• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/ia64/include/asm/sn/
1#ifndef _ASM_IA64_SN_SN_SAL_H
2#define _ASM_IA64_SN_SN_SAL_H
3
4/*
5 * System Abstraction Layer definitions for IA64
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License.  See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * Copyright (c) 2000-2006 Silicon Graphics, Inc.  All rights reserved.
12 */
13
14
15#include <asm/sal.h>
16#include <asm/sn/sn_cpuid.h>
17#include <asm/sn/arch.h>
18#include <asm/sn/geo.h>
19#include <asm/sn/nodepda.h>
20#include <asm/sn/shub_mmr.h>
21
22// SGI Specific Calls
23#define  SN_SAL_POD_MODE                           0x02000001
24#define  SN_SAL_SYSTEM_RESET                       0x02000002
25#define  SN_SAL_PROBE                              0x02000003
26#define  SN_SAL_GET_MASTER_NASID                   0x02000004
27#define	 SN_SAL_GET_KLCONFIG_ADDR		   0x02000005
28#define  SN_SAL_LOG_CE				   0x02000006
29#define  SN_SAL_REGISTER_CE			   0x02000007
30#define  SN_SAL_GET_PARTITION_ADDR		   0x02000009
31#define  SN_SAL_XP_ADDR_REGION			   0x0200000f
32#define  SN_SAL_NO_FAULT_ZONE_VIRTUAL		   0x02000010
33#define  SN_SAL_NO_FAULT_ZONE_PHYSICAL		   0x02000011
34#define  SN_SAL_PRINT_ERROR			   0x02000012
35#define  SN_SAL_REGISTER_PMI_HANDLER		   0x02000014
36#define  SN_SAL_SET_ERROR_HANDLING_FEATURES	   0x0200001a	// reentrant
37#define  SN_SAL_GET_FIT_COMPT			   0x0200001b	// reentrant
38#define  SN_SAL_GET_SAPIC_INFO                     0x0200001d
39#define  SN_SAL_GET_SN_INFO                        0x0200001e
40#define  SN_SAL_CONSOLE_PUTC                       0x02000021
41#define  SN_SAL_CONSOLE_GETC                       0x02000022
42#define  SN_SAL_CONSOLE_PUTS                       0x02000023
43#define  SN_SAL_CONSOLE_GETS                       0x02000024
44#define  SN_SAL_CONSOLE_GETS_TIMEOUT               0x02000025
45#define  SN_SAL_CONSOLE_POLL                       0x02000026
46#define  SN_SAL_CONSOLE_INTR                       0x02000027
47#define  SN_SAL_CONSOLE_PUTB			   0x02000028
48#define  SN_SAL_CONSOLE_XMIT_CHARS		   0x0200002a
49#define  SN_SAL_CONSOLE_READC			   0x0200002b
50#define  SN_SAL_SYSCTL_OP			   0x02000030
51#define  SN_SAL_SYSCTL_MODID_GET	           0x02000031
52#define  SN_SAL_SYSCTL_GET                         0x02000032
53#define  SN_SAL_SYSCTL_IOBRICK_MODULE_GET          0x02000033
54#define  SN_SAL_SYSCTL_IO_PORTSPEED_GET            0x02000035
55#define  SN_SAL_SYSCTL_SLAB_GET                    0x02000036
56#define  SN_SAL_BUS_CONFIG		   	   0x02000037
57#define  SN_SAL_SYS_SERIAL_GET			   0x02000038
58#define  SN_SAL_PARTITION_SERIAL_GET		   0x02000039
59#define  SN_SAL_SYSCTL_PARTITION_GET               0x0200003a
60#define  SN_SAL_SYSTEM_POWER_DOWN		   0x0200003b
61#define  SN_SAL_GET_MASTER_BASEIO_NASID		   0x0200003c
62#define  SN_SAL_COHERENCE                          0x0200003d
63#define  SN_SAL_MEMPROTECT                         0x0200003e
64#define  SN_SAL_SYSCTL_FRU_CAPTURE		   0x0200003f
65
66#define  SN_SAL_SYSCTL_IOBRICK_PCI_OP		   0x02000042	// reentrant
67#define	 SN_SAL_IROUTER_OP			   0x02000043
68#define  SN_SAL_SYSCTL_EVENT                       0x02000044
69#define  SN_SAL_IOIF_INTERRUPT			   0x0200004a
70#define  SN_SAL_HWPERF_OP			   0x02000050   // lock
71#define  SN_SAL_IOIF_ERROR_INTERRUPT		   0x02000051
72#define  SN_SAL_IOIF_PCI_SAFE			   0x02000052
73#define  SN_SAL_IOIF_SLOT_ENABLE		   0x02000053
74#define  SN_SAL_IOIF_SLOT_DISABLE		   0x02000054
75#define  SN_SAL_IOIF_GET_HUBDEV_INFO		   0x02000055
76#define  SN_SAL_IOIF_GET_PCIBUS_INFO		   0x02000056
77#define  SN_SAL_IOIF_GET_PCIDEV_INFO		   0x02000057
78#define  SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST	   0x02000058	// deprecated
79#define  SN_SAL_IOIF_GET_DEVICE_DMAFLUSH_LIST	   0x0200005a
80
