs; p != obj; p++) {
500			if (!SN_HWPERF_FOREIGN(p))
501				ordinal += p->ports;
502		}
503		for (pt = 0; pt < obj->ports; pt++) {
504			for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
505				if (ptdata[pt].conn_id == p->id) {
506					break;
507				}
508			}
509			seq_printf(s, "numalink %d %s-%d",
510			    ordinal+pt, obj->location, ptdata[pt].port);
511
512			if (i >= sn_hwperf_obj_cnt) {
513				/* no connection */
514				seq_puts(s, " local endpoint disconnected"
515					    ", protocol unknown\n");
516				continue;
517			}
518
519			if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
520				/* both ends local to this partition */
521				seq_puts(s, " local");
522			else if (SN_HWPERF_FOREIGN(p))
523				/* both ends of the link in foreign partiton */
524				seq_puts(s, " foreign");
525			else
526				/* link straddles a partition */
527				seq_puts(s, " shared");
528
529			/*
530			 * Unlikely, but strictly should query the LLP config
531			 * registers because an NL4R can be configured to run
532			 * NL3 protocol, even when not talking to an NL3 router.
533			 * Ditto for node-node.
534			 */
535			seq_printf(s, " endpoint %s-%d, protocol %s\n",
536				p->location, ptdata[pt].conn_port,
537				(SN_HWPERF_IS_NL3ROUTER(obj) ||
538				SN_HWPERF_IS_NL3ROUTER(p)) ?  "LLP3" : "LLP4");
539		}
540		kfree(ptdata);
541	}
542
543	return 0;
544}
545
546static void *sn_topology_start(struct seq_file *s, loff_t * pos)
547{
548	struct sn_hwperf_object_info *objs = s->private;
549
550	if (*pos < sn_hwperf_obj_cnt)
551		return (void *)(objs + *pos);
552
553	return NULL;
554}
555
556static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
557{
558	++*pos;
559	return sn_topology_start(s, pos);
560}
561
562static void sn_topology_stop(struct seq_file *m, void *v)
563{
564	return;
565}
566
567/*
568 * /proc/sgi_sn/sn_topology, read-only using seq_file
569 */
570static const struct seq_operations sn_topology_seq_ops = {
571	.start = sn_topology_start,
572	.next = sn_topology_next,
573	.stop = sn_topology_stop,
574	.show = sn_topology_show
575};
576
577struct sn_hwperf_op_info {
578	u64 op;
579	struct sn_hwperf_ioctl_args *a;
580	void *p;
581	int *v0;
582	int ret;
583};
584
585static void sn_hwperf_call_sal(void *info)
586{
587	struct sn_hwperf_op_info *op_info = info;
588	int r;
589
590	r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
591		      op_info->a->arg, op_info->a->sz,
592		      (u64) op_info->p, 0, 0, op_info->v0);
593	op_info->ret = r;
594}
595
596static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
597{
598	u32 cpu;
599	u32 use_ipi;
600	int r = 0;
601	cpumask_t save_allowed;
602
603	cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
604	use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
605	op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
606
607	if (cpu != SN_HWPERF_ARG_ANY_CPU) {
608		if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
609			r = -EINVAL;
610			goto out;
611		}
612	}
613
614	if (cpu == SN_HWPERF_ARG_ANY_CPU || cpu == get_cpu()) {
615		/* don't care, or already on correct cpu */
616		sn_hwperf_call_sal(op_info);
617	}
618	else {
619		if (use_ipi) {
620			/* use an interprocessor interrupt to call SAL */
621			smp_call_function_single(cpu, sn_hwperf_call_sal,
622				op_info, 1);
623		}
624		else {
625			/* migrate the task before calling SAL */
626			save_allowed = current->cpus_allowed;
627			set_cpus_allowed_ptr(current, cpumask_of(cpu));
628			sn_hwperf_call_sal(op_info);
629			set_cpus_allowed_ptr(current, &save_allowed);
630		}
631	}
632	r = op_info->ret;
633
634out:
635	return r;
636}
637
638/* map SAL hwperf error code to system error code */
639static int sn_hwperf_map_err(int hwperf_err)
640{
641	int e;
642
643	switch(hwperf_err) {
644	case SN_HWPERF_OP_OK:
645		e = 0;
646		break;
647
648	case SN_HWPERF_OP_NOMEM:
649		e = -ENOMEM;
650		break;
651
652	case SN_HWPERF_OP_NO_PERM:
653		e = -EPERM;
654		break;
655
656	case SN_HWPERF_OP_IO_ERROR:
657		e = -EIO;
658		break;
659
660	case SN_HWPERF_OP_BUSY:
661		e = -EBUSY;
662		break;
663
664	case SN_HWPERF_OP_RECONFIGURE:
665		e = -EAGAIN;
666		break;
667
668	case SN_HWPERF_OP_INVAL:
669	default:
670		e = -EINVAL;
671		break;
672	}
673
674	return e;
675}
676
677/*
678 * ioctl for "sn_hwperf" misc device
679 */
680static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
681{
682	struct sn_hwperf_ioctl_args a;
683	struct cpuinfo_ia64 *cdata;
684	struct sn_hwperf_object_info *objs;
685	struct sn_hwperf_object_info *cpuobj;
686	struct sn_hwperf_op_info op_info;
687	void *p = NULL;
688	int nobj;
689	char slice;
690	int node;
691	int r;
692	int v0;
693	int i;
694	int j;
695
696	/* only user requests are allowed here */
697	if ((op & SN_HWPERF_OP_MASK) < 10) {
698		r = -EINVAL;
699		goto error;
700	}
701	r = copy_from_user(&a, (const void __user *)arg,
702		sizeof(struct sn_hwperf_ioctl_args));
703	if (r != 0) {
704		r = -EFAULT;
705		goto error;
706	}
707
708	/*
709	 * Allocate memory to hold a kernel copy of the user buffer. The
710	 * buffer contents are either copied in or out (or both) of user
711	 * space depending on the flags encoded in the requested operation.