81#define SN_SAL_IOIF_INIT			   0x0200005f
82#define SN_SAL_HUB_ERROR_INTERRUPT		   0x02000060
83#define SN_SAL_BTE_RECOVER			   0x02000061
84#define SN_SAL_RESERVED_DO_NOT_USE		   0x02000062
85#define SN_SAL_IOIF_GET_PCI_TOPOLOGY		   0x02000064
86
87#define  SN_SAL_GET_PROM_FEATURE_SET		   0x02000065
88#define  SN_SAL_SET_OS_FEATURE_SET		   0x02000066
89#define  SN_SAL_INJECT_ERROR			   0x02000067
90#define  SN_SAL_SET_CPU_NUMBER			   0x02000068
91
92#define  SN_SAL_KERNEL_LAUNCH_EVENT		   0x02000069
93#define  SN_SAL_WATCHLIST_ALLOC			   0x02000070
94#define  SN_SAL_WATCHLIST_FREE			   0x02000071
95
96/*
97 * Service-specific constants
98 */
99
100/* Console interrupt manipulation */
101	/* action codes */
102#define SAL_CONSOLE_INTR_OFF    0       /* turn the interrupt off */
103#define SAL_CONSOLE_INTR_ON     1       /* turn the interrupt on */
104#define SAL_CONSOLE_INTR_STATUS 2	/* retrieve the interrupt status */
105	/* interrupt specification & status return codes */
106#define SAL_CONSOLE_INTR_XMIT	1	/* output interrupt */
107#define SAL_CONSOLE_INTR_RECV	2	/* input interrupt */
108
109/* interrupt handling */
110#define SAL_INTR_ALLOC		1
111#define SAL_INTR_FREE		2
112#define SAL_INTR_REDIRECT	3
113
114/*
115 * operations available on the generic SN_SAL_SYSCTL_OP
116 * runtime service
117 */
118#define SAL_SYSCTL_OP_IOBOARD		0x0001  /*  retrieve board type */
119#define SAL_SYSCTL_OP_TIO_JLCK_RST      0x0002  /* issue TIO clock reset */
120
121/*
122 * IRouter (i.e. generalized system controller) operations
123 */
124#define SAL_IROUTER_OPEN	0	/* open a subchannel */
125#define SAL_IROUTER_CLOSE	1	/* close a subchannel */
126#define SAL_IROUTER_SEND	2	/* send part of an IRouter packet */
127#define SAL_IROUTER_RECV	3	/* receive part of an IRouter packet */
128#define SAL_IROUTER_INTR_STATUS	4	/* check the interrupt status for
129					 * an open subchannel
130					 */
131#define SAL_IROUTER_INTR_ON	5	/* enable an interrupt */
132#define SAL_IROUTER_INTR_OFF	6	/* disable an interrupt */
133#define SAL_IROUTER_INIT	7	/* initialize IRouter driver */
134
135/* IRouter interrupt mask bits */
136#define SAL_IROUTER_INTR_XMIT	SAL_CONSOLE_INTR_XMIT
137#define SAL_IROUTER_INTR_RECV	SAL_CONSOLE_INTR_RECV
138
139/*
140 * Error Handling Features
141 */
142#define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV	0x1	// obsolete
143#define SAL_ERR_FEAT_LOG_SBES			0x2	// obsolete
144#define SAL_ERR_FEAT_MFR_OVERRIDE		0x4
145#define SAL_ERR_FEAT_SBE_THRESHOLD		0xffff0000
146
147/*
148 * SAL Error Codes
149 */
150#define SALRET_MORE_PASSES	1
151#define SALRET_OK		0
152#define SALRET_NOT_IMPLEMENTED	(-1)
153#define SALRET_INVALID_ARG	(-2)
154#define SALRET_ERROR		(-3)
155
156#define SN_SAL_FAKE_PROM			   0x02009999
157
158/**
159  * sn_sal_revision - get the SGI SAL revision number
160  *
161  * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
162  * This routine simply extracts the major and minor values and
163  * presents them in a u32 format.
164  *
165  * For example, version 4.05 would be represented at 0x0405.
166  */
167static inline u32
168sn_sal_rev(void)
169{
170	struct ia64_sal_systab *systab = __va(efi.sal_systab);
171
172	return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
173}
174
175/*
176 * Returns the master console nasid, if the call fails, return an illegal
177 * value.
178 */
179static inline u64
180ia64_sn_get_console_nasid(void)
181{
182	struct ia64_sal_retval ret_stuff;
183
184	ret_stuff.status = 0;
185	ret_stuff.v0 = 0;
186	ret_stuff.v1 = 0;
187	ret_stuff.v2 = 0;
188	SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
189
190	if (ret_stuff.status < 0)
191		return ret_stuff.status;
192
193	/* Master console nasid is in 'v0' */
194	return ret_stuff.v0;
195}
196
197/*
198 * Returns the master baseio nasid, if the call fails, return an illegal
199 * value.
200 */
201static inline u64
202ia64_sn_get_master_baseio_nasid(void)
203{
204	struct ia64_sal_retval ret_stuff;
205
206	ret_stuff.status = 0;
207	ret_stuff.v0 = 0;
208	ret_stuff.v1 = 0;
209	ret_stuff.v2 = 0;
210	SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
211
212	if (ret_stuff.status < 0)
213		return ret_stuff.status;
214
215	/* Master baseio nasid is in 'v0' */
216	return ret_stuff.v0;
217}
218
219static inline void *
220ia64_sn_get_klconfig_addr(nasid_t nasid)
221{
222	struct ia64_sal_retval ret_stuff;
223
224	ret_stuff.status = 0;
225	ret_stuff.v0 = 0;
226	ret_stuff.v1 = 0;
227	ret_stuff.v2 = 0;
228	SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
229	return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
230}
231
232/*
233 * Returns the next console character.
234 */
235static inline u64
236ia64_sn_console_getc(int *ch)
237{
238	struct ia64_sal_retval ret_stuff;
239
240	ret_stuff.status = 0;
241	ret_stuff.v0 = 0;
242	ret_stuff.v1 = 0;
243	ret_stuff.v2 = 0;
244	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
245
246	/* character is in 'v0' */
247	*ch = (int)ret_stuff.v0;
248
249	return ret_stuff.status;
250}
251
252/*
253 * Read a character from the SAL console device, after a previous interrupt
254 * or poll operation has given us to know that a character is available
255 * to be read.
256 */
257static inline u64
258ia64_sn_console_readc(void)
259{
260	struct ia64_sal_retval ret_stuff;
261
262	ret_stuff.status = 0;
263	ret_stuff.v0 = 0;
264	ret_stuff.v1 = 0;
265	ret_stuff.v2 = 0;
266	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
267
268	/* character is in 'v0' */
269	return ret_stuff.v0;
270}
271
272/*
273 * Sends the given character to the console.
274 */
275static inline u64
276ia64_sn_console_putc(char ch)
277{
278	struct ia64_sal_retval ret_stuff;
279
280	ret_stuff.status = 0;
281	ret_stuff.v0 = 0;
282	ret_stuff.v1 = 0;
283	ret_stuff.v2 = 0;
284	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (u64)ch, 0, 0, 0, 0, 0, 0);
285
286	return ret_stuff.status;
287}
288
289/*
290 * Sends the given buffer to the console.
291 */
292static inline u64
293ia64_sn_console_putb(const char *buf, int len)
294{
295	struct ia64_sal_retval ret_stuff;
296
297	ret_stuff.status = 0;
298	ret_stuff.v0 = 0;
299	ret_stuff.v1 = 0;
300	ret_stuff.v2 = 0;
301	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (u64)buf, (u64)len, 0, 0, 0, 0, 0);
302
303	if ( ret_stuff.status == 0 ) {
304		return ret_stuff.v0;
305	}
306	return (u64)0;
307}
308
309/*
310 * Print a platform error record
311 */
312static inline u64
313ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
314{
315	struct ia64_sal_retval ret_stuff;
316
317	ret_stuff.status = 0;
318	ret_stuff.v0 = 0;
319	ret_stuff.v1 = 0;
320	ret_stuff.v2 = 0;
321	SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (u64)hook, (u64)rec, 0, 0, 0, 0, 0);
322
323	return ret_stuff.status;
324}
325
326/*
327 * Check for Platform errors
328 */
329static inline u64
330ia64_sn_plat_cpei_handler(void)
331{
332	struct ia64_sal_retval ret_stuff;
333
334	ret_stuff.status = 0;
335	ret_stuff.v0 = 0;
336	ret_stuff.v1 = 0;
337	ret_stuff.v2 = 0;
338	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
339
340	return ret_stuff.status;
341}
342
343/*
344 * Set Error Handling Features	(Obsolete)
345 */
346static inline u64
347ia64_sn_plat_set_error_handling_features(void)
348{
349	struct ia64_sal_retval ret_stuff;
350
351	ret_stuff.status = 0;
352	ret_stuff.v0 = 0;
353	ret_stuff.v1 = 0;
354	ret_stuff.v2 = 0;
355	SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
356		SAL_ERR_FEAT_LOG_SBES,
357		0, 0, 0, 0, 0, 0);
358
359	return ret_stuff.status;
360}
361
362/*
363 * Checks for console input.
364 */
365static inline u64
366ia64_sn_console_check(int *result)
367{
368	struct ia64_sal_retval ret_stuff;
369
370	ret_stuff.status = 0;
371	ret_stuff.v0 = 0;
372	ret_stuff.v1 = 0;
373	ret_stuff.v2 = 0;
374	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
375
376	/* result is in 'v0' */
377	*result = (int)ret_stuff.v0;
378
379	return ret_stuff.status;
380}
381
382/*
383 * Checks console interrupt status
384 */
385static inline u64
386ia64_sn_console_intr_status(void)
387{
388	struct ia64_sal_retval ret_stuff;
389
390	ret_stuff.status = 0;
391	ret_stuff.v0 = 0;
392	ret_stuff.v1 = 0;
393	ret_stuff.v2 = 0;
394	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
395		 0, SAL_CONSOLE_INTR_STATUS,
396		 0, 0, 0, 0, 0);
397
398	if (ret_stuff.status == 0) {
399	    return ret_stuff.v0;
400	}
401
402	return 0;
403}
404
405/*
406 * Enable an interrupt on the SAL console device.