712	 */
713	if (a.ptr) {
714		p = vmalloc(a.sz);
715		if (!p) {
716			r = -ENOMEM;
717			goto error;
718		}
719	}
720
721	if (op & SN_HWPERF_OP_MEM_COPYIN) {
722		r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
723		if (r != 0) {
724			r = -EFAULT;
725			goto error;
726		}
727	}
728
729	switch (op) {
730	case SN_HWPERF_GET_CPU_INFO:
731		if (a.sz == sizeof(u64)) {
732			/* special case to get size needed */
733			*(u64 *) p = (u64) num_online_cpus() *
734				sizeof(struct sn_hwperf_object_info);
735		} else
736		if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
737			r = -ENOMEM;
738			goto error;
739		} else
740		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
741			int cpuobj_index = 0;
742
743			memset(p, 0, a.sz);
744			for (i = 0; i < nobj; i++) {
745				if (!SN_HWPERF_IS_NODE(objs + i))
746					continue;
747				node = sn_hwperf_obj_to_cnode(objs + i);
748				for_each_online_cpu(j) {
749					if (node != cpu_to_node(j))
750						continue;
751					cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
752					slice = 'a' + cpuid_to_slice(j);
753					cdata = cpu_data(j);
754					cpuobj->id = j;
755					snprintf(cpuobj->name,
756						 sizeof(cpuobj->name),
757						 "CPU %luMHz %s",
758						 cdata->proc_freq / 1000000,
759						 cdata->vendor);
760					snprintf(cpuobj->location,
761						 sizeof(cpuobj->location),
762						 "%s%c", objs[i].location,
763						 slice);
764				}
765			}
766
767			vfree(objs);
768		}
769		break;
770
771	case SN_HWPERF_GET_NODE_NASID:
772		if (a.sz != sizeof(u64) ||
773		   (node = a.arg) < 0 || !cnode_possible(node)) {
774			r = -EINVAL;
775			goto error;
776		}
777		*(u64 *)p = (u64)cnodeid_to_nasid(node);
778		break;
779
780	case SN_HWPERF_GET_OBJ_NODE:
781		i = a.arg;
782		if (a.sz != sizeof(u64) || i < 0) {
783			r = -EINVAL;
784			goto error;
785		}
786		if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
787			if (i >= nobj) {
788				r = -EINVAL;
789				vfree(objs);
790				goto error;
791			}
792			if (objs[i].id != a.arg) {
793				for (i = 0; i < nobj; i++) {
794					if (objs[i].id == a.arg)
795						break;
796				}
797			}
798			if (i == nobj) {
799				r = -EINVAL;
800				vfree(objs);
801				goto error;
802			}
803
804			if (!SN_HWPERF_IS_NODE(objs + i) &&
805			    !SN_HWPERF_IS_IONODE(objs + i)) {
806			    	r = -ENOENT;
807				vfree(objs);
808				goto error;
809			}
810
811			*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
812			vfree(objs);
813		}
814		break;
815
816	case SN_HWPERF_GET_MMRS:
817	case SN_HWPERF_SET_MMRS:
818	case SN_HWPERF_OBJECT_DISTANCE:
819		op_info.p = p;
820		op_info.a = &a;
821		op_info.v0 = &v0;
822		op_info.op = op;
823		r = sn_hwperf_op_cpu(&op_info);
824		if (r) {
825			r = sn_hwperf_map_err(r);
826			a.v0 = v0;
827			goto error;
828		}
829		break;
830
831	default:
832		/* all other ops are a direct SAL call */
833		r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
834			      a.arg, a.sz, (u64) p, 0, 0, &v0);
835		if (r) {
836			r = sn_hwperf_map_err(r);
837			goto error;
838		}
839		a.v0 = v0;
840		break;
841	}
842
843	if (op & SN_HWPERF_OP_MEM_COPYOUT) {
844		r = copy_to_user((void __user *)a.ptr, p, a.sz);
845		if (r != 0) {
846			r = -EFAULT;
847			goto error;
848		}
849	}
850
851error:
852	vfree(p);
853
854	return r;
855}
856
857static const struct file_operations sn_hwperf_fops = {
858	.unlocked_ioctl = sn_hwperf_ioctl,