407 */
408static inline void
409ia64_sn_console_intr_enable(u64 intr)
410{
411	struct ia64_sal_retval ret_stuff;
412
413	ret_stuff.status = 0;
414	ret_stuff.v0 = 0;
415	ret_stuff.v1 = 0;
416	ret_stuff.v2 = 0;
417	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
418		 intr, SAL_CONSOLE_INTR_ON,
419		 0, 0, 0, 0, 0);
420}
421
422/*
423 * Disable an interrupt on the SAL console device.
424 */
425static inline void
426ia64_sn_console_intr_disable(u64 intr)
427{
428	struct ia64_sal_retval ret_stuff;
429
430	ret_stuff.status = 0;
431	ret_stuff.v0 = 0;
432	ret_stuff.v1 = 0;
433	ret_stuff.v2 = 0;
434	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
435		 intr, SAL_CONSOLE_INTR_OFF,
436		 0, 0, 0, 0, 0);
437}
438
439/*
440 * Sends a character buffer to the console asynchronously.
441 */
442static inline u64
443ia64_sn_console_xmit_chars(char *buf, int len)
444{
445	struct ia64_sal_retval ret_stuff;
446
447	ret_stuff.status = 0;
448	ret_stuff.v0 = 0;
449	ret_stuff.v1 = 0;
450	ret_stuff.v2 = 0;
451	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
452		 (u64)buf, (u64)len,
453		 0, 0, 0, 0, 0);
454
455	if (ret_stuff.status == 0) {
456	    return ret_stuff.v0;
457	}
458
459	return 0;
460}
461
462/*
463 * Returns the iobrick module Id
464 */
465static inline u64
466ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
467{
468	struct ia64_sal_retval ret_stuff;
469
470	ret_stuff.status = 0;
471	ret_stuff.v0 = 0;
472	ret_stuff.v1 = 0;
473	ret_stuff.v2 = 0;
474	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
475
476	/* result is in 'v0' */
477	*result = (int)ret_stuff.v0;
478
479	return ret_stuff.status;
480}
481
482/**
483 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
484 *
485 * SN_SAL_POD_MODE actually takes an argument, but it's always
486 * 0 when we call it from the kernel, so we don't have to expose
487 * it to the caller.
488 */
489static inline u64
490ia64_sn_pod_mode(void)
491{
492	struct ia64_sal_retval isrv;
493	SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
494	if (isrv.status)
495		return 0;
496	return isrv.v0;
497}
498
499/**
500 * ia64_sn_probe_mem - read from memory safely
501 * @addr: address to probe
502 * @size: number bytes to read (1,2,4,8)
503 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
504 *
505 * Call into the SAL to do a memory read.  If the read generates a machine
506 * check, this routine will recover gracefully and return -1 to the caller.
507 * @addr is usually a kernel virtual address in uncached space (i.e. the
508 * address starts with 0xc), but if called in physical mode, @addr should
509 * be a physical address.
510 *
511 * Return values:
512 *  0 - probe successful
513 *  1 - probe failed (generated MCA)
514 *  2 - Bad arg
515 * <0 - PAL error
516 */
517static inline u64
518ia64_sn_probe_mem(long addr, long size, void *data_ptr)
519{
520	struct ia64_sal_retval isrv;
521
522	SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
523
524	if (data_ptr) {
525		switch (size) {
526		case 1:
527			*((u8*)data_ptr) = (u8)isrv.v0;
528			break;
529		case 2:
530			*((u16*)data_ptr) = (u16)isrv.v0;
531			break;
532		case 4:
533			*((u32*)data_ptr) = (u32)isrv.v0;
534			break;
535		case 8:
536			*((u64*)data_ptr) = (u64)isrv.v0;
537			break;
538		default:
539			isrv.status = 2;
540		}
541	}
542	return isrv.status;
543}
544
545/*
546 * Retrieve the system serial number as an ASCII string.
547 */
548static inline u64
549ia64_sn_sys_serial_get(char *buf)
550{
551	struct ia64_sal_retval ret_stuff;
552	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
553	return ret_stuff.status;
554}
555
556extern char sn_system_serial_number_string[];
557extern u64 sn_partition_serial_number;
558
559static inline char *
560sn_system_serial_number(void) {
561	if (sn_system_serial_number_string[0]) {
562		return(sn_system_serial_number_string);
563	} else {
564		ia64_sn_sys_serial_get(sn_system_serial_number_string);
565		return(sn_system_serial_number_string);
566	}
567}
568
569
570/*
571 * Returns a unique id number for this system and partition (suitable for
572 * use with license managers), based in part on the system serial number.
573 */
574static inline u64
575ia64_sn_partition_serial_get(void)
576{
577	struct ia64_sal_retval ret_stuff;
578	ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
579				   0, 0, 0, 0, 0, 0);
580	if (ret_stuff.status != 0)
581	    return 0;
582	return ret_stuff.v0;
583}
584
585static inline u64
586sn_partition_serial_number_val(void) {
587	if (unlikely(sn_partition_serial_number == 0)) {
588		sn_partition_serial_number = ia64_sn_partition_serial_get();
589	}
590	return sn_partition_serial_number;
591}
592
593/*
594 * Returns the partition id of the nasid passed in as an argument,
595 * or INVALID_PARTID if the partition id cannot be retrieved.
596 */
597static inline partid_t
598ia64_sn_sysctl_partition_get(nasid_t nasid)
599{
600	struct ia64_sal_retval ret_stuff;
601	SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
602		0, 0, 0, 0, 0, 0);
603	if (ret_stuff.status != 0)
604	    return -1;
605	return ((partid_t)ret_stuff.v0);
606}
607
608/*
609 * Returns the physical address of the partition's reserved page through
610 * an iterative number of calls.
611 *
612 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
613 * set to the nasid of the partition whose reserved page's address is
614 * being sought.
615 * On subsequent calls, pass the values, that were passed back on the
616 * previous call.
617 *
618 * While the return status equals SALRET_MORE_PASSES, keep calling
619 * this function after first copying 'len' bytes starting at 'addr'
620 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
621 * be the physical address of the partition's reserved page. If the
622 * return status equals neither of these, an error as occurred.
623 */
624static inline s64
625sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
626{
627	struct ia64_sal_retval rv;
628	ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
629				   *addr, buf, *len, 0, 0, 0);
630	*cookie = rv.v0;
631	*addr = rv.v1;
632	*len = rv.v2;
633	return rv.status;
634}
635
636/*
637 * Register or unregister a physical address range being referenced across
638 * a partition boundary for which certain SAL errors should be scanned for,
639 * cleaned up and ignored.  This is of value for kernel partitioning code only.
640 * Values for the operation argument:
641 *	1 = register this address range with SAL
642 *	0 = unregister this address range with SAL
643 *
644 * SAL maintains a reference count on an address range in case it is registered
645 * multiple times.
646 *
647 * On success, returns the reference count of the address range after the SAL
648 * call has performed the current registration/unregistration.  Returns a
649 * negative value if an error occurred.
650 */
651static inline int
652sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
653{
654	struct ia64_sal_retval ret_stuff;
655	ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
656			 (u64)operation, 0, 0, 0, 0);
657	return ret_stuff.status;
658}
659
660/*
661 * Register or unregister an instruction range for which SAL errors should
662 * be ignored.  If an error occurs while in the registered range, SAL jumps
663 * to return_addr after ignoring the error.  Values for the operation argument:
664 *	1 = register this instruction range with SAL
665 *	0 = unregister this instruction range with SAL
666 *
667 * Returns 0 on success, or a negative value if an error occurred.
668 */
669static inline int
670sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
671			 int virtual, int operation)
672{
673	struct ia64_sal_retval ret_stuff;
674	u64 call;
675	if (virtual) {
676		call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
677	} else {
678		call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
679	}
680	ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
681			 (u64)1, 0, 0, 0);
682	return ret_stuff.status;
683}
684
685/*
686 * Register or unregister a function to handle a PMI received by a CPU.
687 * Before calling the registered handler, SAL sets r1 to the value that
688 * was passed in as the global_pointer.
689 *
690 * If the handler pointer is NULL, then the currently registered handler
691 * will be unregistered.
692 *
693 * Returns 0 on success, or a negative value if an error occurred.
694 */
695static inline int
696sn_register_pmi_handler(u64 handler, u64 global_pointer)
697{
698	struct ia64_sal_retval ret_stuff;
699	ia64_sal_oemcall(&ret_stuff, SN_SAL_REGISTER_PMI_HANDLER, handler,
700			 global_pointer, 0, 0, 0, 0, 0);
701	return ret_stuff.status;
702}
703
704/*
705 * Change or query the coherence domain for this partition. Each cpu-based
706 * nasid is represented by a bit in an array of 64-bit words:
707 *      0 = not in this partition's coherency domain
708 *      1 = in this partition's coherency domain
709 *
710 * It is not possible for the local system's nasids to be removed from
711 * the coherency domain.  Purpose of the domain arguments:
712 *      new_domain = set the coherence domain to the given nasids
713 *      old_domain = return the current coherence domain
714 *
715 * Returns 0 on success, or a negative value if an error occurred.
716 */
717static inline int
718sn_change_coherence(u64 *new_domain, u64 *old_domain)
719{
720	struct ia64_sal_retval ret_stuff;
721	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
722				(u64)old_domain, 0, 0, 0, 0, 0);
723	return ret_stuff.status;
724}
725
726/*
727 * Change memory access protections for a physical address range.
728 * nasid_array is not used on Altix, but may be in future architectures.
729 * Available memory protection access classes are defined after the function.