859};
860
861static struct miscdevice sn_hwperf_dev = {
862	MISC_DYNAMIC_MINOR,
863	"sn_hwperf",
864	&sn_hwperf_fops
865};
866
867static int sn_hwperf_init(void)
868{
869	u64 v;
870	int salr;
871	int e = 0;
872
873	/* single threaded, once-only initialization */
874	mutex_lock(&sn_hwperf_init_mutex);
875
876	if (sn_hwperf_salheap) {
877		mutex_unlock(&sn_hwperf_init_mutex);
878		return e;
879	}
880
881	/*
882	 * The PROM code needs a fixed reference node. For convenience the
883	 * same node as the console I/O is used.
884	 */
885	sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
886
887	/*
888	 * Request the needed size and install the PROM scratch area.
889	 * The PROM keeps various tracking bits in this memory area.
890	 */
891	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
892				 (u64) SN_HWPERF_GET_HEAPSIZE, 0,
893				 (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
894	if (salr != SN_HWPERF_OP_OK) {
895		e = -EINVAL;
896		goto out;
897	}
898
899	if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
900		e = -ENOMEM;
901		goto out;
902	}
903	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
904				 SN_HWPERF_INSTALL_HEAP, 0, v,
905				 (u64) sn_hwperf_salheap, 0, 0, NULL);
906	if (salr != SN_HWPERF_OP_OK) {
907		e = -EINVAL;
908		goto out;
909	}
910
911	salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
912				 SN_HWPERF_OBJECT_COUNT, 0,
913				 sizeof(u64), (u64) &v, 0, 0, NULL);
914	if (salr != SN_HWPERF_OP_OK) {
915		e = -EINVAL;
916		goto out;
917	}
918	sn_hwperf_obj_cnt = (int)v;
919
920out:
921	if (e < 0 && sn_hwperf_salheap) {
922		vfree(sn_hwperf_salheap);
923		sn_hwperf_salheap = NULL;
924		sn_hwperf_obj_cnt = 0;
925	}
926	mutex_unlock(&sn_hwperf_init_mutex);
927	return e;
928}
929
930int sn_topology_open(struct inode *inode, struct file *file)
931{
932	int e;
933	struct seq_file *seq;
934	struct sn_hwperf_object_info *objbuf;
935	int nobj;
936
937	if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
938		e = seq_open(file, &sn_topology_seq_ops);
939		seq = file->private_data;
940		seq->private = objbuf;
941	}
942
943	return e;
944}
945
946int sn_topology_release(struct inode *inode, struct file *file)
947{
948	struct seq_file *seq = file->private_data;
949
950	vfree(seq->private);
951	return seq_release(inode, file);
952}
953
954int sn_hwperf_get_nearest_node(cnodeid_t node,
955	cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
956{
957	int e;
958	int nobj;
959	struct sn_hwperf_object_info *objbuf;
960
961	if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
962		e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
963			node, near_mem_node, near_cpu_node);
964		vfree(objbuf);
965	}
966
967	return e;
968}
969
970static int __devinit sn_hwperf_misc_register_init(void)
971{
972	int e;
973
974	if (!ia64_platform_is("sn2"))
975		return 0;
976
977	sn_hwperf_init();
978
979	/*
980	 * Register a dynamic misc device for hwperf ioctls. Platforms
981	 * supporting hotplug will create /dev/sn_hwperf, else user
982	 * can to look up the minor number in /proc/misc.
983	 */
984	if ((e = misc_register(&sn_hwperf_dev)) != 0) {
985		printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
986		"register misc device for \"%s\"\n", sn_hwperf_dev.name);
987	}
988
989	return e;
990}
991
992device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
993EXPORT_SYMBOL(sn_hwperf_get_nearest_node);
994