730 */
731static inline int
732sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
733{
734	struct ia64_sal_retval ret_stuff;
735
736	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
737				(u64)nasid_array, perms, 0, 0, 0);
738	return ret_stuff.status;
739}
740#define SN_MEMPROT_ACCESS_CLASS_0		0x14a080
741#define SN_MEMPROT_ACCESS_CLASS_1		0x2520c2
742#define SN_MEMPROT_ACCESS_CLASS_2		0x14a1ca
743#define SN_MEMPROT_ACCESS_CLASS_3		0x14a290
744#define SN_MEMPROT_ACCESS_CLASS_6		0x084080
745#define SN_MEMPROT_ACCESS_CLASS_7		0x021080
746
747/*
748 * Turns off system power.
749 */
750static inline void
751ia64_sn_power_down(void)
752{
753	struct ia64_sal_retval ret_stuff;
754	SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
755	while(1)
756		cpu_relax();
757	/* never returns */
758}
759
760/**
761 * ia64_sn_fru_capture - tell the system controller to capture hw state
762 *
763 * This routine will call the SAL which will tell the system controller(s)
764 * to capture hw mmr information from each SHub in the system.
765 */
766static inline u64
767ia64_sn_fru_capture(void)
768{
769        struct ia64_sal_retval isrv;
770        SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
771        if (isrv.status)
772                return 0;
773        return isrv.v0;
774}
775
776/*
777 * Performs an operation on a PCI bus or slot -- power up, power down
778 * or reset.
779 */
780static inline u64
781ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
782			      u64 bus, char slot,
783			      u64 action)
784{
785	struct ia64_sal_retval rv = {0, 0, 0, 0};
786
787	SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
788		 bus, (u64) slot, 0, 0);
789	if (rv.status)
790	    	return rv.v0;
791	return 0;
792}
793
794
795/*
796 * Open a subchannel for sending arbitrary data to the system
797 * controller network via the system controller device associated with
798 * 'nasid'.  Return the subchannel number or a negative error code.
799 */
800static inline int
801ia64_sn_irtr_open(nasid_t nasid)
802{
803	struct ia64_sal_retval rv;
804	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
805			   0, 0, 0, 0, 0);
806	return (int) rv.v0;
807}
808
809/*
810 * Close system controller subchannel 'subch' previously opened on 'nasid'.
811 */
812static inline int
813ia64_sn_irtr_close(nasid_t nasid, int subch)
814{
815	struct ia64_sal_retval rv;
816	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
817			   (u64) nasid, (u64) subch, 0, 0, 0, 0);
818	return (int) rv.status;
819}
820
821/*
822 * Read data from system controller associated with 'nasid' on
823 * subchannel 'subch'.  The buffer to be filled is pointed to by
824 * 'buf', and its capacity is in the integer pointed to by 'len'.  The
825 * referent of 'len' is set to the number of bytes read by the SAL
826 * call.  The return value is either SALRET_OK (for bytes read) or
827 * SALRET_ERROR (for error or "no data available").
828 */
829static inline int
830ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
831{
832	struct ia64_sal_retval rv;
833	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
834			   (u64) nasid, (u64) subch, (u64) buf, (u64) len,
835			   0, 0);
836	return (int) rv.status;
837}
838
839/*
840 * Write data to the system controller network via the system
841 * controller associated with 'nasid' on suchannel 'subch'.  The
842 * buffer to be written out is pointed to by 'buf', and 'len' is the
843 * number of bytes to be written.  The return value is either the
844 * number of bytes written (which could be zero) or a negative error
845 * code.
846 */
847static inline int
848ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
849{
850	struct ia64_sal_retval rv;
851	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
852			   (u64) nasid, (u64) subch, (u64) buf, (u64) len,
853			   0, 0);
854	return (int) rv.v0;
855}
856
857/*
858 * Check whether any interrupts are pending for the system controller
859 * associated with 'nasid' and its subchannel 'subch'.  The return
860 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
861 * SAL_IROUTER_INTR_RECV).
862 */
863static inline int
864ia64_sn_irtr_intr(nasid_t nasid, int subch)
865{
866	struct ia64_sal_retval rv;
867	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
868			   (u64) nasid, (u64) subch, 0, 0, 0, 0);
869	return (int) rv.v0;
870}
871
872/*
873 * Enable the interrupt indicated by the intr parameter (either
874 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
875 */
876static inline int
877ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
878{
879	struct ia64_sal_retval rv;
880	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
881			   (u64) nasid, (u64) subch, intr, 0, 0, 0);
882	return (int) rv.v0;
883}
884
885/*
886 * Disable the interrupt indicated by the intr parameter (either
887 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
888 */
889static inline int
890ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
891{
892	struct ia64_sal_retval rv;
893	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
894			   (u64) nasid, (u64) subch, intr, 0, 0, 0);
895	return (int) rv.v0;
896}
897
898/*
899 * Set up a node as the point of contact for system controller
900 * environmental event delivery.
901 */
902static inline int
903ia64_sn_sysctl_event_init(nasid_t nasid)
904{
905        struct ia64_sal_retval rv;
906        SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
907			   0, 0, 0, 0, 0, 0);
908        return (int) rv.v0;
909}
910
911/*
912 * Ask the system controller on the specified nasid to reset
913 * the CX corelet clock.  Only valid on TIO nodes.
914 */
915static inline int
916ia64_sn_sysctl_tio_clock_reset(nasid_t nasid)
917{
918	struct ia64_sal_retval rv;
919	SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_TIO_JLCK_RST,
920			nasid, 0, 0, 0, 0, 0);
921	if (rv.status != 0)
922		return (int)rv.status;
923	if (rv.v0 != 0)
924		return (int)rv.v0;
925
926	return 0;
927}
928
929/*
930 * Get the associated ioboard type for a given nasid.
931 */
932static inline long
933ia64_sn_sysctl_ioboard_get(nasid_t nasid, u16 *ioboard)
934{
935	struct ia64_sal_retval isrv;
936	SAL_CALL_REENTRANT(isrv, SN_SAL_SYSCTL_OP, SAL_SYSCTL_OP_IOBOARD,
937			   nasid, 0, 0, 0, 0, 0);
938	if (isrv.v0 != 0) {
939		*ioboard = isrv.v0;
940		return isrv.status;
941	}
942	if (isrv.v1 != 0) {
943		*ioboard = isrv.v1;
944		return isrv.status;
945	}
946
947	return isrv.status;
948}
949
950/**
951 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
952 * @nasid: NASID of node to read
953 * @index: FIT entry index to be retrieved (0..n)
954 * @fitentry: 16 byte buffer where FIT entry will be stored.
955 * @banbuf: optional buffer for retrieving banner
956 * @banlen: length of banner buffer
957 *
958 * Access to the physical PROM chips needs to be serialized since reads and
959 * writes can't occur at the same time, so we need to call into the SAL when
960 * we want to look at the FIT entries on the chips.
961 *
962 * Returns:
963 *	%SALRET_OK if ok
964 *	%SALRET_INVALID_ARG if index too big
965 *	%SALRET_NOT_IMPLEMENTED if running on older PROM
966 *	??? if nasid invalid OR banner buffer not large enough
967 */
968static inline int
969ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
970		      u64 banlen)
971{
972	struct ia64_sal_retval rv;
973	SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
974			banbuf, banlen, 0, 0);
975	return (int) rv.status;
976}
977
978/*
979 * Initialize the SAL components of the system controller
980 * communication driver; specifically pass in a sizable buffer that
981 * can be used for allocation of subchannel queues as new subchannels
982 * are opened.  "buf" points to the buffer, and "len" specifies its
983 * length.
984 */
985static inline int
986ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
987{
988	struct ia64_sal_retval rv;
989	SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
990			   (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
991	return (int) rv.status;
992}
993
994/*
995 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
996 *
997 *  In:
998 *	arg0 - SN_SAL_GET_SAPIC_INFO
999 *	arg1 - sapicid (lid >> 16)
1000 *  Out:
1001 *	v0 - nasid
1002 *	v1 - subnode
1003 *	v2 - slice
1004 */
1005static inline u64
1006ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
1007{
1008	struct ia64_sal_retval ret_stuff;
1009
1010	ret_stuff.status = 0;
1011	ret_stuff.v0 = 0;
1012	ret_stuff.v1 = 0;
1013	ret_stuff.v2 = 0;
1014	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
1015
1016/***** BEGIN HACK - temp til old proms no longer supported ********/
1017	if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1018		if (nasid) *nasid = sapicid & 0xfff;
1019		if (subnode) *subnode = (sapicid >> 13) & 1;
1020		if (slice) *slice = (sapicid >> 12) & 3;
1021		return 0;
1022	}
1023/***** END HACK *******/
1024
1025	if (ret_stuff.status < 0)
1026		return ret_stuff.status;
1027
1028	if (nasid) *nasid = (int) ret_stuff.v0;
1029	if (subnode) *subnode = (int) ret_stuff.v1;
1030	if (slice) *slice = (int) ret_stuff.v2;
1031	return 0;
1032}
1033
1034/*
1035 * Returns information about the HUB/SHUB.
1036 *  In:
1037 *	arg0 - SN_SAL_GET_SN_INFO
1038 * 	arg1 - 0 (other values reserved for future use)
1039 *  Out:
1040 *	v0
1041 *		[7:0]   - shub type (0=shub1, 1=shub2)
1042 *		[15:8]  - Log2 max number of nodes in entire system (includes
1043 *			  C-bricks, I-bricks, etc)
1044 *		[23:16] - Log2 of nodes per sharing domain
1045 * 		[31:24] - partition ID
1046 * 		[39:32] - coherency_id
1047 * 		[47:40] - regionsize
1048 *	v1
1049 *		[15:0]  - nasid mask (ex., 0x7ff for 11 bit nasid)
1050 *	 	[23:15] - bit position of low nasid bit
1051 */
1052static inline u64
1053ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1054		u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1055{
1056	struct ia64_sal_retval ret_stuff;
1057
1058	ret_stuff.status = 0;
1059	ret_stuff.v0 = 0;
1060	ret_stuff.v1 = 0;
1061	ret_stuff.v2 = 0;
1062	SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1063
1064/***** BEGIN HACK - temp til old proms no longer supported ********/
1065	if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1066		int nasid = get_sapicid() & 0xfff;
1067#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1068#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1069		if (shubtype) *shubtype = 0;
1070		if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1071		if (nasid_shift) *nasid_shift = 38;
1072		if (systemsize) *systemsize = 10;
1073		if (sharing_domain_size) *sharing_domain_size = 8;
1074		if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1075		if (coher) *coher = nasid >> 9;
1076		if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1077			SH_SHUB_ID_NODES_PER_BIT_SHFT;
1078		return 0;
1079	}
1080/***** END HACK *******/
1081
1082	if (ret_stuff.status < 0)
1083		return ret_stuff.status;
1084
1085	if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1086	if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1087	if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1088	if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1089	if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1090	if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1091	if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1092	if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1093	return 0;
1094}
1095
1096/*
1097 * This is the access point to the Altix PROM hardware performance
1098 * and status monitoring interface. For info on using this, see
1099 * arch/ia64/include/asm/sn/sn2/sn_hwperf.h
1100 */
1101static inline int
1102ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1103                  u64 a3, u64 a4, int *v0)
1104{
1105	struct ia64_sal_retval rv;
1106	SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1107		opcode, a0, a1, a2, a3, a4);
1108	if (v0)
1109		*v0 = (int) rv.v0;
1110	return (int) rv.status;
1111}
1112
1113static inline int
1114ia64_sn_ioif_get_pci_topology(u64 buf, u64 len)
1115{
1116	struct ia64_sal_retval rv;
1117	SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY, buf, len, 0, 0, 0, 0, 0);
1118	return (int) rv.status;
1119}
1120
1121/*
1122 * BTE error recovery is implemented in SAL
1123 */
1124static inline int
1125ia64_sn_bte_recovery(nasid_t nasid)
1126{
1127	struct ia64_sal_retval rv;
1128
1129	rv.status = 0;
1130	SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, (u64)nasid, 0, 0, 0, 0, 0, 0);
1131	if (rv.status == SALRET_NOT_IMPLEMENTED)
1132		return 0;
1133	return (int) rv.status;
1134}
1135
1136static inline int
1137ia64_sn_is_fake_prom(void)
1138{
1139	struct ia64_sal_retval rv;
1140	SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1141	return (rv.status == 0);
1142}
1143
1144static inline int
1145ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1146{
1147	struct ia64_sal_retval rv;
1148
1149	SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1150	if (rv.status != 0)
1151		return rv.status;
1152	*feature_set = rv.v0;
1153	return 0;
1154}
1155
1156static inline int
1157ia64_sn_set_os_feature(int feature)
1158{
1159	struct ia64_sal_retval rv;
1160
1161	SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1162	return rv.status;
1163}
1164
1165static inline int
1166sn_inject_error(u64 paddr, u64 *data, u64 *ecc)
1167{
1168	struct ia64_sal_retval ret_stuff;
1169
1170	ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_INJECT_ERROR, paddr, (u64)data,
1171				(u64)ecc, 0, 0, 0, 0);
1172	return ret_stuff.status;
1173}
1174
1175static inline int
1176ia64_sn_set_cpu_number(int cpu)
1177{
1178	struct ia64_sal_retval rv;
1179
1180	SAL_CALL_NOLOCK(rv, SN_SAL_SET_CPU_NUMBER, cpu, 0, 0, 0, 0, 0, 0);
1181	return rv.status;
1182}
1183static inline int
1184ia64_sn_kernel_launch_event(void)
1185{
1186 	struct ia64_sal_retval rv;
1187	SAL_CALL_NOLOCK(rv, SN_SAL_KERNEL_LAUNCH_EVENT, 0, 0, 0, 0, 0, 0, 0);
1188	return rv.status;
1189}
1190
1191union sn_watchlist_u {
1192	u64     val;
1193	struct {
1194		u64	blade	: 16,
1195			size	: 32,
1196			filler	: 16;
1197	};
1198};
1199
1200static inline int
1201sn_mq_watchlist_alloc(int blade, void *mq, unsigned int mq_size,
1202				unsigned long *intr_mmr_offset)
1203{
1204	struct ia64_sal_retval rv;
1205	unsigned long addr;
1206	union sn_watchlist_u size_blade;
1207	int watchlist;
1208
1209	addr = (unsigned long)mq;
1210	size_blade.size = mq_size;
1211	size_blade.blade = blade;
1212
1213	/*
1214	 * bios returns watchlist number or negative error number.
1215	 */
1216	ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_ALLOC, addr,
1217			size_blade.val, (u64)intr_mmr_offset,
1218			(u64)&watchlist, 0, 0, 0);
1219	if (rv.status < 0)
1220		return rv.status;
1221
1222	return watchlist;
1223}
1224
1225static inline int
1226sn_mq_watchlist_free(int blade, int watchlist_num)
1227{
1228	struct ia64_sal_retval rv;
1229	ia64_sal_oemcall_nolock(&rv, SN_SAL_WATCHLIST_FREE, blade,
1230			watchlist_num, 0, 0, 0, 0, 0);
1231	return rv.status;
1232}
1233#endif /* _ASM_IA64_SN_SN_SAL_H */
1234